
Journal Name

Improving machine learning performance on small chemical reaction
data with unsupervised contrastive pretraining†

Mingjian Wen,a Samuel M. Blau,a Xiaowei Xie,b,c Shyam Dwaraknath,d and Kristin A.
Persson⇤e, f

Machine learning (ML) methods have great potential to transform chemical discovery by accelerating

the exploration of chemical space and drawing scientific insights from data. However, modern

chemical reaction ML models, such as those based on graph neural networks (GNNs), must be trained

on a large amount of labelled data in order to avoid overfitting the data and thus possessing low

accuracy and transferability. In this work, we propose a strategy to leverage unlabelled data to learn

accurate ML models for small labelled chemical reaction data. We focus on an old and prominent

problem—classifying reactions into distinct families—and build a GNN model for this task. We first

pretrain the model on unlabelled reaction data using unsupervised contrastive learning and then

fine-tune it on a small number of labelled reactions. The contrastive pretraining learns by making

the representations of two augmented versions of a reaction similar to each other but distinct from

other reactions. We propose chemically consistent reaction augmentation methods that protect the

reaction center and find they are the key for the model to extract relevant information from unlabelled

data to aid the reaction classification task. The transfer learned model outperforms a supervised

model trained from scratch by a large margin. Further, it consistently performs better than models

based on traditional rule-driven reaction fingerprints, which have long been the default choice for

small datasets. In addition to reaction classification, the learned GNN-based reaction fingerprints can

also be used to navigate the chemical reaction space, which we demonstrate by querying for similar

reactions. The strategy can be readily applied to other predictive reaction problems to uncover the

power of unlabelled data for learning better models with a limited supply of labels.

1 Introduction
Machine learning methods, especially deep learning, have signif-
icantly expanded a chemist’s toolbox, enabling the construction
of quantitatively predictive models directly from data without ex-
plicitly designing rule-based models using chemical insights and
intuitions. They have recently been successfully applied to ad-
dress challenging chemical reaction problems, ranging from the
prediction of reaction and activation energies1–5, reaction prod-
ucts6,7, and reaction conditions8,9, as well as designing synthesis

a
Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA

94720, United States.

b
College of Chemistry, University of California, Berkeley, CA 94720, United States.

c
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA

94720, United States.

d
Luxembourg Institute of Science and Technology, Luxembourg

e
Department of Materials Science and Engineering, University of California, Berkeley,

CA 94720, United States.

f
Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,

United States. E-mail: kapersson@lbl.gov

† Electronic Supplementary Information (ESI) available: in-depth description of the
models and model training, as well as extra results. See DOI: 00.0000/00000000.

routes10,11 to name a few. A key ingredient underlying these suc-
cesses is that modern machine learning methods excel in extract-
ing the patterns in data from sufficient, labelled training exam-
ples12. It has been shown that the performance of these chemical
machine learning models can be systematically improved with the
increase of training examples1,13. Despite various recent efforts
to generate large labelled reaction datasets that are suitable for
modern machine learning3,14–16, they are typically sparse and
still small considering the size of the chemical reaction space17.
Many chemical reaction datasets, especially experimental ones,
are rather limited, consisting of only thousands or even hundreds
of labelled examples18,19. For such small datasets, the machine
learning models can easily become overfitted, resulting in low ac-
curacy and transferability. Therefore, it would be of interest to
seek new approaches to train the models using only a small num-
ber of reliable, labelled reactions while still retaining the accuracy.

When the number of labelled reactions is small compared with
the complexity of the machine learning model required to per-
form the task, it helps to seek some other source of information
to initialize the feature detectors in the model and then to fine-
tune these feature detectors using the limited supply of labels20.

+PVSOBM�/BNF�<ZFBS>�<WPM�> 1–11 | 1

In transfer learning, the source of information is another related
supervised learning task that has an abundant number of labelled
data. The model transfers beneficial information from the related
task to aid its decision-making on the task with limited labels,
resulting in improved performance. For example, transfer learn-
ing has enabled the molecular transformer to predict reaction
outcomes with a small labelled dataset21,22. Transfer learning,
however, still requires a large labelled dataset to train the related
task, which often is not readily available. Actually, it is possible
to initialize the feature detectors using reactions without any la-
bels at all. Although without explicit labels, unlabelled reactions
contain extra information that can be leveraged to learn a better
model and they are much easier to obtain. For example, the pub-
licly available USPTO dataset14 contains ⇠3 million reactions,
the commercial Reaxys database23 and the CAS database24 have
⇠56 millions and ⇠156 millions records of reactions, respectively.
In this work, we present a generic unsupervised learning strategy
to distill information from unlabelled chemical reactions. For the
purpose of demonstration, we focus on the problem of classifying
reactions into distinct families.

Reaction family classification has great value for chemists. It
facilitates the communication of complex concepts like how a re-
action happens in terms of atomic rearrangement and helps to
efficiently navigate the chemical reaction space by systematic in-
dexing of reactions in books and databases25–27. Many iconic
rules for reactivity prediction require reactions to be in the same
family28, such as the Bell–Evans–Polanyi principle for estimating
activation energy from reaction energy29,30 and the Woodward–
Hoffmann rules for predicting reaction outcomes of pericyclic
transformations31.

Given the importance, there is a long tradition in classifying re-
actions into families, and the techniques can be broadly grouped
into two categories: rule-driven and data-driven methods25,26.
Rule-driven methods are based on a library of elaborate expert-
written rules, and thus reactions without a preconceived rule can-
not be classified. To overcome such limitations, data-driven meth-
ods first convert a reaction to its fingerprint (typically a numeri-
cal vector) and then apply machine learning algorithms to gener-
ate reaction families by analyzing the fingerprints of a set of re-
actions32,33. Traditionally, reaction fingerprints are constructed
from manually crafted molecular descriptors, such as the atom-
pairs34 and extended-connectivity35 molecular descriptors. Such
traditional reaction fingerprints with only a few tunable param-
eters have long been used as the default choice for learning re-
action properties on small datasets. More recently, a new class
of reaction fingerprints that are learned directly from data have
emerged. Schwaller et al.27,36,37 used the Transformer38 nat-
ural language processing model to learn fingerprints from reac-
tion SMILES string39. Wei et al.40 developed the first learnable
graph neural network (GNN) reaction fingerprints based on GNN
molecule descriptors41,42. The GNN reaction fingerprints are flex-
ible to adapt themselves to unseen reactions and have achieved
satisfying results in a number of applications, such as the pre-
diction of reaction energy and activation energy1,3. However, as
many other modern machine learning methods, they need a large
number of labelled reactions to train.

