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Thermal density functional theory is commonly used in simulations of warm dense matter, a highly energetic phase
characterized by substantial thermal effects and by correlated electrons demanding quantum mechanical treatment.
The numerous approximations for the exchange-correlation energy component in zero-temperature density functional
theory, though often used in these high-energy-density simulations with Fermi-weighted electronic densities, are known
to miss temperature-dependent effects in the electronic structure of these systems. In this work, the temperature-
dependent adiabatic connection is demonstrated and analyzed using a well-known parameterization of the uniform
electron gas free energy. Useful tools based on this formalism for analyzing and constraining approximations of the
exchange-correlation at zero temperature are leveraged for the finite-temperature case. Inspired by the Lieb-Oxford
inequality, which provides a lower bound for the ground-state exchange-correlation energy, bounds for the exchange-
correlation at finite-temperatures are approximated for various degrees of electronic correlation.

I. INTRODUCTION

Recent decades have seen a rapid growth of interest in
the study of matter under conditions of extreme excita-
tion and/or compression. This interest includes growing
focus on warm dense matter (WDM), a highly energetic
phase characterized by the simultaneous existence of strongly-
correlated electrons, temperature effects, and quantum effects
of electrons.1–5 Astrophysical examples of WDM include
white dwarf atmospheres and planetary cores,6,7 while more
down to earth examples include laser-excited solids and iner-
tial confinement fusion capsules.8–10 There have been corre-
sponding advances in the use of density functional theory11,12

(DFT) calculations of WDM. Aside from describing planetary
interiors,13–15 these calculations are useful for predicting ma-
terial properties,4,5,16 developing experimental standards,3,17

and supplementing experiments that push the boundaries of
accessible conditions.18–21

In almost all thermal DFT calculations, a small-but-crucial
free energy component, called the exchange-correlation (XC),
is approximated by a ground-state approximation. However,
in principle, the XC free energy depends explicitly on the
temperature.22–25 If the exact temperature-dependent XC free
energy were known, the free energy and density for a given
distribution of the nuclei, and any properties that could be ex-
tracted from these, such as Hugoniot shock curves and equa-
tions of state of materials, could be predicted exactly.26 While
using a ground-state approximation to the XC free energy has
not been shown to be a fatal flaw, the pervasive use of this
approximation is a continuing source of concern that warrants
investigation.4,5,25,27–29

Approximations to the XC functional can be informed by
the adiabatic connection formalism, which is an important an-
alytical and interpretive tool in DFT.30–32 The adiabatic con-
nection formula expresses EXC[n] exactly as an integral over
the coupling constant, λ , which smoothly connects the fic-
titious non-interacting Kohn-Sham reference system (λ = 0)
with the real physical interacting system (λ = 1), while hold-

ing the density fixed. A similar theoretical construction with
explicit temperature dependence for an ensemble at finite tem-
perature exists,25 but it has only been numerically demon-
strated as it has for zero-temperature systems using model sys-
tems such as the Hubbard dimer.28,33)

A useful tool in the quest for better functional approxi-
mations is the list of known exact properties and constraints
on the formally exact XC functional.34,35 The LO bound36–43

is an exact inequality that provides a strict bound on the
XC energy, and it has been used to constrain some of the
most successful XC approximations. Perdew derived looser
lower bounds on the XC and exchange energies using the
LO lower bound on the indirect Coulomb energy,44which
was subsequently used in the development of the Perdew-
Burke-Ernzerhof45. While GGAs must violate this constraint
for realistic energetic predictions,46 a meta-GGA that satis-
fies important constraints, including the LO bound, was con-
structed by Sun and collaborators47. The few temperature-
dependent XC approximations developed in the literature48

are constructed to satisfy the LO bound, but the effect of tem-
perature on this formal relationship has not been explored in a
detailed manner.

In this work, finite-temperature adiabatic connection (FT
AC) curves are generated using a parameterization49 of the
XC free energy of the uniform electron gas (UEG) for vari-
ous temperatures and densities in the WDM regime. In or-
der to validate the finite-temperature simulated scaling ap-
proach used in this work, calculated XC free energy values
are compared to XC free energy values generated from the
Fortran 90 program provided by Groth and collaborators,49

upon which the simulated scaling results also rely. In addi-
tion, the behavior of simulated curves is evaluated in light of
known mathematical conditions on the exchange free energy.
The calculated adiabatic connection curves are used to explore
how the balance between exchange and correlation changes
in different regimes. Subsequently, adherence to the Lieb-
Oxford (LO) bound is analyzed and an approach to estimating
temperature-dependence is evaluated. Approximate bounds
are generated numerically using these results and compared
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to those known at ZT.

