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While many-body wavefunction theory has long been established as a powerful framework for highly accurate molecu-
lar quantum chemistry, these methods have only fairly recently been applied to extended systems in a significant scale.
This is due to the high computational cost of such calculations, requiring efficient implementations and ample comput-
ing resources. To further aggravate this, second-order Møller-Plesset perturbation theory (MP2) (the most cost effective
wavefuntion method) is known to diverge or fail for some prototypical condensed matter systems like the homogeneous
electron gas (HEG). In this paper, we explore how the issues of MP2 for metallic and strongly correlated systems can be
ameliorated through regularization. To this end, two regularized second-order methods (including a new, size-extensive
Brillioun-Wigner approach) are applied to the HEG, the one-dimensional Hubbard model and the graphene-water inter-
action energy. We find that regularization consistently leads to improvements over the MP2 baseline and that different
regularizers are appropriate for metallic and strongly correlated systems, respectively.

I. INTRODUCTION

Second-order Møller-Plesset perturbation theory (MP2)
holds a unique place in the hierarchy of wavefunction-
based electronic structure methods.1–4 Historically, it was the
first correlated method in quantum chemistry that was size-
extensive, invariant to unitary orbital rotations and computa-
tionally affordable. Until the development of modern den-
sity functional theory (DFT) it was therefore the workhorse
method in molecular quantum chemistry.5

Even today, MP2 still plays an important role, e.g. in its
spin-component-scaled variants or as a part of double hybrid
DFT methods.6–8 Despite this popularity, the limitations of
MP2-like methods are also well-known. In particular, they fail
spectacularly for strongly correlated or metallic systems.9–11

Furthermore, a strong overestimation of dispersion interac-
tions is observed for large polarizable systems, due to the ab-
sence of higher-order screening effects.12,13

With the significant recent interest in implementing and ap-
plying wavefunction methods to solids, MP2 is again at the
center of attention as it represents the natural first step in such
endeavours.14–19 However, the known problems for large and
metallic systems clearly limit the usefulness of MP2 in this
context. Indeed, canonical MP2 by construction must fail for
metals, since vanishing band-gaps lead to diverging contribu-
tions to the correlation energy. Interestingly, coupled-cluster
(CC) methods do not share this problem, despite being closely
related to MP2.10,20 This improved behaviour can be inter-
preted as a renormalization of the band-gap due to the inclu-
sion of screening effects. This makes CC methods highly at-
tractive for condensed matter applications.17,21 Unfortunately,
this advantage comes at a significantly increased computa-
tional cost.

In light of these issues, there has been significant inter-
est in obtaining more robust MP2-like methods. In particu-
lar, different forms of regularization have been proposed as a
way of empirically imitating higher-order screening effects at
the MP2 level.22–25 This concept has proven very fruitful for
molecular applications, but to the best of our knowledge it has
so far not been applied to extended systems.

In this paper, we investigate the performance of regularized
MP2-like methods for some prototypical periodic systems,
which each constitute known issues for canonical MP2. In
particular, we consider the homogeneous electron gas (a metal
prototype), the one-dimensional Hubbard model (a strongly
correlated system) and the interaction of graphene with a
water molecule (a challenging dispersion-driven interaction).
We also propose a new, non-empirical regularization method
based on second-order Brillouin-Wigner perturbation theory.

II. THEORY

In the following we use indices i, j,k, l for occupied and
a,b,c,d for unoccupied spin-orbitals φ , respectively. Anti-
symmetrized two-electron repulsion integrals in this basis are
denoted as 〈i j||ab〉. Using this notation, the MP2 correlation
energy can be written as:

EMP2
c = ∑

i, j,a,b
−1

4
| 〈i j||ab〉 |2

∆ab
i j

, (1)

where the denominator ∆ab
i j = εa + εb− εi− ε j is computed

from the corresponding orbital energies ε .
Clearly, this energy must diverge if any ∆ab

i j becomes zero,
i.e. for metallic systems. In principle a small constant δ could
be added to the denominator to avoid this.23 Such a level-shift
prevents the division by zero, thus regularizing the MP2 cor-
relation energy expression. This raises the question of how
large the regularizer δ should be, however. Unfortunately, it
has been found that there is no simple answer to this question:
no single value of δ can both restore Coulson-Fisher points
for single bond breaking and retain good thermochemical per-
formance for weakly correlated systems.23 In other words, the
δ -regularization approach is not flexible enough to fix the di-
vergence of MP2 while retaining its merits.

