
 
   
 

1 

 

EnzyHTP: A High-Throughput Computational Platform for Enzyme Modeling 

Qianzhen Shao1, Yaoyukun Jiang1 and Zhongyue J. Yang1-4,* 

1Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States 

2Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States 

3Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, 

United States 4Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United 

States 

ABSTRACT: Molecular simulations, including quantum mechanics (QM), molecular mechanics 
(MM), and multiscale QM/MM modeling, have been extensively applied to understand the 
mechanism of enzyme catalysis and to design new enzymes. However, molecular simulations 
typically require specialized, manual operation ranging from model construction to post-analysis  
to complete the entire life-cycle of enzyme modeling. The dependence on manual operation makes 
it challenging to simulate enzymes and enzyme variants in a high-throughput fashion. In this work, 
we developed a Python software, EnzyHTP, to automate molecular model construction, QM, MM, 
and QM/MM computation, and analyses of modeling data for enzyme simulations. To test the 
EnzyHTP, we used fluoroacetate dehalogenase (FAcD) as a model system and simulated the 
enzyme interior electrostatics for 100 FAcD mutants with a random single amino acid substitution. 
For each enzyme mutant, the workflow involves structural model construction, 1 ns molecular 
dynamics simulations, and quantum mechnical calculations in 100 MD-sampled snapshots. The 
entire simulation workflow for 100 mutants was completed in 7 hours with 10 GPUs and 160 
CPUs. EnzyHTP is expected to improve the efficiency and reproducibility of computational 
enzyme, facilitate the fundamental understanding of catalytic origins across enzyme families, and 
accelerate the optimization of biocatalysts for non-native substrate transformation. 
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1. Introduction 

Natural enzymes promote the transformation of native substrates with superior efficiency 

and selectivity compared to aqueous solution.1 In contrast, lower catalytic competence is 

frequently observed when applying natural enzymes to transform non-native substrates.2-4 As such, 

identifying new enzyme variants for non-native chemical transformations presents a “holy-grail” 

in academia and industry because it will allow late-stage functionalization of drug-like molecules,5 

polymer upcycling,6, 7 degradation of environmental pollutants,8, 9 and treatment of food allergies.10 

Experimental high-throughput screening techniques11 has popularized directed evolution as a tool 

to optimize enzyme variants for function improvement by iterative rounds of random mutations.12-

14 However, because the relationship between enzyme sequence, structure, and function is 

unknown, the number of iterative screening rounds and the improvement of functional 

performance are highly sequence- and substrate-dependent.15 Molecular simulation methods, 

including quantum mechanics (QM), molecular mechanics (MM), and multiscale QM/MM 

modeling, have been extensively applied towards directed evolution to guide the selection of 

function-enhancing mutations16. These simulations inform the mechanistic detail underlying the 

variation of rate and selectivity upon mutagenesis in an enzymatic reaction, inspiring the 

development of new design principles that pinpoint the beneficial mutations.17-19  

To maximize the potential of molecular simulations in biocatalyst discovery, it is essential 

to perform enzyme modeling in an automatic and high-throughput fashion. A computational high-

throughput platform parallelizes the computation of a large number of  enzyme models, which 

allows understanding of enzyme catalytic mechanisms across a large number enzymes in a protein 

family, enables the virtual screening of enzyme mutants, and collects electronic structure and 
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dynamics data for building data-driven predictive models.20 Computational workflows have been 

established to automate general-purpose protein simulations. For example, Doerr et. al. developed 

HTMD21 for high-throughput MD simulations with the ACEMD22 engine. Parton et. al. developed 

Ensembler23 to enable high-throughput simulations of members in a protein superfamily 

combining MD and template-based structural prediction.   

Unlike general-purpose protein simulations that typically emphasize protein scaffold alone 

(i.e., HTMD21 and Ensembler23), enzyme modeling requires the treatment of enzyme-substrate pre-

reaction complexes, transition state, and other reacting species. To complete a life-cycle of enzyme 

modeling, specialized manual input is needed to build the pre-reaction complex; conduct the 

workflow of electronic structure or classical simulations; and analyse the simulation data to 

evaluate the impact of mutation on the enzyme electric field, substrate positioning dynamics, and  

the activation free energy of an elementary step. Amrein et al. pioneered in developing CADEE24 

to conduct free energy calculations to assess the activation free energy barriers in different enzyme 

variants to facilitate optimization of enzyme variants. Similarly, other protocols to automate free 

energy simulations have also been developed, including BFEE2,25 PyAutoFEP,26 and BRIDGE27. 