II. BACKGROUND

Hohenberg and Kohn have shown11 that there exists a func-
tional of the density such that

E ≡
∫

drv(r)n(r)+F [n(r)] (1)

is equal to the ground-state energy when n(r) is the ground-
state density.11 DFT relies on the fact that the ground-state
energy is expressed as a functional of the ground-state den-
sity. The core idea of Kohn-Sham DFT,12 one of the most
successful approaches to the many-body problem, is to ap-
proach the interacting problem of interest by mapping it to a
more tractable non-interacting problem. This mapping would
be exact if the correct exchange-correlation (XC) functional
for arbitrary physical systems was available. However, this is
not the case in the vast majority of systems, and so one must
use approximations for practical calculations.

The zero-temperature (ZT) adiabatic connection gives an
exact expression for the exchange-correlation functional,

EXC[n] =
∫ 1

0
dλW λ

XC[n], (2)

expressed as an integral over a coupling constant λ , which,
while holding the density n(r) fixed, continuously connects
the KS reference system (λ = 0) with the real physical inter-
acting system (λ = 1).30–32 The integrand, W λ

XC[n], is gener-
ated by introducing λ into the universal functional, Fλ [n] =
minΨ→n⟨Ψ|T̂ + λV̂ee|Ψ⟩, where Ψ is the minimizing wave
function for a given λ . For all values of λ , the density re-
mains that of the real physical system (the superscript λ is
often omitted when λ = 1). An illustration of the adiabatic
connection, which provides a geometrical representation of
the components of EXC, is shown in Fig. 1.

Moving to non-zero temperatures requires shifting our
focus from ground-state energy functionals to free energy
functionals. Mermin22 generalized the Hohenberg-Kohn
(HK) theorems to equilibrium systems at finite tempera-
tures. At non-zero temperatures, many-electron systems can
be described by the grand-canonical ensemble. The grand
potential25 can be written,

Ω̂ = Ĥ − τ Ŝ−µN̂, (3)

where Ĥ represents the electronic Hamiltonian operator, τ the
temperature, Ŝ the entropy operator, µ the chemical potential,
and N̂ the particle-number operator. The entropy operator is
defined via,

Ŝ =−kB ln Γ̂, (4)

where Γ̂ is the statistical operator,

FIG. 1. A diagram of the adiabatic connection at zero temperature.
The area in red, EX, represents the exchange energy component of
EXC, while the gray area, EC, depicts the correlation energy com-
ponent. The blue shaded region is related tot he kinetic correlation
component of EXC.

Γ̂ = ∑
N,i

wN,i|ΨN,i⟩⟨ΨN,i|. (5)

Orthonormal N-particle states are denoted by |ΨN,i⟩, and the
normalized statistical weights, wN,i, satisfy ∑N,i wN,i = 1. One
obtains a set of thermal KS equations through a mapping sim-
ilar to the ZT one, but this time keeping both the equilibrium
density and temperature fixed. This defines the XC free en-
ergy, which now includes an entropic term. The Mermin-
Kohn-Sham (MKS) equations12,22 are similar to the ground-
state KS equations, but are complicated by temperature-
dependent eigenvalues, eigenstates, and effective potential.26

The free energy of the physical system is written in the usual
way

A = T − τS+Vee +Vext, (6)

where T is the kinetic energy, S is the entropy, Vee is the
electron-electron repulsion, and Vext is the external, nuclear
potential.50 To emphasize the tied coordinate-temperature
scaling relationships in thermal DFT, we can write the
kentropy25 as K = T − τS. The same equation for the free
energy of the systems can be written in terms of the corre-
sponding KS quantities:

A = Ts − τSs +U +Axc +Vext, (7)

where the subscript s denotes the KS quantities, U is the
Hartree energy, and Axc is the XC free energy. Mirroring
the interacting case, the non-interacting kentropy is written
Ks = Ts − τSs.