To address this, Lee and Head-Gordon explored several
more sophisticated regularization schemes, in which each
contribution to the MP2 energy is individually regularized ac-
cording to the denominator ∆ab

i j .24 This allows attenuating the
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offending terms without affecting the well behaved ones. The
most successful of these schemes is κ-regularization, which
uses the expression:

Eκ−MP2
c = ∑

i, j,a,b
−1

4
| 〈i j||ab〉 |2

∆ab
i j

(
1− e−κ∆ab

i j
)2

. (2)

For orbital-optimized MP2, this form of regularization (us-
ing κ=1.4 E−1

H ) was found to yield accurate molecular ther-
mochemistry while also restoring the Coulson-Fisher points
in single-bond dissociation curves (the absence of the latter
being a well know failure of canonical MP2).24

In this work, we also explore a different regularization ap-
proach. This is based on Brillouin-Wigner (BW) perturbation
theory, where the second-order correlation energy reads:26

EBW2
c = ∑

i, j,a,b
−1

4
| 〈i j||ab〉 |2

∆ab
i j −EBW2

c
. (3)

This equation must be solved iteratively, as EBW2
c appears on

both the left and right-hand sides.
This method has some formal advantages over MP2. It

yields the exact correlation energy for two-level systems and
avoids the divergence of the energy for vanishing ∆ab

i j .26,27

There was therefore considerable interest in the Brillouin-
Wigner series in the early days of quantum chemistry,
which persists in the context of multi-reference perturbation
theory.28,29 However, BW2 also has a considerable downside,
namely that it is not size-extensive.30 This is obviously prob-
lematic for applications to extended systems. Nonetheless, the
idea of using a correlation energy dependent regularization is
attractive, since diverging correlation energies (e.g. beyond
Coulson-Fisher points in bond-breaking) are a clear signal that
regularization is needed.

We therefore propose a simple modification of BW2, which
restores size-extensivity (termed xBW2 in the following):

ExBW2
c = ∑

i, j,a,b
−1

4
| 〈i j||ab〉 |2

∆ab
i j −

ExBW2
c
Ne

, (4)

with the number of electrons Ne. In other words, the corre-
lation energy in the denominator is replaced by the correla-
tion energy per electron. In this way, a constant regularizer
is obtained in the limit of infinite systems so that the size-
extensivity of MP2 is recovered. This is shown numerically
for He chains in Fig. 1.

To the best of our knowledge, this method has not been pro-
posed before in the literature. It is closely related to several
other approaches, however. On one hand, the trick of using
the correlation energy per electron instead of the total cor-
relation energy can also be used to derive the averaged cou-
pled pair functional (ACPF) from the configuration interaction
approach.31,32 In this sense, xBW2 can be seen as a second-
order approximation to ACPF. On the other hand, a similar
second-order expression was also derived by Zhang, Rinke
and Scheffler from the Bethe-Goldstone equation (BGE2).33

FIG. 1. Correlation energies per atom for evenly spaced (d=3 Å)
Helium chains of increasing length, using the cc-pVDZ basis. A
slope larger than zero indicates a non-size-extensive method.

In this method, pair correlation energies are used for regu-
larization instead of the correlation energy per atom. Conse-
quently, each electron-pair i j has a different regularizer. In
this sense, BGE2 is related to the coupled electron pair ap-
proximation (CEPA)34 and xBW2 can be considered an ’av-
eraged’ BGE2. This averaging has the advantage that (unlike
BGE2) xBW2 is invariant to unitary orbital transformations,
although the BGE2 regularization is arguably more flexible.
More generally, the interative nature of the xBW2 equation
resembles coupled cluster theory, where the coupling between
individual amplitudes is replaced by an average coupling term
that is the same for all amplitudes.

As this discussion shows, a series of regularized MP2 meth-
ods have been proposed in the literature, using constant and
dynamic regularization terms. In the following, we will fo-
cus on two dynamic schemes, namely κ-MP2 (as a prototyp-
ical semi-empirical regularization based on ∆ab

i j ) and xBW2
(representing a non-empirical, energy-dependent regulariza-
tion scheme).