We present a GNN-based model to classify reactions and pro-
pose a strategy to train the model using only a small number of
labelled reactions. The strategy can be categorized as a transfer
learning technique discussed above: we first pretrain the model
on a large number of unlabelled reactions and then fine-tune it
using a small number of labelled reactions. The pretraining is
based on recent advances in contrastive self-supervised learning
in computer vision43–45, where representations of unlabelled im-
ages are learned by contrasting different views of them. In con-
trast, our GNN model extracts generic concepts of reactions by
contrasting augmented versions of unlabelled reactions. The core
idea behind this is straightforward: if we modify a reaction, for
example, by removing an atom away from the reaction center, of-
tentimes we would still get the “same” reaction in terms of which
class it belongs to. Taking advantage of this “an augmented reac-
tion resembles itself” idea, we pretrain the model by requiring the
fingerprints of various augmentations of a reaction be as similar
to each other as possible. (This pretraining is unsupervised since
no labels are used.)

The pretrain-fine-tuned model outperforms supervised GNN
models trained from scratch and traditional fingerprint-based
models by a large margin for small datasets. For example, using
only 8 labelled reactions per class in the Schneider training set,
it achieves an F1 score of 0.86, while the supervised model and
the traditional fingerprints-based model get an F1 score of 0.64
and 0.63, respectively. We explored various reaction augmenta-
tion methods and found that appropriate reaction augmentation
is the key to the success of the contrastive pretraining. Selecting
a reaction center based on altered bonds and then augmenting
the reaction beyond a subgraph around the reaction center turns
out to be a simple yet robust augmentation method. To elucidate
how the contrastive pretraining helps to learn a better model, we
analyzed the high-dimensional learned reaction fingerprints by
projecting them into a two-dimensional space and found that the
pretraining itself can already push the fingerprints of reactions
in the same class close to each other, forming clear clusters. The
learned model can be repurposed for other chemical applications,
either as the starting point for other supervised tasks or being di-
rectly used in unsupervised tasks, which we demonstrate via the
query for similar reactions.

2 Contrastive self-supervised model
An illustrative overview of the contrastive self-supervised learning
approach to train GNN models for reaction classification is pre-
sented in Fig. 1. As introduced in Section 1, the overall idea is to
leverage the information in unlabelled reactions to help the model
make better decisions, as schematically shown in Fig. 1a. In this
section, we first introduce the base predictive GNN model for re-
action classification and then discuss the proposed contrastive ap-
proach to distill information from unlabelled reactions. In-depth
description of individual model architecture is given in Section S1
of the electronic supplementary information (ESI).

The predictive GNN model is based on our previous BonDNet
model1 for the prediction of bond dissociation energy. In the
model (Fig. 1b), each reactant and product molecule in a reac-
tion is represented as a graph with atoms as nodes and bonds

2 | 1–11+PVSOBM�/BNF�<ZFBS>�<WPM�>

b)

c)

a)
Molecule

GNN
Encoder Difference

MLP Label

Molecule
GNN

Encoder Reaction Encoder f(�)

Reactants

Products

Augmentation x̃i

Augmentation x̃j

Maximize
agreement

Reaction
Encoder

f(�)
Projection

Head
g(�)

Reaction
Encoder

f(�)
Projection

Head
g(�)

Reaction x

zi

zj

Only using
labelled data

Using labelled and
unlabelled data

: class 0
: class 1
: unlabelled data

hi

hj

Fig. 1 Illustrative overview of the contrastive self-supervised approach for chemical reaction classification. (a) Schematics of the decision boundary
of a classification problem using and without using unlabelled data. Taking advantage of unlabelled data, a model can discover the true pattern
underlying the data. (b) Predictive GNN model for reaction classification. The model takes the graph representation of a reaction as input and maps
it to the reaction family label. (c) Contrastive self-supervised model to pretrain the GNN reaction encoder. Two augmentations of an input reaction
are passed through the reaction encoder to get their reaction fingerprints hi and h j and then a projection head to get vector representations zi and
z j, and the model maximizes the agreement between the two representations of the reaction. A reaction can have multiple reactant and product
molecules; for brevity, we show one for each.

as edges. The molecular graphs are attributed: each node is
associated with a feature vector describing the atom (e.g. atom
type) and similarly each edge has a feature vector describing the
bond (e.g. whether a bond is in a ring). In addition, a global fea-
ture vector is introduced to incorporate molecule-level informa-
tion (e.g. the molecular weight). Taking the attributed molecular
graphs of a reaction as the input x, a molecule GNN encoder it-
eratively updates the atom, bond, and global features (separate
for each molecular graph) to obtain better representations of the
molecules using a message-passing scheme46. Next, we take the
differences of the atom features, bond features, and global fea-
tures between the products and reactants, and aggregate all the
difference feature vectors into a single vector h, which we call
the fingerprint of the reaction. Finally, we map the reaction fin-
gerprint to the reaction class label using a multilayer perceptron
(MLP). In essence, the predictive model has two parts: (a) a GNN
reaction encoder f (·) that takes the molecular graphs of a reaction
x as input and generates a vector fingerprint h for the reaction,
h = f (x), and (b) an MLP that decodes the reaction fingerprint h
to the reaction class label, y = MLP(h).

One can train the predictive GNN model using a fully labelled
dataset by minimizing a loss function, e.g. the cross-entropy loss
function. However, this supervised training approach that trains
a model from scratch generally needs a large number of labelled
reactions. For small labelled datasets, we propose a contrastive
self-supervised learning approach to pretrain the GNN reaction

encoder f (·) to leverage the information in unlabelled reactions.
The contrastive model (Fig. 1c) consists of four parts.

• A reaction augmentation module that modifies the input
molecular graphs of a reaction. Two augmentations are se-
lected from a pool of augmentation methods and applied to
the input reaction x, resulting in two augmented reactions,
x̃i and x̃ j. We consider five reaction augmentation methods:
mask atom features, drop atoms, mask bond features, drop
bonds, and take molecular subgraphs. They are further dis-
cussed in Section 3.1.

• A reaction encoder that converts a reaction to its vector fin-
gerprint. The reaction encoder f (·) is the same as that
used in the predictive model, into which the knowledge in
the unlabelled reactions will be injected. Two fingerprints
hi = f (x̃i) and h j = f (x̃ j) are obtained via the reaction en-
coder, one for each augmented reaction.

• A projection head g(·) that maps a reaction fingerprint to its
final vector representation, with which we get zi = g(hi) and
z j = g(h j). An MLP is used as the projection head.

• A contrastive loss that maximizes the agreement between the
two final representations zi and z j of a reaction, but distin-
guishes them from the final representations of other reac-
tions. At each training step, we randomly sample a mini-
batch of N reactions. After the above three steps, we obtain
2N vectors z1,z2, . . . ,z2N , where z2n�1 and z2n denote the two
final vector representations of reaction n (n = 1,2, . . . ,N).