While the operators of quantum mechanics scale in a sim-
ple way, the conversion to density functionals invites some
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complexity. One commonly exploited relationship in mod-
ern DFT is that between coordinate scaling and the coupling
constant.51 When the length scale of our system is changed
by a factor γ , we can maintain the normalization of the system
via the following definition of the scaled ZT density:

nγ(r) = γ
3n(γr). (8)

Using this scaled density as input, straightforward scaling of
energy quantities result, unless the quantities include correla-
tion.

In the adiabatic connection, a coupling constant, λ , is in-
troduced into the universal functional,34,51

Fλ [n] = min
Ψ→n

⟨Ψ|T̂ +λV̂ee|Ψ⟩, (9)

where, again, λ = 0 yields the fictitious KS system and λ = 1
gives the real, interacting system of interest. For all values
of λ , the density is that of the physical system. The univer-
sal functional can be combined with coordinate and density
scaling relationships, yielding the relation,

Fλ [n] = λ
2F [n1/λ ]. (10)

Here, the fully interacting functional evaluated on a scaled
density is multiplied by the square of the inverse of the den-
sity scaling factor, giving access to the universal functional
at a scaled interaction strength. Explicitly known conditions
on other energy components can be written under concurrent
coordinate and interaction strength scaling, as we will see
later.31,34

The same concepts applied in ZT simulated scaling can be
extended to the finite-temperature adiabatic connection,25,52

Aτ
XC[n] =

∫ 1

0
dλW τ,λ

XC [n], (11)

where here, the adiabatic connection integrand is both
temperature- and interaction strength–dependent: W τ,λ

XC [n] =
Uτ,λ

XC [n]/λ . An illustration of the adiabatic connection gener-
alized to finite temperatures is shown in Fig. 2. The red arrow
indicates the monotonic behavior of the exchange free energy
component, AX[n], which increases with increasing temper-
ature. On the other hand, the correlation free energy com-
ponent, AC, shows more complex behavior, and varies non-
monotonically as the temperature increases.

III. METHODS

When discussing the uniform gas, constraints on the density
functions describing the system are similar to those on density
functionals34 and can be used to extract useful information
about properties such as limiting behavior. For instance, coor-
dinate scaling can be expressed in terms of interaction strength
scaling in the expression for the XC free energy:

FIG. 2. A diagram of the finite-temperature adiabatic connection.
The area in red depicts the exchange free energy component of AXC,
the gray area represents the correlation free energy, and KC is the ken-
tropic correlation, or the FT analog of the kinetic correlation. While
the behavior of AX for a fixed rs with increasing temperature is pre-
dictable, the temperature-dependent behavior of AC is more complex.

aτ,λ
xc (n) = λ

2aτ/λ 2

xc (n1/λ ). (12)

The exchange free energy contribution, now expressed in
terms of the Wigner-Seitz radius, rs, can be extracted by scal-
ing to the high-density limit of the FT uniform gas45,53,54:

aτ
x (rs) = lim

γ→∞

aγ2τ
xc (rs/γ)

γ
. (13)

The expression for the correlation component of the free en-
ergy is then obtained using the simple relationship between
exchange and correlation:

aτ
C(rs) = aτ

xc(rs)−aτ
x (rs). (14)

These results of tied coordinate–temperature–interaction
strength scaling can be combined to extract any component
of the correlation free energy from any other piece.52 We ex-
tract the potential contribution from the full correlation free
energy via

uτ
C(γ,rs) =−γ

daC(
rs
γ
,γ2τ)

dγ
+2aC(

rs

γ
,γ2

τ) (15)

and combine it with the definition of the FT adiabatic connec-
tion integrand for the uniform gas,

W τ,λ
C =

uτ,λ
C (1/rs)

λ
=

λ 2uτ/λ 2

C (λ rs)

λ
= λuτ/λ 2

C (λ rs). (16)

This yields the finite-temperature adiabatic connection inte-
grand in terms of aτ

C(rs). This adiabatic connection formula



4

TABLE I. Comparison of the XC free energy values generated using the Fortran 90 program49 provided by Groth and collaborators and XC
free energy values obtained via integration of simulated scaling curves (FT AC). Improved agreement with the Fortran values can be obtained
by increasing the resolution in interaction strength, λ , in the numerical implementation of simulated scaling.