These tools have been employed to accelerate the discovery of functional enzyme variants. 

However, a holistic platform that focuses on the entire lifecycle of enzyme modeling still remains 

undeveloped.  

 In this work, we developed a new computational platform, EnzyHTP, that aims to automate 

the entire life-cycle of enzyme modeling. EnzyHTP allows the users to conduct molecular 

mechanics (MM), quantum mechanics (QM), and multiscale QM/MM simulations in a high-

throughput manner. EnzyHTP consists of four modules that facilitate preparation of enzyme 

structure models, generation of enzyme mutants, sampling of conformations, and calculation of 
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energies. As a proof of concept, we tested EnzyHTP by evaluating the mutation effects on enzyme 

electrostatics in 100 fluoroacetate dehalogenase (FAcD) mutants with a random single mutation. 

Each simulation was conducted by using a single, facile python script to assemble the modules 

aforemetioned. The software is expected to facilitate the fundamental understanding of catalytic 

origins across enzyme families and to accelerate the optimization of biocatalysts for non-native 

substrates. 

2. Implementation 

Design Architecture of EnzyHTP The framework of EnzyHTP involves four levels of 

operation that follows a top-down hierarchy that consists of protein preparation, mutant generation, 

geometry variation, and energy engine (Figure 1). The outcomes of each level of operation serves 

as an input for the next level. First, protein preparation emphasizes building computational models 

for known enzyme structures that are derived from either X-ray crystallography experiments or 

computational predictions (i.e., AlphaFold228 or RoseTTAFold29). These enzyme structures 

involve a diverse range of binding substrates, sequences, cofactors, coenzymes, protonation states, 

stoichiometry numbers, and structure quality (e.g., missing loop, presence of hydrogen atoms). 

Second, mutant generation emphasizes generating new enzyme variants based on a common 

enzyme sequence and scaffold. The mutation of an existing amino acid changes the sidechain type 

and conformation. These variations may also perturb the protonation of nearby enzyme residues. 

Third, geometry variation emphasizes the change of enzyme conformation and substrate reaction 

states. The catalytic proficiency of enzymes critically depends on protein dynamics and the 

interplay between protein dynamics and substrate reacting states. Fourth, energy engine 

emphasizes conducting the MM, QM, or QM/MM calculations. To balance accuracy and 

efficiency, different levels of theory should be integrated to simulate enzymes’ catalytic functions. 
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In particular, QM characterization of enzyme’s functional sites and reacting species is essential to 

understanding and predicting the catalytic actions of enzyme catalysis.   

 

Figure 1. The hierarchical structure of high-throughput enzyme modeling. The framework 

involves four levels of operation, including protein preparation, mutant generation, geometry 

variation, and energy calculation. The framework takes in the enzyme structure as an input and 

delivers computational modeling data as an output. 

Notably, existing HTP software typically automates the operations of one or two specific 

levels within the HTP framework laid out in Figure 1. For example, BFEE2,11 PyAutoFEP,12 and 

BRIDGE13 automate the free energy calculation and geometry sampling but depend on manually-

curated enzyme structures as an input. HTMD21 and CADEE24 automate mutant generation, but 

the free energy calculation is based on molecular mechanics or empirical valenace bond theory. 

Ensembler23 automates protein structure preparation (i.e., protonation state assignment and miss 
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loop remedy) but does not support mutant generation. Additionaly, the free energy calculation is 

also conducted at the MM level.  

Modules of EnzyHTP EnzyHTP consists of four modules (Figure 2). Each module handles a 

particular level of operation laid out in the design framework, including protein preparation, 

mutant generation, geometry variation, and energy engine (Figure 1). First, we developed an 

enzyme preparation module to automatically convert an initial enzyme structure to computational 

models with a standardized input file for the subsequent operations. The protein preparation 

module contains two primary functions: 1) structure filter and 2) protonation state predictor. The 

structure filter takes an enzyme complex structure as an input and then performs structural curation. 