+PVSOBM�/BNF�<ZFBS>�<WPM�> 1–11 | 3

From the 2N final representations, we construct a loss func-
tion:

L =
1

2N

N

Â
n=1

[l(2n�1,2n)+ l(2n,2n�1)], (1)

where l(·, ·) is the normalized temperature-scaled cross-
entropy (NT-Xent) function43,

l(i, j) =� log
exp(sim(zi,z j)/t)

Â2N
k=1,k 6=i exp(sim(zi,zk)/t)

. (2)

In Eq. (2), sim(a,b) measures the similarity of two vectors a
and b via the cosine similarity, i.e.

sim(a,b) = a ·b
kakkbk , (3)

and t is a temperature parameter that controls the scale of
the cosine similarity. Intuitively, when minimizing the loss
function, the numerator in Eq. (2) strives to bring the two
final vector representations of a reaction zi and z j close to
each other, while the denominator tries to push zi away from
the final representations of other reactions.

The supervision is fully provided by the reactions themselves
via the augmentations, and thus no labels are needed in train-
ing the contrastive model. A model trained via this contrastive
self-supervised approach would distill generic information of the
reactions. Fine-tuned using some labels, the model can then be
applied to perform specific tasks. To do this, we only keep the
trained reaction encoder f (·) and discard the other parts. We
then replace the reaction encoder in the predictive model by the
pretrained one from the contrastive model. Finally, we train the
predictive model by minimizing the cross-entropy loss function
on the labelled data as discussed above.

Going forward, we will employ the following naming conven-
tions for the models: a supervised model refers to a predictive
model trained from scratch on labelled data; a pretrained model
is trained via the contrastive self-supervised approach without us-
ing any label; and a fine-tuned model is first pretrained using the
contrastive self-supervised approach and then fine-tuned with la-
bels.

3 Results
3.1 Reaction augmentation strategy
In this section, we discuss the key considerations and strategies in
augmenting reactions and show that appropriate chemically con-
sistent augmentation is the key to the success of the contrastive
model.

Each reaction has multiple reactant and product molecules; we
can augment each molecule individually using existing molecu-
lar graph augmentation methods47–49, but this naive approach is
far from optimal. Instead, we add two restrictions on what can
be augmented. First, atoms (bonds) in the reaction center should
be kept intact, that is, we can only select atoms (bonds) outside
the reaction center to modify. This restriction is motivated by the
assumption that atoms (bonds) in the reaction center are signif-
icant in defining a reaction, and, in general, atoms (bonds) far
away from the reaction center are less important. This is partic-

Altered bonds as the reaction center:

+ +

+ +

Functional groups as the reaction center:

a)

b) Reaction augmentation methods:

Original reaction Mask atom

Mask bond Drop atom

Drop bond Subgraph

Fig. 2 Reaction augmentation strategies. (a) Reaction center modes ex-
emplified with an esterification reaction. Atoms and bonds in the shaded
regions are selected as reaction centers; blue for broken bonds, red for
formed bonds, and yellow for functional groups. (b) Augmentations ap-
plied to atoms (bonds). Given a reaction, its reaction center (purple
shaded region) is kept intact and atoms (bonds) outside the reaction
center are available for augmentation. “Mask atom” changes the in-
put features of selected atoms; “Mask bond” changes the input features
of selected bonds; “Drop atom” removes selected atoms; “Drop bond”
removes selected bonds; and “Subgroup” removes atoms faraway from
the reaction center first. Atoms (bonds) whose features are masked are
marked by green and removed atoms (bonds) are marked by dashed lines.

ularly true for the reaction classification problem studied in this
work. Second, if an atom (bond) in the reactants is selected for
augmentation, the same atom (bond) in the products should also
be selected, and vice versa. Atoms always have a one-to-one cor-
respondence between the reactants and products, but bonds do
not. For example, a broken bond only exists in the reactants but
not in the products. Therefore, we only select bonds that exist in
both the reactants and products for augmentation.

To define a reaction center, we explore three modes (Fig. 2a):
altered bonds, functional groups, and none. Given a reaction and
the atom mapping between the reactants and products, we can
identify the broken and formed bonds. The altered bonds cen-
ter mode regards the broken and formed bonds together with the
atoms that they connect to as the reaction center. In reality, a
reaction typically occurs between functional groups. For exam-
ple, a carboxylic acid group reacts with an alcohol to form an
ester in the esterification reaction shown in Fig. 2a. This moti-
vates us to use the reacting functional groups as another reaction
center mode. To determine the functional group in a molecule
that reacts in a reaction, we loop over a list of predefined func-
tional groups and inspect whether it is associated with the altered

4 | 1–11+PVSOBM�/BNF�<ZFBS>�<WPM�>

Fig. 3 Effectiveness of reaction augmentation strategies. F1 score of the fine-tuned model for different augmentation method, reaction center
mode, and augmentation magnitude. Augmentation magnitude refers to the percentage of atoms (bonds) outside the reaction center selected for
augmentation. The vertical bar denotes the uncertainty, obtained as the standard deviation from five different runs, each with a different resampling
of the training data. Reaction center mode “none” is not compatible with subgraph as discussed in Section 3.1; thus, there is no green curve in the
“Subgraph” subplot. As a reference, the F1 score of the supervised model is 0.64.

bonds. (A detailed description of the process is given in Section 5
and an algorithm is given as Algorithm 1 in the ESI.) Finally, the
“none” mode means no atoms and bonds are fixed as reaction
center and thus all are available for augmentation.

Once the reaction center is determined, we keep it intact and
randomly select a portion of atoms (bonds) outside it for aug-
mentation. We explored five augmentation methods, and they
are schematically illustrated in Fig. 2b.

• Mask atom. The input features of the selected atoms are set
to specific values, chosen to be the mean of the features of
all atoms in the training data.

• Mask bond. Similar to mask atom, the input features of the
selected bonds are set to the mean bond feature.

• Drop atom. The selected atoms together with the bonds they
form are removed from the graph.

• Drop bond. The selected bonds are removed from the graph.
An atom forming a selected bond is also removed when it is
not connected to the graph via other bonds.

• Subgraph. Subgraph is essentially drop atom, but it removes
atoms in a more principled way. In drop atom, atoms out-
side the reaction center are randomly selected, each with
the same probability. However, in subgraph, atoms far away
from the reaction center have a larger probability of being
removed, favoring the retention of atoms near the reaction
center. Note, this requires a real reaction center to determine
the distance of an atom to it, and thus subgraph cannot be
used together with the “none” reaction center mode. (An al-
gorithm of the subgraph method is given as Algorithm 2 in
the ESI).