III. RESULTS

Homogeneous Electron Gas: As a first model system we
consider the homogeneous electron gas (HEG), which plays
a central role in understanding the properties of simple met-
als and is of essential importance to the foundations of den-
sity functional theory. The divergence of second-order per-
turbation theory for the infinite HEG has long been proven
analytically.9,35,36 More recently, finite periodic electron gases
have emerged as important numerical benchmark systems for
many-body theories.10,20,37,38 Importantly, this showed that
MP2 also diverges for these systems, even though they dis-
play significant energy gaps. Since the divergence of canoni-
cal MP2 for the HEG is thus well established, it is of particular
interest to understand how the regularized methods behave in
comparison.10

In Fig. 2, the per electron correlation energies of κ-MP2
and xBW2 are plotted against the corresponding MP2 values.
Here, each point corresponds to an electron gas with Ne=14 -
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FIG. 2. Correlation energies per electron of different electronic struc-
ture methods plotted against the MP2 correlation energy per electron.
Deviation from linearity in this plot indicates convergence or slower
divergence than MP2. Data for mCCD and RPA+SOSEX are taken
from reference [20].

1598 electrons in a cubic supercell, at a density correspond-
ing to the Wigner-Seitz radius of 1 atomic unit. The calcula-
tions are performed with a finite plane-wave basis, as detailed
in Ref. [20]. For comparison we also include data for the
’mosaic’ coupled cluster doubles method (mCCD) and RPA
with screened second-order exchange (RPA+SOSEX) from
that reference.

RPA+SOSEX represents a canonical example of a conver-
gent theory in this context. While the per electron correla-
tion energy continues to increase with the size of the supercell
for MP2, RPA+SOSEX quickly approaches a nearly constant
value. For our purposes, the mCCD method is also an inter-
esting benchmark. Here, the amplitude equations of CCD are
reduced to the pure driver term (also present in MP2) and the
’mosaic’ diagrams, which can be interpreted as a renormal-
ization of the single particle Hamiltonian.10 From this per-
spective, mCCD thus resembles an ab initio analogue to the
regularized MP2 methods studied herein. It can be seen that
mCCD also deviates strongly from MP2 for larger supercells,
indicating an apparent convergence (or at least slower diver-
gence).

κ-MP2 displays a significantly improved behaviour relative
to MP2, somewhat resembling the mCCD behaviour though
with a different rate of convergence. This is quite remarkable
given that the regularization parameter κ=1.4 E−1

H was em-
pirically optimized to small molecule thermochemistry data,
which is completely unrelated to the HEG. This could indicate
that a somewhat stronger regularization might be adequate for
metallic systems, but that the functional form of κ-MP2 is in
principle well suited for this type of system.

In contrast, xBW2 only displays a marginal improvement
over MP2. It is therefore not trivially the case that regulariza-
tion allows applying MP2-like methods to metallic systems.
Indeed, it is worth reemphasizing that MP2 diverges for finite-
sized HEG supercells, even though these do not display a van-
ishing band gap. Therefore, the simplistic notion that fixing
MP2 in the ∆ab

i j → 0 limit is sufficient to describe metals is
not correct. Instead, higher-order screening effects are essen-

tial for describing uniform electron densities with or without
gaps. These effects are apparently captured by the κ-MP2
regularizer to some extent, but not by xBW2.
One-Dimensional Hubbard Model: Next, we investigate
the performance of regularized MP2-like methods for the
strongly correlated Hubbard model. The Hubbard model and
related Hamiltonians were independently proposed in physics
by Hubbard39, Kanamori40 and Gutzwiller41 and in chemistry
by Pariser, Parr and Pople42–44. These model Hamiltonians
cover the behaviour of a wide range of correlated systems such
as high Tc superconductivity45, magnetism40,41 and the Mott
metal-insulator transition46,47.