The structure filter removes the structures containing missing loops, removes common co-

crystallization reagents and solvent, and keeps user-defined,  chemically-relevant small-molecule 

ligands in the complex, including inhibitors, reactants, intermediates, products, and structural 

analogs. In cases where no optimal enzyme complex can be found in the protein structure databases, 

a user-curated enzyme complex is required. An on-going work for the protein preparation module 

involves developing a new enzyme structure fixer function that can 1) remedy missing loops or 

residues,30 2) modify the analog to a corresponding substrate, and 3) construct enzyme-reacting 

species’ pre-reaction complexes via docking. 
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Figure 2. Four modules of EnzyHTP. 

The protonation state predictor integrates the functions of PDB2PQR31 (i.e., version 3.2.2) 

and OpenBabel32 to determine the protonation state of protein residues and ligands, respectively. 

PDB2PQR employs PROPKA333 to determine the protonation state of each titratable residue by 

computing the empirical pKa and the hydrogen-bonding network in a user-defined pH and 

dielectric constant. PDB2PQR then optimizes the hydrogen bonding network to get the final 

structure. However, the influence of metal ion cofactors on protein protonation states is not 

considered in either program. This may lead to unphysical protonation states for protein residues 

that coordinate to the metal ions. For example, in the alcohol dehydrogenase (PDB ID: 1NVG), 

the Zn2+-coordinating cystines are determined to be protonated (i.e., –SH) by PDB2PQR, which is 

thermodynamically unstable (Figure 3). To fix the protonation state for metal ion-coordinating 

residues, we designed a checker function for enzymes that contain metal ions as a cofactor. The 

checker function first detects the metal ion-coordinating residues based on the atomic radius of a 
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metal ion or a user-defined distance cut-off (Table S1, Supporting Information), and then attempts 

to deprotonate the metal ion-coordinating residues if PDB2PQR has not done so yet. The checker 

function can be easily adapted by the user who intends to customize the protonation rules for a set 

of enzymes of interest. An on-going work to further develop the protonation state predictor 

involves the implementation of residue pKa prediction software H++34, which accounts for the 

influence of metal ion in the pKa prediction.   

 

Figure 3. Protonation of metal ion-coordinating residues in EnzyHTP. PDB2PQR does not 

account for the influence of metal ion in the protonation state prediction, which causes the metal 

ion-coordinating residues to populate in a thermodynamically-unstable protonation state (shown 

in red). This problem can be fixed by a built-in checker function in enzyHTP. The sample code is 

provided. 

Second, we developed a mutant generation module to generate computational models for 

enzyme variants in a random or user-defined fashion. The mutant generation module also contains 

two primary functions: 1) mutation assigner and 2) mutant generator. The mutation assigner 
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function creates a list of mutations either randomly or in a user-defined fashion. The random 

generator function randomly mutates a residue in the reference enzyme complex to another type 

of amino acid. Additionally, the mutant generator function also allows the user to define rules to 

limit the scope of mutation to the desired subgroup of amino acids (Text S1 and Table S2-S3, 

Supporting Information). For instance, the user can specify mutating residues with a hydrophobic 

side chain, mutating bulkier residues to smaller residues, mutating residues within or beyond a 

certain range of spatial proximity to a reference residue, protecting specific residues from mutation, 

and so on. Alternatively, the user can also provide a list of “X##Y” flags to specify the desired 

mutations, where X refers to the residue prior to mutation, ## refers to the residue index, and Y 

refers to the mutation residue.   

The mutant generator function replaces a selected residue by one of the 19 remaining types 

of canonical amino acids using the tLEaP submodule of Amber35. The newly generated mutant 

structure is minimized at the MM level to remove local steric friction caused by the change of 

amino acid volume during the computational mutation. The structural relaxation is particularly 

important in the circumstance where a smaller-sized amino acid mutates to a bulkier-sized amino 

acid, helping the new sidechain to fit into the local pocket (Figure 4). Notably, in some rare cases, 

unphysical geometries emerge from the mutation (e.g., Lys penetrating the phenyl ring of Phe, 

Figure S1, Supporting Information), which structural optimization may fail to fix. To create a more 

thermodynamically stable variant structure, we are developing an alternative mutation function 

that directly generates structure for a certain enzyme variant using SWISSMODEL36 or 

AlphaFold228. This will ensure smooth operation of high-throughput enzyme modeling. 
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Figure 4. An example of mutation from smaller to a larger residue. The sidechain of original 

residue (Glu), mutated residue (Lys), and the residue (Ile) that has local friction with the mutated 

residue are shown in sticks. The carbon atoms of the Glu and Ile are shown in grey with full opacity, 

and those of the Lys are shown in red with 50% transparency. The nitrogen and oxygen are shown 

in blue and red with full opacity, respectively. The sample code is provided. 