Fig. 3 shows the performance of the fine-tuned model for var-

ious reaction center modes and augmentation methods at differ-
ent augmentation magnitude (i.e. the percentage of augmented
atoms/bonds). The results are obtained using the Schneider
dataset (see Section 5) with 8 labelled reactions per class. Mask
atom and mask bond are found to be ineffective augmentation
methods. Their classification F1 scores are around that of the su-
pervised model (0.64) and change very little with reaction center
mode and augmentation magnitude. This shows the importance
of the input atom/bond features: changing them will misguide
the contrastive pretraining, making it unable to distill any use-
ful information to aid the classification task. Drop bond performs
even worse, with F1 scores lower than the supervised model, sug-
gesting that the reaction class families depend on bonds outside
the reaction center and removing these bonds greatly affect the
model (similar observation discussed below on drop atom and
subgraph).

In contrast, drop atom and subgraph are effective augmenta-
tion methods which can improve the performance of the fine-
tuned model compared with the supervised model. Two obser-
vations from the results are made; first, the reaction center mode
makes a substantial difference. For drop atom, the “none” reac-
tion center mode impacts the model performance negatively. It
gets an F1 score of ⇠0.40, significantly below that of the super-
vised model. This is because any atom can be dropped in the
“none” mode and dropping atoms in the reaction center dras-
tically changes the nature of the reaction. For drop atom, the
functional groups center mode achieves a higher score than the
altered bonds center mode across a range of augmentation mag-
nitudes. This beneficial effect, however, disappears and the two
center modes are on par with each other when using the sub-

+PVSOBM�/BNF�<ZFBS>�<WPM�> 1–11 | 5

Fig. 4 Model performance on reaction classification. Classification F1 score versus training set size for the supervised and fine-tuned GNN models, as
well as a logistic regression model on traditional fingerprints (FP). The vertical bar denotes the uncertainty, obtained as the standard deviation from
five different runs, each with a different resampling of the training data. No result at 128 is given for the Grambow dataset since its smallest reaction
class has fewer than 128 reactions.

graph augmentation method. We speculate that this distinction
originates from the protection of the reaction center. For drop
atom, the functional groups center mode (compared with the al-
tered bonds center mode) can identify more relevant atoms and
bonds that correlate with the reaction class and keep them from
being disrupted. In the case of the subgraph augmentation, the
protection is effective irrespective of how the reaction center is
determined because atoms far away from the center are removed
first. Second, stronger augmentation leads to better performance.
This is apparent from the drop atom case where the scores of both
the altered bonds and functional groups center modes increase
with the augmentation magnitude. For the subgraph augmenta-
tion method, this is more clear from the inset.

Additional results for models trained using 16 labelled reac-
tions per class are given in Fig. S2 in the ESI, which provide fur-
ther support for the conclusions discussed above. In addition, the
same augmentation method is applied to both augmentations i
and j of a reaction in the above discussion. We further sought to
identify whether a combination of different augmentation meth-
ods can benefit the contrastive pretraining and found that as long
as one of the two augmentations is drop atom or subgraph, the
model performs well and no further benefit is obtained (Fig. S3
in the ESI).

In summary, we find that the subgraph-based method provides
robust augmentation regardless of the reaction center mode and
augmentation magnitude. Opting for simplicity, we select the al-
tered bonds reaction center mode in the below discussions, in-
stead of the functional groups center mode.

3.2 Model performance on small datasets
Using the subgraph augmentation method with the altered bonds
reaction center mode and an augmentation magnitude of 0.8, we
next investigate the effects of the contrastive pretraining on small
datasets.

We curated three reaction classification datasets, namely, the
Schneider, TPL100, and Grambow datasets. For each dataset,
instead of using the entire training set, we intentionally draw

4,8, . . . ,128 labelled reactions per class from the training set to
simulate the small data regime and train the models on these
small datasets. More information of the three datasets and how
the models are trained are given in Section 5.

Performance of the models trained on these small datasets are
shown in Fig. 4. For each dataset, contrastive pretraining signif-
icantly improves the classification F1 score. For example, with 8
labelled reactions per class in the Schneider training set, the su-
pervised model only gets a score of 0.64; in contrast, with the
help of the contrastive pretraining, the fine-tuned model achieves
a score of 0.86, an increase of 34%. An analysis of the classifica-
tion error (Fig. S4 in the ESI) shows that the fine-tuned model can
correctly identify most reaction classes and that the remaining er-
ror is mainly from the misclassification of reactions that are very
similar to each other, such as “methyl esterification” and “Fischer–
Speier esterification” reactions. As expected, the performance gap
gradually closes when more reactions are added to the training
set; the two models perform almost the same with 128 reactions
per class. This trend is also observed for the TPL100 and Gram-
bow datasets. A difference worth noting is that the performance
gap closes more slowly for the Grambow dataset. The Grambow
dataset only has five classes (as a comparison, TPL100 has 100
classes), and thus although the number of training data per class
increases, the total number of training reactions does not vary
much and it is still small. In this very small data regime, the fine-
tuned model always performs better than the supervised model.

Fig. 4 also includes the results of a model using traditional re-
action fingerprints (FP) as proposed in Ref. 32: logistic regression
on the 256-bit-long AP3 fingerprints (atom pairs with a maximum
path length of three34). This model is inferior to both the su-
pervised and fine-tuned GNN-based models, except for extremely
small Schneider and TPL100 training sets with 4 reactions per
class.

Finally, we note that the results shown in Fig. 4 are obtained us-
ing the gated graph convolutional network (GatedGCN)50 as the
molecule encoder. To check the general applicability of the con-
trastive pretraining approach, we tested on two other widely used

6 | 1–11+PVSOBM�/BNF�<ZFBS>�<WPM�>

/ 443

Fig. 5 Embedding of the reaction fingerprints in a two-dimensional space. Each dot in the plot represents a reaction and is colored according to its
super family. The graph layout is generated by TMAP, and, in general, similar reaction fingerprints are embedded closer to each other.

GNNs, the graph isomorphism network (GIN)51 and graph atten-
tion network (GAT)52. The results confirm that the contrastive
pretraining can indeed help to learn better models for small reac-
tion datasets regardless of the used GNN molecule encoder (see
Section S3.3 in the ESI).

3.3 Analysis of reaction fingerprints

The above discussion shows that the contrastive pretraining
can significantly improve model performance on small reaction
datasets. Next, we examine how pretraining helps to learn bet-
ter models. To this end, we embed the learned high-dimensional
reaction fingerprint vectors into a two-dimensional space and an-
alyze the patterns in the embedding space.