rs = 1 rs = 2 rs = 4
Groth et al. FT AC Groth et al. FT AC Groth et al. FT AC

τ = 0.1 -0.51668 -0.51667 -0.27194 -0.27192 -0.13375 -0.13374
τ = 0.5 -0.50031 -0.50027 -0.22335 -0.22335 -0.08779 -0.08779
τ = 1.0 -0.45919 -0.45922 -0.18167 -0.18167 -0.06731 -0.06731

allows us to calculate the temperature-dependent correlation
free energy at any coupling constant strength and tempera-
ture. To do so, we use the parametrization in Ref. [24] for
the FT UEG and construct finite-temperature adiabatic con-
nection curves at varying density and temperature conditions,
using Mathematica Version 11.2.55 Table 1 compares values
of the XC free energy, obtained from the Fortran 90 code pro-
vided by Groth and collaborators, to values obtained using
the FTAC formalism. The agreement between the values ob-
tained from the formalism in this work and the Fortran code,
and its controllable accuracy via increased interaction strength
resolution, verifies the validity of the implemented simulated
scaling technique.

Another verification that our application of simulated scal-
ing is sound relies on known behavior of the exchange free
energy for the uniform gas. The XC free energy in this work
is expressed as a function of the electron degeneracy parame-
ter,

θ =
2τ

(3π2n(r))2/3 = 2r2
s τ

(
4

9π

)2/3

. (17)

The ground-state exchange can be related to aτ
X via a ther-

mal reduction factor, RX, where RX can only depend on
temperature and density through θ , the electron degeneracy
parameter24,26:

aτ
X = euni f

X RX(θ). (18)

The thermal reduction factor decreases with increasing θ ,
meaning that as the electron degeneracy increases, the ex-
change free energy decreases in magnitude.

To further validate the use of simulated scaling at finite tem-
peratures, FTAC curves were generated with the same θ value.
These should have the same ratio W τ,λ

XC /euni f
X (rs) at λ = 0.

Since θ is a function of τ and rs, individual characteristics can
be scaled while the electron degeneracy remains constant. Di-
viding WXC by the exact ground-state exchange demonstrates
this equivalency. If the electron degeneracy is constant for a
set of curves, then the ratio Aτ

X/euni f
X should also be equivalent

for all three curves. As the exchange is constant over inter-
action strength, plotting the AC in this manner exposes the
correlation component of the XC free energy for pairs of rs
and τ that yield the same electron degeneracy. Fig. 3 shows
sets of curves for three different electron degeneracy values,

both at low interaction strength and up to λ = 1, the physi-
cal interaction strength. These demonstrate the expected be-
havior at λ = 0. The complicated dependence of correlation
on the electron degeneracy arises at relatively low interaction
strength, with the set of curves having three times the refer-
ence degeneracy crossing those of the 2θ0 set almost immedi-
ately, before even a tenth of the physical interaction strength
is reached.

θ θ0
θ 2θ0
θ 3θ0

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2
0.000 0.002 0.004 0.006 0.008 0.0100

W
x
c,λ
e
xu
n
if

H
ar
tr
ee

Interaction strength, λ

FIG. 3. Plotting curves with equivalent electron degeneracies isolates
the mixed temperature-density effect on the correlation free energy.
The zoomed-in plot (top) demonstrates how the simple grouping of
equivalent electron degeneracy curves is disrupted by correlation ef-
fects as the interaction approaches realistic strength (bottom).

IV. RESULTS AND DISCUSSION

The finite-temperature adiabatic connection (FT AC)
curves are observed at low, intermediate, and high tempera-
tures and densities. In dimensionless units, typical parameters
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in the WDM regime are the Wigner-Seitz radius, rs = r/aB,
and the reduced temperature, τ = kBT/EF , both being of or-
der one for WDM (typically in the range of 0.1-10). Here,
kB is the Boltzmann constant, aB is the Bohr radius, and EF
is the system’s Fermi energy, defined as the zero-temperature
limit of the chemical potential. By holding the density fixed
as the KS system is smoothly connected to the physical sys-
tem, the FT ACF demonstrates how the proportions of the ex-
change and correlation free energy components vary with tem-
perature, density, and interaction strength. In addition, these
curves invite investigation of the Lieb-Oxford bound and its
relationship to the exchange free energy.