The Hubbard Hamiltonian reduces the electron interactions
in extended systems to a short-range repulsion U ≥ 0 on a
lattice of single orbital sites. The nearest-neighbour sites
are connected by hopping matrix elements t. Therefore, the
physics of the model is governed by the correlation strength
U/t. In the case of U � t, the energy penalty U for a dou-
ble occupancy of sites outweighs the kinetic energy gain t
and the system becomes strongly correlated. In this limit,
the performance of various many-body methods has been
tested. These include exact diagonalization schemes such as
the Lanczos algorithm45, as well as approximate many-body
methods such as the random phase approximation (RPA)11,
truncated CC methods11,48,49, dynamical mean-field theory
(DMFT)47 and Quantum Monte Carlo (QMC) methods45,49.
To evaluate the performance of correlated many-body meth-
ods, the one-dimensional half-filled model is especially in-
structive, as it can be solved exactly. This solution shows that
the one-dimensional half-filled Hubbard model is insulating in
the strongly correlated limit.46 In the following, we therefore
examine the one-dimensional spinless periodic six-site Hub-
bard model at half-filling.

Figure 3 depicts the ground state energy curve of xBW2 as
a function of U/t. Here, we compare xBW2 to MP2, Varia-
tional Coupled Cluster with Double excitations (VCCD) and
the exact full Configuration Interaction (FCI) method. VCCD
is included here as it represents the best possible energy that
can rigorously be obtained with an MP2-like wavefunction.50

Indeed, VCCD only slightly underestimates the correlation
energy in the strongly correlated limit, while MP2 diverges.
As with the HEG, this is despite the fact that the energy gap
retains its finite value for all correlation strengths. Interest-
ingly, xBW2 displays a massive improvement over MP2, es-
sentially curing the strongly divergent behaviour of the lat-
ter. The xBW2 curve in fact displays excellent quantitative
agreement with the reference methods, somewhat fortuitously
falling between the VCCD and FCI curves.

An analogous plot is shown for κ-MP2 in Fig. 4. As the
Hubbard model Hamiltonian uses an arbitrary energy scale
given by the hopping parameter t, there is no meaningful way
to translate the empirically optimized value of κ to this sys-
tem. We therefore consider a range of regularization strengths.
For κ → ∞, the original diverging MP2 curve is recovered,
while for κ → 0, the restricted Hartree-Fock (RHF) curve is
obtained, as the correlation energy contribution vanishes. Tak-
ing these limits of κ into account, several intermediate values
were considered, so that the regularized calculations repro-
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FIG. 3. Ground state energy of the one-dimensional periodic six-site
Hubbard model at half-filling, computed with xBW2 and different
reference electronic structure methods. Energies are given in units of
the hopping parameter t.

FIG. 4. Ground state energy of the one-dimensional periodic six-site
Hubbard model at half-filling, computed with κ-MP2 methods and
different reference electronic structure methods. Energies are given
in units of the hopping parameter t.

duced the FCI energy at the correlation strengths U/t = 8, 13,
18, respectively. Interestingly, none of these methods outper-
forms xBW2, despite the fact that they were explicitly fitted to
the FCI results. Indeed, all κ-MP2 curves display significant
curvature, so that they are either over- or underregularized in
some range and ultimately diverge.
Graphene-Water Interaction: Finally, we test the regular-
ized methods for the interaction of graphene with a single wa-
ter molecule. This system has been intensively studied as a
highly challenging benchmark for many-body methods.51–57

As a case in point, MP2 significantly overestimates this in-
teraction, as is commonly observed for non-covalent inter-
actions involving large, polarizable systems.12 Consequently,
only computationally demanding many-body treatments at the
CCSD(T) or QMC level offer predictive accuracy on this sys-
tem.

Table I shows the corresponding interaction energies, calcu-
lated at various levels of theory for a 4×4 graphene supercell
(see Appendix A for computational details). Here, CCSD(T)
provides an accurate benchmark. As expected, canonical MP2
significantly overbinds (by 18 meV corresponding to 22.5 %),
due to the absence of screening effects. Perhaps surprisingly,

Method Eint / meV ∆ECCSD(T)
int / meV

MP2 -98.3 -18.4
xBW2 -94.0 -14.1
κ-MP2 -87.0 -7.1
CCSD -56.4 23.5
CCSD(T) -80.0 0.0

TABLE I. Interaction energies for a single water molecule with a
graphene sheet, computed with (regularized) second-order and cou-
pled cluster methods.

the CCSD method in turn underestimates the interaction en-
ergy by 25 meV, underscoring the challenging nature of this
system.