TMAP53 embeddings for reactions in the Schneider test set are
presented in Fig. 5 (see Section 5 for a description of TMAP). The
pretrained model uses the same reaction augmentations as in Sec-
tion 3.2; the supervised and fine-tuned models are trained on 8
labelled reactions per class. The 46 reaction classes in the Schnei-
der dataset are derived from 8 super classes based on the RXNO
ontology54, and the reactions in the plot are colored according to
the super class labels. The supervised model is able to single out
some reaction classes such as oxidation (brown) and functional
group interconversion reactions (pink). However, supervised by

a limited supply of labels, it struggles to clearly distinguish other
reactions classes. For example, heteroatom alkylation and ary-
lation (blue), acylation and related processes (yellow), and C-C
bond formation (green) are intermixed with each other. Not sur-
prisingly, the pretrained model without using any labels cannot
distinguish between all reaction classes either, but it is encourag-
ing to see that the pretrained model can already separate some
reactions from the rest, such as deprotection (red) and reduction
(purple) reactions. Fine-tuned using a small number of labels, the
model becomes capable of distinguishing all reactions. The most
intriguing observation is related to the heteroatom alkylation and
arylation (blue), acylation and related processes (yellow), and C-
C bond formation (green) reactions, which the supervised model
struggles with. When only pretrained, the three seem to be highly
intermixed, and thus one might guess that the pretraining would
not help in learning a better model. However, after fine-tuning,
the boundaries between them become more clear compared with
the supervised model, although a small number of blue and yel-
low dots are still intermixed, which correspond to “methyl es-
terification” and “Fischer–Speier esterification” reactions that are
very similar to each other as discussed in Section 3.2. This sug-
gests, although not explicitly, that the pretraining indeed provides
important channels for the fine-tuned model to take advantage
of, e.g. transforming the model parameters into a space easier to

+PVSOBM�/BNF�<ZFBS>�<WPM�> 1–11 | 7

a) Query:

Similarly reactions:

0.91

0.720.75

0.86

Similarity score

(s3)

(s1) (s2)

(s4)

(q1)

b)
O

H

O

H

O

CH3

O

CH3

H HH
O

H
H

O

H

0.85

0.71

0.87

0.71

H H

Alder-Ene reaction mechanism

Diels-Alder reaction mechanism

Query:

(q2)

Similarly reactions:

(s5)

(s8)

(s6)

(s7)

Fig. 6 Similar reaction search enabled by the learned reaction fingerprints. (a) Query for a Fischer–Speier esterification reaction whose reaction
class is in the training data. Similarity score indicates that the learned reaction fingerprints not only recognize the reaction centers but also attend to
molecular structure away from the reaction centers. (b) Query for a Diels–Alder reaction whose reaction class is not in the training data. The query
can find reactions in the same class as well as reactions not in the same class but which have a similar reaction mechanism.

learn.

In essence, the contrastive pretraining by itself can already sep-
arate some reaction classes from others, and, for the intermixed
reactions, it makes the task easier for later fine-tuning. The fine-
tuning takes advantage of the structural information in the unla-
belled reactions, which is distilled and injected into the model via
the contrastive pretraining.

3.4 Searching for similar reactions

In addition to classifying reactions, the model can be repurposed
for other use cases. For example, the learned reaction encoder can
be readily used as a featurizer to turn a reaction into its vector
fingerprint, replacing traditional rule-driven ones derived from
molecule descriptors (e.g. atom pairs34). The reaction finger-
prints can then be applied to other supervised machine learning
tasks for reactions, such as the prediction of reaction conditions
and reaction yields. Here, we focus on an unsupervised task—
searching for similar reactions, which plays an important role in
many chemical applications such as information retrieval in large
reaction databases and synthesis route planning.

Given a query reaction, we compute its fingerprint h and then
search for similar training set reactions in the fingerprint space
using the k-nearest-neighbor algorithm with the cosine similarity
as defined in Eq. (3). We consider two scenarios: querying for

one reaction whose class is in the training data and for another
reaction whose class is not in the training data. For the former
case, we query for a Fischer–Speider esterification reaction that
generates an ester from an alcohol and a carboxylic acid. As the
training data contains such reactions, it is not too surprising that
the first ⇠ 200 retrieved reactions are all of the same type as the
query reaction. Nevertheless, this means that the model is ef-
fectively able to learn the notion of functional groups that take
part in a reaction, although such information is never disclosed
to the model. (The model does know the reaction center of a re-
action via the altered bonds, but not the functional groups.) Four
representative retrieved reactions are shown in Fig. 6a (more in
Fig. S6 in the ESI). Retrieved reactions s1, s2, and s4 have de-
creasing similarity scores to the query reaction q1, suggesting that
the model not only recognizes the functional groups in the reac-
tion center, but also attends to structures away from the center.
Reaction s3, in which the ��O bond in the carboxylic acid group
is replaced by a ��S bond, further confirms the model’s assigned
importance of structure away from the reaction center since it has
a higher similarity score than reaction s4.

As a second more challenging scenario, we query for a Diels–
Alder reaction whose class is not in the training data. For demon-
stration, we compiled a new set of Diels–Alder and Alder-Ene re-
actions to search, and four representatives are plotted in Fig. 6b.
The Diels–Alder reactions s5 and s6 have similarity scores of

8 | 1–11+PVSOBM�/BNF�<ZFBS>�<WPM�>

⇠ 0.86, much higher than that of the most similar reaction re-
trieved from the original training data (0.64). More importantly,
the Alder–Ene reactions s7 and s8 also exhibit higher similarity
scores compared to the query reaction. The task is more chal-
lenging than it seems in Fig. 6 because hydrogens are not explic-
itly modeled in the input graphs to our model. (Due to the large
number of hydrogens in the molecules, including them greatly
increases the size of the graphs and thus the computational bur-
den.) In fact, Diels–Alder and Alder–Ene reactions have very sim-
ilar reaction mechanisms: they are both 6-electron pericyclic re-
actions. The underlying driving force is the formation of new
s -bonds, which are energetically more stable than the reactant
p-bonds. It is unlikely that our model has parametrized such del-
icate rules, given that the inputs are simple 2D molecular graphs.
Nevertheless, it is encouraging that the reaction encoder can gen-
erate meaningful reaction fingerprints for reaction classes that the
encoder are never exposed to for learning. Furthermore, it assigns
high similarity scores for reactions that exhibit very similar reac-
tion mechanisms. Hence, the methodology presented here may
be useful for discovering or designing novel chemical reactions,
as many “new” reactions share similarities with or are variations
on mechanisms of known reactions.

The two scenarios demonstrate that the reaction encoder can
generate meaningful reaction fingerprints for querying similar re-
actions, respecting both the functional groups in the reaction cen-
ter and features away from the center without knowing the func-
tional groups a priori. The results indicate capabilities beyond
previous reaction query systems that depend on matching prede-
fined reaction templates defined by functional groups. Further-
more, we note that the reaction encoder can be applied to reac-
tion classes and mechanisms that are very different from any pro-
vided in the training data, although care should be taken to not
extrapolate inappropriately to avoid unbounded uncertainty55.