A. Adiabatic Connection Curves

As an electronic system’s temperature rises at a fixed den-
sity, it may be expected that the importance of the electron-
electron interaction will decrease. However, this oversim-
plified picture hides the influence of both temperature and
density on the components of exchange-correlation. Fig. 4
displays the adiabatic connection curves generated for a uni-
form gas with moderate density at temperatures varying up to
the level of the Fermi energy. The solid curves of the top
figure demonstrate the correlation energy while the dashed
line corresponds to the exchange component of the highest-
temperature curve. For clarity, the exchange component is
only explicitly shown for the high-temperature curve, though
similar exchange curves could be drawn, starting at λ = 0 for
the exchange energy for τ = 0.1 and τ = 0.5.

The ordering of these curves with rising temperature
demonstrates that, at these conditions, the XC free energy
does decrease. The bottom plot of Fig. 4, however, iso-
lates the correlation component for all three temperatures. At
these conditions, the relative contribution of correlation to Aτ

XC
varies greatly with temperature. This is most easily observed
in the reversal of the exchange and XC curves’ ordering with
temperature, but it can also be seen clearly in the flattening of
the curves as we move to colder temperatures.

The curves in Fig. 5 demonstrate the adiabatic connection
for a uniform gas with a relatively large Wigner-Seitz radius
at low, intermediate, and high temperatures. Again, the ex-
change free energy component is only explicitly shown for
the high-temperature curve. Since the Wigner-Seitz radius
is inversely proportional to the density, a large Wigner-Seitz
radius corresponds to a small density. As expected, the low
temperature curve, which was nearly linear in Fig. 4, now ex-
hibits a fairly dramatic decrease at low λ values under these
conditions. It, and all other calculated curves, obey the exact
constraint of a negative first derivative.34,56

In contrast to the previous figures, Fig. 6 shows FT ACF
curves at a fixed temperature while the density is varied. Here,
the XC energy shows similar curvature at all densities when
at the Fermi temperature, and the magnitude of the XC free
energy increases with increasing density. This behavior is
expected since the magnitude of the exchange energy is in-
versely related to the Wigner-Seitz radius. The bottom plot
of Fig. 6 shows the correlation contribution of each curve
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FIG. 4. FT ACF for the UEG at a range of temperatures (top). The
exchange (dashed line) is shown for the high-temperature system
only. Purely correlation contributions are shown to exhibit opposite
ordering with increasing temperature (bottom).
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FIG. 5. FT ACF for a low-density UEG is demonstrated for a range
of temperatures. The exchange is shown only for the highest temper-
ature. At this high rs value, correlation clearly dominates the XC.

and demonstrates that the behavior of Aτ
XC is dominated by

the exchange free energy. Without the exchange component,
the ordering of the curves is disrupted at this temperature, and
we do not observe the same trend. However, at a high enough
temperature, the magnitude of the correlation free energy con-
sistently decreases with increasing rs, or decreasing density.
The differences in behavior of the correlation free energy at
different temperatures demonstrate that the correlation contri-
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FIG. 6. FT ACF for three different densities at a fixed temperature
of τ = 1 (top). Purely correlation contributions demonstrate how
the ordering of the curves becomes non-monotonic when density is
varied at a fixed temperature (bottom).

bution to the XC free energy fluctuates non-monotonically, as
predicted via the asymmetric Hubbard dimer.33

B. Exact Conditions

Electron degeneracy, as defined in Eqn.17, can be related
to the Lieb-Oxford bound,36,57 commonly expressed as an
exact inequality for the potential energy contribution to the
XC functional.51 In other words, for wavefunctions that are
ground states of an N-electron Hamiltonian, the adiabatic con-
nection integrand, W λ

XC, is limited by the LO bound, where
CLO is the lowest possible number that makes this inequal-
ity true for all wavefunctions.42 The LO inequality provides a
strict bound on how negative the XC energy can become:

W λ
XC ≥−CLO

∫
d3r n4/3(r), (19)

where CLO is a constant. This is often rewritten in terms of the
local density approximation to the exchange energy,

W λ
XC ≥ −CLO

−CLDA
X

ELDA
X , (20)

where CLDA
X is the usual constant for the LDA exchange ex-

pression. Lieb and Oxford originally established that CLO ≤

1.68, but these bounds have been tightened by others38,43

since: 1.444 ≤CLO ≤ 1.636.
Some preliminary evidence, based on definitions of the