Third, we developed the geometry variation module to sample enzyme conformations by 

molecular dynamics and to map reaction energy or free energy landscape. The input structures of 

this module are direct results from either one of the first two modules. The geometry variation 

module contains one primary function, which is a conformational sampler. The conformation 

sampler prepares the simulation parameter files and conduct molecular dynamics (i.e., AMBER35) 
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simulations to construct a conformational ensemble. Users can set the default values for the 

parameters (zip, Supporting Information). With the conformational ensemble, the user can further 

apply the built-in functions of EnzyHTP to call CPPTRAJ37 to evaluate the flexibility (i.e., RMSF) 

of an enzyme scaffold or catalytically important loops or residues. Notably, the geometry variation 

module can employ enhanced sampling methods implemented in AMBER to accelerate the 

sampling of enzyme conformers or to sample along a reaction coordinates that involve significant 

energy variation (e.g., chemical bond breaking). An ongoing development in this module is to 

automatically construct the complexes between an enzyme scaffold and different reacting species, 

which is expected to ease the job of mapping energy pathways for catalytic reactions. 

Fourth, we developed the energy engine module to prepare the input file and set up the 

parameters for a given type of simulation task. The energy engine module contains three primary 

functions: 1) MM engine, 2) QM engine, and 3) QM/MM engine. MM calculations allow efficient 

assessment of the interaction energies between substrate and enzyme using force field parameters; 

QM calculations allow a more accurate description of substrate-active site residue interactions that 

involve charge transfers, polarization, and long-range electrostatic effects; while multiscale 

QM/MM calculations can describe chemical reactions in a realistic enzyme and solvent 

environment with a balanced efficiency and accuracy. EnzyHTP integrates MM (e.g. AMBER35), 

QM, and QM/MM engines (e.g. Gaussian1638) and wavefunction analysis tools (e.g. Multiwfn39) 

along with built-in analysis functions to calculate the energy and perform electronic structure 

analysis (zip, Supporting Information). This enables the calculation of many energy/free energy-

related features like MM-based binding free energy, QM or QM/MM-based local bond dipole, 

electron density, transition state barrier, and so on. This complements previous software like 
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CADEE24 and HTMD21. We are also actively developing new EnzyHTP interfaces with other 

modeling software, which will enable broader choices of energy calculation engines. 

3. Results and Discussion 

To demonstrate the high-throughput capability of EnzyHTP, we employed EnzyHTP to 

study the impact of single mutations on the electrostatic environment of the enzyme scaffold in 

100 fluoroacetate dehalogenase (FAcD) variants. Rhodopseudomonas palustris FAcD hydrolyzes 

the C–F bond of fluoroacetate (FAc) with a turnover rate of tens of seconds.40-44 The enzyme active 

site involves a catalytic triad (i.e., Asp110–Asp134–His280) that is common to hydrolases (Figure S2, 

Supporting Information). In the first step of the catalyzed reaction, upon the binding of the 

substrate, the Asp110 attacks the C–F bond in SN2 manner and forms the covalent intermediate. This 

cleavage of the strong C–F bond contributes to the rate-determining step.45 The process of breaking 

the C–F bond involves charge separation, which can be stabilized by the interior electrostatic 

environment of FAcD. Upon mutation, the electrostatic environment is likely perturbed, which can 

influence the catalytic efficiency. To quantify the strength of the electrostatic environment in the 

enzyme, we employed a physical descriptor, electrostatic stabilization energy (i.e., ∆Gelec), which 

is computed by the dot product between the electric field and the C–F bond dipole (Figure 5). The 

descriptor was introduced by Fried et al.46, 47 and has been shown to correlate with activation free 

energy in ketosteroid isomerase,48 Kemp eliminase,49, 50 methyltransferase,51 and P450 enzymes.52 

Accordingly, we presume that the descriptor ∆Gelec informs the variation of catalytic competence 

upon the mutation of FAcD.  
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Figure 5. The definition of the electrostatic stabilization energy ∆Gelec of the C–F bond of the pre-

reaction FAcD-FAc complex. The substrate FAc and nucleophile Asp110 are shown in sticks. 