4 Conclusions
We have designed a machine learning model based on graph neu-
ral networks (GNNs) for reaction classification and proposed a
contrastive approach to pretrain the model using only unlabelled
data. The contrastive approach trains a model via self-supervision
by pulling different augmented versions of a reaction together
and pushing them away from other reactions. We have found
that a chemically consistent reaction augmentation strategy that
protects the reaction center is the key to the success of the con-
trastive approach. Selecting reaction centers based on the broken
and formed bonds in a reaction and then augmenting the reaction
by dropping atoms beyond a subgraph around the reaction cen-
ter is found to be a robust augmentation strategy. GNN models
pretrained using this augmentation strategy and then fine-tuned
on a small number of labelled reactions significantly outperform
both supervised models trained from scratch and models based
on traditional manually crafted reaction fingerprints.

By analyzing the learned GNN reaction fingerprints, we found
that the pretraining by itself can already help to separate some
reaction families from others; leveraging a small number of ex-
act labels, the pretrain-fine-tuning approach learns an even bet-
ter model. The learned models can be repurposed for other ap-

plications, which is demonstrated by searching for similar reac-
tions in the fingerprint space. This demonstration also shows that
the learned reaction fingerprints understand both the functional
groups in the reaction center and chemical/structural features
away from the center, and it has certain transferability to reac-
tions not in the training data. We expect that the reaction finger-
prints can also be used as the starting point for transfer learning
other reaction properties from small datasets, such as predicting
reaction conditions and reaction yields.

Overall, we have demonstrated a simple yet powerful approach
to pretrain machine learning models for chemical reaction data
without requiring any label information. We believe such chem-
ically consistent pretraining approaches constitute a key compo-
nent to the future success of applying modern machine learning
methods to solve challenging chemical problems, e.g. guiding ex-
periments where it is extremely time-consuming or expensive to
obtain a large number of labelled data.

5 Methods

Data

We have curated three reaction datasets, namely, the Schneider,
TPL100, and Grambow datasets. The Schneider and TPL100
datasets are derived from the Schneider 50k dataset32 and the
1k TPL dataset27, respectively, both of which are descendants of
the USPTO dataset of patent reactions14. After further cleaning
(add missing atom map numbers and remove reactions whose el-
ements are not balanced between the reactants and products),
38800 reactions with 46 classes remain in the Schneider dataset.
Reactions in this dataset are labelled according to the RSC RXNO
ontology54. The 1k TPL dataset has 1000 reaction classes, ob-
tained by selecting the 1000 most frequent template labels from
a template extraction workflow27. This dataset is extremely im-
balanced. After further cleaning (the same as for the Schneider
dataset), the most frequent 100 reaction classes, each with 850
reactions, are selected to form the TPL100 dataset. The Gram-
bow dataset is derived from a dataset of reaction and activation
energies by Grambow and coworkers3,56. We generate the class
labels by matching the reactions to the reaction mechanism gen-
erator (RMG) templates57. Only a very small portion of reactions
have an RMG template and thus a small dataset of 1602 reactions
with 5 reaction classes is obtained.

For each dataset, the contrastive pretraining uses all data, ig-
noring the class labels. For the supervised training and fine-
tuning, a dataset is randomly split into the training, validation,
and test subsets with a ratio of 8:1:1. To simulate the case of small
datasets, we intentionally do not use the full training set, but ran-
domly draw 4,8, . . . ,128 reactions per class from the training set
to form small subsets. We optimize the model parameters using
the training subsets, select hyperparameters based on model per-
formance on the validation set, and report results on the test set.
We emphasize that the hyperparameter search is only conducted
for the supervised model to ensure their best performance. For
the pretrained and fine-tuned models, the same hyperparameters
as their supervised counterparts are adopted. The optimal model
hyperparameters are obtained via grid search and are given in

+PVSOBM�/BNF�<ZFBS>�<WPM�> 1–11 | 9

Tables S2 and S3 in the ESI.

Model training

The inputs to the models are attributed molecular graphs with
atom, bond, and global features. Following our previous work1,
we opt for simple features that can be generated with RDKit58,
and a summary of the selected features is given in Table S1 in
the ESI. In addition to the attributed molecular graphs, the model
also needs atom mapping between the reactants and products to
accomplish two tasks: computing the difference features in the
reaction encoder and selecting the same atoms (bonds) in the re-
actants and products for augmentation. The three datasets used
in this work all come with atom mapping. For a dataset where
atom mapping is not readily available, it can be obtained via in-
teger linear programming59 and even data-driven approaches37.
We refer to Ref. 60 for a benchmark of many existing open-source
and commercial atom mapping tools.

The models are implemented using DGL61 with a PyTorch62

backend. We train all models using the Adam optimizer63 with
an initial learning rate of 10�3 and a cosine learning rate sched-
uler to dampen the learning rate to 10�6 towards the end of the
training. For the supervised and fine-tuned models, we train for a
maximum of 200 epochs with a minibatch size of 100 (64 for the
Grambow dataset) by minimizing the cross-entropy loss function.
For the contrastive self-supervised model, we train for 100 epochs
with a larger minibatch size of 1000 (large batch size improves
performance of the contrastive model43) by minimizing the loss
function in Eq. (1). A total number of 100 epochs is enough for
the contrastive model since the loss does not further decrease af-
ter ⇠60 epochs (an example loss versus epoch curve is given in
Fig. S1 in the ESI).

For the model using traditional reaction fingerprints, we follow
Ref. 32 and train the logistic regression algorithm on the AP3 re-
action fingerprint. An AP3 reaction fingerprint is obtained by tak-
ing the difference of the molecule descriptors between the prod-
ucts and the reactants; a molecule descriptor, in turn, is set to
the 256-bit-long atom-pairs molecule descriptor with a maximum
path length of three34. Scikit-learn64 is used to train the logistic
regression model on the traditional reaction fingerprints.

Functional group determination

To determine the functional group in a molecule that partici-
pates in a reaction, we loop over a list of predefined functional
groups and check whether a functional group is in the molecule
by SMARTS matching65 as implemented in RDKit58. If a func-
tional group is in the molecule and it also contains atoms in the
broken or formed bonds, it is reserved as a candidate. Among
the candidates, the one with the most number of atoms is se-
lected as the functional group for the molecule (see Algorithm 1
in the ESI). For example, in the reaction shown in Fig. 2a, there
are two candidate functional groups for the butyric acid, �OH
and �COOH, both of which contain atoms in the broken oxygen-
hydrogen bond. The �COOH group is selected because it has
more atoms. The DayLight example SMARTS66 are employed as
the predefined functional groups.