Hartree-exchange energy and low-density limits of AXC, in-
dicates that bounds like the LO bound may be temperature-
dependent in thermal DFT. In Fig. 7, ACF curves for a fixed
density are shown while the temperature is varied, along with
the LO bound and a naive approach to including what might
be called implicit temperature dependence. This “quick and
dirty" second approach uses the exchange-correlation free en-
ergy of our system, aτ

X(rs), in place of the zero-temperature
eX(rs) of the LO bound expression for the uniform gas:

W λ
XC ≥ −CLO

−CLDA
X

eunif
X (rs). (21)

This approach would reduce the integral of Eqn. 19 as temper-
atures increase for non-uniform systems. At higher densities
for the uniform gas, the FT AC curves appear to satisfy this
inequality at lower temperatures. However, at a low enough
density, W τ,λ

XC is not bound by this attempt to temperature-
adjust the LO inequality, even at low temperatures. As shown
in Fig. 7, only the true, zero-temperature LO bound is sat-
isfied, whether using the 1999 value for the CLO constant or
the more recently tightened 2019 value. This suggests that,
while the LO bound may exhibit some temperature depen-
dence, it is not appropriately captured by the implicit tempera-
ture dependence of the thermally weighted density combined
with the electron-degeneracy dependence of the thermal re-
duction factor.24,26 In addition, the adherence of the thermal
AC curves to the tighter LO bound for these high-rs (i.e., low-
density) conditions indicate the density-dominated behavior
of the low-temperature, low-density limit. Observing this
predominately at low densities is related to the well-known
dominance of correlation over exchange that holds in finite-
temperature systems as well.25 Since the exchange comprises
a much smaller fraction of the total XC free energy, the corre-
lation is large enough in relative magnitude that it dips down
well below the exchange-based dotted curves. As tempera-
tures increase and the curves approach the λ -axis, it seems
likely that inclusion of temperature dependence in the bound
could provide a tighter bound than the ZT value, as well as for
the full range of rs and θ .

One approach to investigating the temperature-dependence
of the LO bound is to look at situations where the LO bound
is most likely to hold; for example, when aτ

X ≪ euni f
X . The ex-

change free energy is most likely to be smaller than the ground
state exchange at large values of θ . Since θ ∝ τr2

s , a large
value of theta can be achieved with a high value of τ and low
value of rs, in which the exchange component of the XC free
energy dominates. A large θ may also be achieved with a
low value of τ and a high value of rs, in which the correlation
component dominates.

The parameterization provided by Groth and collaborators
is valid within 0 ≤ θ ≤ 8 and 0.1 ≤ rs ≤ 20. Within this
range of θ values provided by Groth and coworkers,49 W τ,λ=0

XC

can be as small in magnitude as −0.00092 when rs = 20 and
τ ≈ 0.1, and W τ,λ=1 can be as low as −4.7780 when rs = 0.1
and τ = 0. Writing the inequality in terms of the uniform gas



7

CLOAx
τ 0.01/Cx

LDA

CLOAx
τ 0.1/Cx

LDA

CLOAx
τ 1/Cx

LDA

ZT2019

ZT1999

rs 10, τ 0.01

rs 10, τ 0.1

rs 10, τ 1

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
W
x
cτ,
λ

H
ar
tr
ee

Interaction Strength, λ

FIG. 7. ZT LO bound and temperature-adjusted quantities for a low
density UEG at three different temperatures. Even at low tempera-
tures, the XC free energy is not bounded by the LO-like line calcu-
lated from FT exchange. The shaded region indicates the range of
possible values of CLO in the Lieb-Oxford inequality.

exchange per particle,42

W τ,λ
XC ≥

Crs,λ

CLDA
X

eunif
X (rs), (22)

we define two approximate bounding parameters for our
finite-temperature curves, Ctop = Crs,λ=0 and Cbottom =
Crs,λ=1. The rs dependence of these two parameters is rooted
in the exchange free energy’s dependence on the electron de-
generacy, θ , through the reduction factor. This means that
maximal and minimal values are constant with respect to θ ,
but the value shifts depending on how one constructs this de-
generacy for a given selection of rs and its corresponding τ at
that specific value of θ .
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FIG. 8. Bounds are shown for the FTACF at an rs of 10 and three
different temperatures. The Lieb-Oxford bound which constrains the
exchange-correlation energy at ZT is also shown for the rs = 10 case.