Enabled by EnzyHTP, we designed a Python workflow to compute electrostatic 

stabilization energy values for 100 FAcD variants with random single amino acid substitution 

(Figure 6 and Text S2 Supporting Information). For each variant, we computed the ensemble 

average of ∆Gelec values (denoted by <∆Gelec>) using 100 conformational snapshots extracted from 

a 1 ns MD trajectory. We purposefully employed a short propagation time for the MD simulations 

to ensure that the sampled enzyme geometries bear high resemblance to the crystal structure. Under 

this circumstance, the computed <∆Gelec> value should reflect the impact of mutation on the active-

site electrostatic environment with little perturbation by the protein conformational changes.  

The workflow first creates 100 variants using the mutant generation module based on a 

curated FAcD crystal structure (PDB ID: 6QHQ), in which the co-crystal reagents were removed, 

and the protein residue side chains were protonated (Table S4, Supporting Information). The 

structure involves a pre-reaction complex in which the residue Asp110 is aligned with the substrate 

C–F bond for a potential SN2 attack. During the mutation operation, the catalytic residue Asp110 is 

not mutated because of its direct participation in the reaction. Second, the workflow conducts MD 



 
   
 

14 

 

simulation for each variant and samples 100 conformers from a 1 ns MD production run (zip, 

Supporting Information). These conformers constitute a structural ensemble. Third, the workflow 

computes the electrostatic stabilization energy (∆Gelec) in each sampled conformation by 

multiplying the bond dipole of the substrate C–F bond and the electric field strength of the entire 

enzyme projected onto the C–F bond (excluding substrate and Asp110). The bond dipole is 

computed using a single-point QM cluster calculation (HF/6-31G(d)) that consists of the substrate 

and the catalytic residue Asp110, followed by the wavefunction-based localized molecular orbital 

(LMO) analysis using Multiwfn. The electronic field strength of the enzyme is computed based on 

the point charges of enzyme amino acids using Coulomb’s law. Notably, differences in the final 

value in different conformations reflect the fluctuation of the wavefunction and thus the charge 

transfer. Fourth, the workflow averages over the ∆Gelec values of all 100 conformations for each 

variant and stores the averaged <∆Gelec> values in a Python-compatible data format. Through the 

workflow, we evaluated the <∆Gelec> values for 100 FAcD variants in 7 hours with 10 GPUs 

(NVIDIA V100 SMX2) and 160 CPUs (Xeon Gold 6248). In contrast, the manual operation time 

to model 100 enzyme variants would approximately take weeks to complete due to tedious 

processes of mutant structure curation and file preparation plus computational runtime.   
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Figure 6. A workflow to compute electrostatic stabilization energy values (i.e., <∆Gelec>) for 100 

FAcD variants with random single amino acid substitution. The workflow is constructed by 

EnzyHTP modules in Python. 

Figure 7 shows the distribution of mutation positions and <∆Gelec> values for 100 FAcD 

variants. The mutation spots spatially distribute over the entire FAcD enzyme scaffold (Figure 7a 

and Table S4, Supporting Information). The center of mass (COM) distances between the mutation 

spot and the substrate range from 7 Å (i.e., first coordination shell) to 32 Å (remote mutations). 

These mutations implicate different types of polarity change (Table S5, Supporting Information), 

including neutral-neutral (49 mutants), neutral-charged (19 mutants), charged-neutral (24 

mutants), and charged-charged (8 mutants) mutations. Notably, the impact of a mutation on the 

<∆Gelec> value does not appear to depend on its COM distance to the substrate (Figure 7b). The 

<∆Gelec> values range from -1.1 kcal/mol to 8.2 kcal/mol (Figure 7c). Using the <∆Gelec> of the 

wild-type (WT) FAcD as reference (i.e., 0.5 kcal/mol), we observed that a smaller amount of 

mutations (~10%) induce the <∆Gelec> value to descrease, and most mutations (~90%) have an 

opposite effect. Decreasing the <∆Gelec> value reflects a more favorable electrostatic environment 

to stabilize the developing C–F dipole (including the TS) in the FAcD mutant than that in the wild-

type FAcD. As such, the mutation that results in a decreased <∆Gelec> value may be more prone to 

enhance catalytic competence, while the <∆Gelec>-increasing mutations are likely to be rate-

deleterious. Noticeably, FAcD is a natural enzyme that has been well-evolved in nature – this 

explains the observation that most mutations leads to a less favorable electrostatic environment for 

the reaction. 