TMAP embedding
We embed the high-dimensional reaction fingerprints into a
two-dimensional space using TMAP53. TMAP first builds a
k-nearest-neighbor graph using a similarity measure of the
high-dimensional reaction fingerprints. (We use the k-nearest-
neighbor algorithm implemented in scikit-learn64 and the cosine
similarity defined in Eq. (3).) Based on the k-nearest-neighbor
graph, TMAP then calculates a minimum spanning tree and finally
generates a layout for the resulting minimum spanning tree.

Code and data availability
The code is released as an open-source repository at https://
github.com/mjwen/rxnrep. The Schneider, TPL100, and Gram-
bow datasets are provided along with the repository. The original
Schneider 50k, 1k TPL, and Grambow datasets are described in
Refs. 32, 27, and 56, respectively, and can be obtained therein.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
The method development was collaboratively supported by the
Joint Center for Energy Storage Research, an Energy Innovation
Hub funded by the US Department of Energy, Office of Science,
Basic Energy Sciences as well as by the Silicon Consortium Project
(SCP) directed by Brian Cunningham under the Assistant Secre-
tary for Energy Efficiency and Renewable Energy, Office of Vehicle
Technologies of the U.S. Department of Energy, Contract No. DE-
AC02-05CH11231. Computational resources were provided by
the Department of Energy’s Office of Energy Efficiency and Re-
newable Energy (located at the National Renewable Energy Lab-
oratory). This research also used the Lawrencium computational
cluster resource provided by the IT Division at the Lawrence
Berkeley National Laboratory (Supported by the Director, Office
of Science, Office of Basic Energy Sciences, of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231).

Notes and references
1 M. Wen, S. M. Blau, E. W. C. Spotte-Smith, S. Dwaraknath and K. A. Persson, Chemical Science,

2021, 12, 1858–1868.
2 X. Xie, E. W. C. Spotte-Smith, M. Wen, H. D. Patel, S. M. Blau and K. A. Persson, Journal of the

American Chemical Society, 2021, 143, 13245–13258.
3 C. A. Grambow, L. Pattanaik and W. H. Green, The Journal of Physical Chemistry Letters, 2020,

11, 2992–2997.
4 P. Friederich, G. dos Passos Gomes, R. De Bin, A. Aspuru-Guzik and D. Balcells, Chemical

Science, 2020, 11, 4584–4601.
5 G. dos Passos Gomes, R. Pollice and A. Aspuru-Guzik, Trends in Chemistry, 2021, 3, 96–110.
6 C. W. Coley, R. Barzilay, T. S. Jaakkola, W. H. Green and K. F. Jensen, ACS Central Science,

2017, 3, 434–443.
7 P. Schwaller, T. Gaudin, D. Lányi, C. Bekas and T. Laino, Chemical Science, 2018, 9, 6091–

6098.
8 H. Gao, T. J. Struble, C. W. Coley, Y. Wang, W. H. Green and K. F. Jensen, ACS central science,

2018, 4, 1465–1476.
9 M. R. Maser, A. Y. Cui, S. Ryou, T. J. DeLano, Y. Yue and S. E. Reisman, Journal of Chemical

Information and Modeling, 2021, 61, 156–166.
10 C. W. Coley, L. Rogers, W. H. Green and K. F. Jensen, ACS Central Science, 2017, 3, 1237–1245.
11 M. H. S. Segler and M. P. Waller, Chemistry - A European Journal, 2017, 23, 5966–5971.
12 Y. Zhang and C. Ling, npj Computational Materials, 2018, 4, 1–8.
13 O. A. von Lilienfeld, K.-R. Müller and A. Tkatchenko, Nature Reviews Chemistry, 2020, 4, 347–

358.
14 D. Lowe, Chemical reactions from US patents (1976–Sep2016), https://doi.org/10.6084/

m9.figshare.5104873.v1, accessed 2021-06-30.
15 G. F. von Rudorff, S. N. Heinen, M. Bragato and O. A. von Lilienfeld, Machine Learning: Science

and Technology, 2020, 1, 045026.

10 | 1–11+PVSOBM�/BNF�<ZFBS>�<WPM�>

https://github.com/mjwen/rxnrep
https://github.com/mjwen/rxnrep
https://doi.org/10.6084/m9.figshare.5104873.v1%20
https://doi.org/10.6084/m9.figshare.5104873.v1%20

16 E. W. C. Spotte-Smith, S. Blau, X. Xie, H. Patel, M. Wen, B. Wood, S. Dwaraknath and K. Pers-
son, Scientific Data, 2021, 8, 203.

17 S. Stocker, G. Csányi, K. Reuter and J. T. Margraf, Nature communications, 2020, 11, 1–11.
18 R. Roszak, W. Beker, K. Molga and B. A. Grzybowski, Journal of the American Chemical Society,

2019, 141, 17142–17149.
19 S. Gallarati, R. Fabregat, R. Laplaza, S. Bhattacharjee, M. D. Wodrich and C. Corminboeuf,

Chemical Science, 2021, 12, 6879–6889.
20 Y. Bengio, Y. Lecun and G. Hinton, Communications of the ACM, 2021, 64, 58–65.
21 G. Pesciullesi, P. Schwaller, T. Laino and J.-L. Reymond, Nature communications, 2020, 11,

1–8.
22 Y. Zhang, L. Wang, X. Wang, C. Zhang, J. Ge, J. Tang, A. Su and H. Duan, Organic Chemistry

Frontiers, 2021, 8, 1415–1423.
23 Reaxys chemical database, https://www.reaxys.com, accessed 2021-06-30.
24 CAS reaction collection, https://www.cas.org/cas-data/cas-reactions, accessed 2021-

06-30.
25 H. Kraut, J. Eiblmaier, G. Grethe, P. Löw, H. Matuszczyk and H. Saller, Journal of Chemical

Information and Modeling, 2013, 53, 2884–2895.
26 W. A. Warr, Molecular Informatics, 2014, 33, 469–476.
27 P. Schwaller, D. Probst, A. C. Vaucher, V. H. Nair, D. Kreutter, T. Laino and J.-L. Reymond,

Nature Machine Intelligence, 2021, 3, 144–152.
28 T. Stuyver and C. W. Coley, arXiv preprint arXiv:2107.10402, 2021.
29 R. P. Bell, Proceedings of the Royal Society of London. Series A - Mathematical and Physical

Sciences, 1936, 154, 414–429.
30 M. G. Evans and M. Polanyi, Transactions of the Faraday Society, 1936, 32, 1333.
31 R. B. Woodward and R. Hoffmann, Journal of the American Chemical Society, 1965, 87, 395–

397.
32 N. Schneider, D. M. Lowe, R. A. Sayle and G. A. Landrum, Journal of Chemical Information

and Modeling, 2015, 55, 39–53.
33 G. M. Ghiandoni, M. J. Bodkin, B. Chen, D. Hristozov, J. E. Wallace, J. Webster and V. J. Gillet,