As in the previous cases, regularization consistently leads to
an improvement over the MP2 results. In the case of xBW2,
this only amounts to a minor adjustment, however, as the in-
teraction energy is merely lowered by 4 meV. In contrast, the
improvement for κ-MP2 is more substantial yielding an inter-
action energy within 7 meV of the CCSD(T) value.

These results indicate that higher-order screening effects
can (to some extent) be captured by the κ-MP2 regularizer
and less effectively by xBW2. This mirrors the findings for
the HEG case discussed above. Indeed, a relation between the
HEG and dispersion interactions in large, polarizable systems
has also been discussed in reference [12], in the context of the
RPA method.

IV. CONCLUSIONS

In this work, we have explored the potential of regularized
second-order perturbation theories for predicting the correla-
tion energies of extended systems, using κ-MP2 and the newly
proposed xBW2 as representative examples. While neither
of these methods is a silver bullet that cures all deficiencies
of canonical MP2, regularization consistently leads to an im-
provement. In particular, κ-MP2 appears well suited to de-
scribe screening effects in metallic and polarizable systems.
Meanwhile, the xBW2 method provides a remarkably effec-
tive remedy for the breakdown of MP2 in the strongly corre-
lated limit of the one-dimensional Hubbard model.

Notably, we have not attempted the empirical adjustment of
the regularization to the scrutinized systems. Instead, the lit-
erature reported κ parameter (adjusted to molecular thermo-
chemistry) was used, while xBW2 is a non-empirical method
(though it could be converted into an empirical one by scaling
the regularization term). Fitting the regularization parameter
to a representative set of condensed matter systems would cer-
tainly lead to even better performance. Indeed, even a system-
specific choice of the regularization parameter would be pos-
sible, in analogy to the DFT+U method. However, this would
require an objective and transferable protocol for determining
this value.

Finally, it should be noted that a Hartree-Fock reference
determinant has been used throughout. This is the canonical
reference for MP2, but not necessarily the optimal choice.58
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In practice, Kohn-Sham or self-consistently optimized or-
bitals are often found to be more accurate for molecular
systems.23,24,59,60 We may expect the same for extended sys-
tems. This will be explored in future work.
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V. APPENDIX A: COMPUTATIONAL DETAILS

Helium Chains: xBW2 and BW2 were implemented in
NumPy using pySCF to generate molecular integrals.61 The
cc-pVDZ basis was used for the Helium chain calculations.62

Homogeneous Electron Gas: HEG calculations are per-
formed with a modified version of the UEGCCD code.10

Hubbard Model: Calculations on the Hubbard Models were
performed with custom NumPy implementations of (regular-
ized) MP2 and VCCD. FCI calculations were performed with
pySCF.61

Water-Graphene Interaction: Water physisorption is con-
sidered in the 2-leg geometry as discussed in Ref [51]. The in-
teraction energy Eint at the equilibrium distance d is obtained
as

Eint(d) = E(d)−E(dfar)

where E(d) is the total energy of the system with the water at
a distance d = 3.37 from the graphene monolayer, and E(dfar)
is the energy of the non-interacting system, with the water
molecule at a distance dfar = 7.395 from the graphene layer.
A 4× 4 graphene sheet is employed, containing 32 carbon
atoms, with a vacuum gap of 14.79 Åto ensure that the mono-
layer does not interact with its periodic image. HF orbitals are
expanded in a plane-wave basis within the PAW framework
using a cutoff energy of 500 eV, as implemented in the VASP
code.63–66 For the correlated calculations we use frozen natu-
ral orbitals (FNOs) computed at the MP2 level.67,68. The num-
ber of virtual orbitals is truncated by selecting the Nv FNOs
with the largest occupation number.

Recently, Irmler et al.69 proposed a simple approximation
to correct for the basis set incompleteness error (BSIE) of
CCSD. This effectively corresponds to a rescaled pair-specific
MP2 term. Herein, we correct for the BSIE of correlated
methods using the CBS limit of MP2, such that

Ec = E508
c +E6000

MP2 −E508
MP2 ,

where the superscript denotes the total number of virtual or-
bitals Nv and Ec is the correlation energy calculated within the
different methods. All many-body calculations are performed
with the CC4S code.70
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