The mutant with the largest negative <∆Gelec> value is K83D (i.e. descreases by –1.7 

kcal/mol relative to the WT). This residue resides along the axis of the reacting C–F bond and is 
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12 Å away (i.e., second coordination shell) from the substrate. The K83D mutation involves a 

change from a positively-charged residue (i.e. lysine) to a negatively-charged residue 

(i.e.asparate), which significantly perturbs the electric field projected on the C–F bond, changing 

the sign of the <∆Gelec> value to negative. Additionally, we observed mutations that lead to a 

significant descrease in the <∆Gelec> values but do not involve a change of the residue charge state, 

including: Y200V (i.e., by –1.5 kcal/mol), A186W (i.e., by –1.4 kcal/mol) and I14C (i.e., by –1.2 

kcal/mol). These mutations may change the electrostatic environment through perturbing local 

protein dynamics in the sub-ns time scale. Notably, we do not intend to overstate the implication 

of the current results because of the simplied model (i.e., pre-reaction complex) used for describing 

the substrate reaction state, the moderate QM region size and level of theory used in evalutating 

the <∆Gelec> value, and the lack of consideration of mutant expressibility and solubility. 

Nonetheless, this case study demonstrates the potential of EnzyHTP to facilitate the identification 

of beneficial mutations for biocatalyst discovery by leveraging enzyme modeling of different 

theoretical levels. 

 

Figure 7. The distribution of mutation positions and <∆Gelec> values for 100 FAcD variants. a) 

Spatial distribution of singe mutation spots of FAcD variants. The positions of Cα of the mutated 

residues are shown in red sphere. b) The relationship between <∆Gelec> values and mutation 
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positions in 20 randomly selected FAcD mutants. The mutation position is quantified using the 

center of mass distance between a mutated residue and the substrate FAc. The ∆Gelec value for the 

wild-type FAcD is shown in the red dashed line. c) The distribution of ∆Gelec values for 100 FAcD 

mutants. 

Conclusion 

We developed a high-throughput computational platform, EnzyHTP, that automates the 

life-cycle of enzymatic modeling via incorporating state-of-the-art software. EnzyHTP consists of 

four main modules: protein preparation, mutant generation, geometry variation, and energy engine. 

We tested the performance of EnzyHTP using fluoroacetate dehalogenase (FAcD) as a model 

enzyme. We built a Python workflow in EnzyHTP to simulate the enzyme interior electrostatics 

for 100 FAcD mutants with a random single amino acid substitution. From a single PDB input file, 

the workflow refines the structure, determines protonation states, generates mutant structures, 

performs molecular dynamics and quantum mechanics simulations, and calculates the electrostatic 

stabilization energies <∆Gelec>. The entire simulation workflow was completed in 7 hours of wall 

clock time with 10 GPUs and 160 CPUs. This work enables high-throughput modeling of enzyme 

catalysis with a combination of QM, MM, and QM/MM simulations. EnzyHTP sets the basis for 

in silico high-throughput screening that identifies beneficial enzyme variants, which can accelerate 

the development cycle of new biocatalysts that catalyzes non-native substrates. EnzyHTP also 

helps generate computational data for our database IntEnzyDB that guides future statistical 

understanding and machine learning.  

ASSOCIATED CONTENT 

Supporting Information. Parameters of metal ion radius; customized mutation rules set in 
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EnzyHTP; residue category of polarity; residue rank of volume; a typical example of bad contact 

involved in the mutation; active site structure of wild-type FAcD; computational details for the 

simulations of FAcD variants; electrostatic stabilization eneriges for 100 FAcD variants; different 

categories of residue polarity change in the FAcD variants (PDF) 

Default input files for the QM, MM, and electronic structure analysis calculations; parameter and 

input coordinate files generated by EnzyHTP (ZIP). 

Data and Software Availability. The code and sample input for EnzyHTP framework is 

publically available at https://github.com/ZJYgrp/EnzyHTP. The input files and structures are 

provided as part of the SI files. AMBER 18 is available from http://ambermd.org/. Gaussian 09 is 

available from https://gaussian.com/. 
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