Figure 8 shows approximated upper and lower bounds for
the FTAC for a system of rs = 10 at three different tempera-
tures. For context, the Lieb-Oxford bound for the ground-state
XC energy is also shown, using both the 1999 and 2019 val-
ues for CLO. As expected, the ZT bounds are more negative
than either of the FT approximated constraints.
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FIG. 9. Approximate upper and lower bounds generated for the
FT ACF within the constraints of the parameterization provided by
Groth and collaborators are shown for a low electron degeneracy
(bottom curve), three intermediate electron degeneracy values, and
a large electron degeneracy (top curve).

Figure 9 shows approximated upper and lower bounds for
the FT ACF within the allowable range of conditions for the
parameterized curves. The curves correspond, from top to bot-
tom, to θ = 8, three intermediate electron degeneracies, and
θ = 0. The curve reaching the highest magnitude corresponds
to θ = 0, which agrees with the relationship between the ex-
change free energy and the thermal reduction factor, RX(θ).
This relationship, along with the dependence of the thermal
reduction factor on θ , predicts that the exchange free energy
decreases with increasing θ . Thus, when the electron degen-
eracy is low, the exchange free energy is expected to have a
large magnitude, relative to exchange free energy at a high
electron degeneracy.

V. SUMMARY AND FUTURE WORK

We have presented finite-temperature adiabatic connec-
tion curves based on an accurate parameterization49 of the
exchange-correlation free energy for the uniform electron gas
at warm dense matter conditions.49 Free energies obtained
from the simulated scaling process52,58,59 reproduce the di-
rectly calculated results49 with controllable accuracy. This
demonstrates the usefulness of simulated scaling for a wide
range of temperatures and densities and also the reliability of
the parameterization in applications beyond those for which it
was originally designed.

The temperature- and density-dependent AC curves pre-
sented in this work behave as expected, in line with the ZT
curve for the uniform gas in many ways. However, the re-
lationship between density, interaction strength, and temper-
ature is complex and combinations of conditions exist that
can disrupt the naive ordering of curves based on temperature
alone. As is well understood in the community, this is due to
the dependence of the adiabatic connection integrand on the
electron correlation. This is similar to previous calculations
using the asymmetric Hubbard dimer28,33 and supports care-
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ful use of this model system for DFT analysis. In general, the
complicated behavior of the correlation free energy with tem-
perature can be hidden by the exchange free energy, due to its
strong, monotonic dependence on the electron degeneracy pa-
rameter. For careful examination of the correlation, we have
demonstrated that scaling to a correlation-dominated limit can
expose these details.

All curves obey the ZT Lieb-Oxford bound, as expected.
However, the FT exchange free energy for the UEG does not
satisfy the same relationship to this bound that the ZT ex-
change does, particularly in regimes of large electron degener-
acy. Even at low temperatures, in low-density regimes, scaling
the FT exchange free energy using the ZT Lieb-Oxford con-
stant fails to contain the ACF curves. In other regimes, where
the magnitude of correlation is small, the exchange’s depen-
dence on temperature is strong enough to disrupt this ZT re-
lationship. Some approximate bounds on the FT ACF have
been generated, demonstrating the tied density-temperature
effects on exchange-correlation and showing a large discrep-
ancy between the adiabatic connection curves’ most negative
values and the ZT LO bound, in line with ZT analysis of sim-
ilar issues. It has been shown42 that uniform densities are not
the most challenging for the LO bound at ZT, so using ther-
mal densities near or approaching the strong-interaction limit
would be a reasonable approach for better estimating any tem-
perature dependence to be found for the LO bound.

The investigations within this work have all been under-
taken within the allowed range of applicability given by
Groth and coworkers, save for the initial extraction of the
exchange free energy by taking a high-density (i.e., low-rs)
limit. Though this represents a deviation from the recom-
mended usage of the parameterization, our tests using known
behavior of the exchange for the UEG with the electron de-
generacy demonstrate the robustness to extension beyond the
low-rs regime into the “very low" regime. Our group contin-
ues work to extend our studies of the interplay between tem-
perature, density, and interaction strength via new approaches
approximating these curves and investigating the connections
between zero-temperature and finite-temperature exchange-
correlation approximations. Though these methods do not
rely on constraints such as the Lieb-Oxford bound, work ex-
amining the effect of temperature on bounding relationships
is ongoing in hopes that connections between the two areas of
study will provide insights into both the entropic contributions
to the exchange-correlation free energy and the exchange-
correlation as a whole.
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