Journal of Chemical Information and Modeling, 2019, 59, 4167–4187.
34 R. E. Carhart, D. H. Smith and R. Venkataraghavan, Journal of Chemical Information and

Computer Sciences, 1985, 25, 64–73.
35 D. Rogers and M. Hahn, Journal of Chemical Information and Modeling, 2010, 50, 742–754.
36 D. Kreutter, P. Schwaller and J.-L. Reymond, Chemical Science, 2021.
37 P. Schwaller, B. Hoover, J.-L. Reymond, H. Strobelt and T. Laino, Science Advances, 2021, 7,

eabe4166.
38 J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, arXiv preprint arXiv:1810.04805, 2018.
39 D. Weininger, Journal of Chemical Information and Computer Sciences, 1988, 28, 31–36.
40 J. N. Wei, D. Duvenaud and A. Aspuru-Guzik, ACS central science, 2016, 2, 725–732.
41 D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel,

A. Aspuru-Guzik and R. P. Adams, arXiv preprint arXiv:1509.09292, 2015.
42 S. Kearnes, K. McCloskey, M. Berndl, V. Pande and P. Riley, Journal of Computer-Aided Molec-

ular Design, 2016, 30, 595–608.
43 T. Chen, S. Kornblith, M. Norouzi and G. Hinton, International conference on machine learn-

ing, 2020, pp. 1597–1607.
44 K. He, H. Fan, Y. Wu, S. Xie and R. B. Girshick, 2020 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2020, 9726–9735.
45 M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski and A. Joulin, arXiv preprint

arXiv:2006.09882, 2020.
46 J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals and G. E. Dahl, International conference on

machine learning, 2017, pp. 1263–1272.
47 Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang and Y. Shen, Advances in Neural Information Process-

ing Systems 10, 2020, 33, 5812–5823.
48 Y. Fang, H. Yang, X. Zhuang, X. Shao, X. Fan and H. Chen, arXiv preprint arXiv:2103.13047,

2021.
49 Y. Wang, J. Wang, Z. Cao and A. B. Farimani, arXiv preprint arXiv:2102.10056, 2021.
50 X. Bresson and T. Laurent, arXiv preprint arXiv:1711.07553, 2017.
51 K. Xu, W. Hu, J. Leskovec and S. Jegelka, arXiv preprint arXiv:1810.00826, 2018.
52 P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio and Y. Bengio, arXiv preprint

arXiv:1710.10903, 2017.
53 D. Probst and J.-L. Reymond, Journal of Cheminformatics, 2020, 12, 1–13.
54 RXNO Reaction Ontology, Royal Society of Chemistry, http://www.rsc.org/ontologies/

RXNO/index.asp, accessed 2021-06-30.
55 M. Wen and E. B. Tadmor, npj Computational Materials, 2020, 6, 124.
56 C. A. Grambow, L. Pattanaik and W. H. Green, Scientific Data, 2020, 7, 1–8.
57 M. Liu, A. Grinberg Dana, M. S. Johnson, M. J. Goldman, A. Jocher, A. M. Payne, C. A.

Grambow, K. Han, N. W. Yee, E. J. Mazeau et al., Journal of Chemical Information and Modeling,
2020.

58 RDKit: Open-source cheminformatics, http://www.rdkit.org, accessed 2021-06-30.
59 E. L. First, C. E. Gounaris and C. A. Floudas, Journal of Chemical Information and Modeling,

2012, 52, 84–92.
60 T. Madzhidov, A. I. Lin, R. Nugmanov, N. Dyubankova, T. Gimadiev, J. K. Wegner, A. Rakhim-

bekova, T. Akhmetshin, Z. Ibragimova, A. Varnek et al., ChemRxiv, 2020.
61 M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou, Q. Huang, C. Ma, Z. Huang,

Q. Guo, H. Zhang, H. Lin, J. Zhao, J. Li, A. J. Smola and Z. Zhang, ICLR Workshop on Repre-

sentation Learning on Graphs and Manifolds, 2019.
62 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga et al., Advances in neural information processing systems, 2019,
pp. 8026–8037.

63 D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980, 2014.
64 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-

tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot
and E. Duchesnay, Journal of Machine Learning Research, 2011, 12, 2825–2830.

65 SMARTS - A Language for Describing Molecular Patterns, https://www.daylight.com/

dayhtml/doc/theory/theory.smarts.html, accessed 2021-06-30.
66 SMARTS Examples, https://www.daylight.com/dayhtml_tutorials/languages/smarts/

smarts_examples.html, accessed 2021-06-30.

+PVSOBM�/BNF�<ZFBS>�<WPM�>1–11 | 11

https://www.reaxys.com
https://www.cas.org/cas-data/cas-reactions
http://www.rsc.org/ontologies/RXNO/index.asp
http://www.rsc.org/ontologies/RXNO/index.asp
http://www.rdkit.org
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml_tutorials/languages/smarts/smarts_examples.html
https://www.daylight.com/dayhtml_tutorials/languages/smarts/smarts_examples.html

Supporting information for “Improving machine

learning performance on small chemical reaction

data with unsupervised contrastive pretraining”

Mingjian Wen, Samuel M. Blau, Xiaowei Xie, Shyam Dwaraknath, and Kristin A. Persson⇤

E-mail: kapersson@lbl.gov

S1 In-depth technical description of the models

S1.1 Predictive model

The predictive model is based on our BonDNet graph neural network (GNN) model for

predicting bond dissociation energies. Each molecule in a reaction is represented as a graph

G = (E, V,u). In the molecular graph, E = {(ek, rk, sk)}k=1:Ne is the set of bond edges,

where N e is the total number of bonds in the molecule, and (ek, rk, sk) holds the information

of the kth bond: ek is a vector of bond features (e.g. whether the bond is in a ring), and rk

and sk are the indices of the two atoms forming the bond. Similarly, V = {vi}i=1:Nv is the

set of atom nodes, where N v is the total number of atoms in the molecule, and vi is a vector

of features for atom i (e.g. chemical specie of the atom). Finally, u is a global feature vector

of molecule-level information such as the total molecular charge.

BonDNet updates the bond, atom, and global features based on the connectivity of the

molecular graph. First, each bond feature vector ek is updated from the feature vectors of

the two atoms forming in the bond, vrk and vsk , the global feature vector u, and the current

1

kapersson@lbl.gov

bond feature vector:

e0k = ek + ReLU[�1(vrk + vsk) + �2(ek) + �3(u)], (1)

where ReLU is the rectified linear unit activation function, and each of �1, �2, and �3 is a

two-layer perceptron of the form W2(ReLU(W1a+b1)) +b2, in which W1,W2,b1, and b2

are trainable parameters (a represents vrk + vsk , ek, and u for �1, �2, and �3, respectively).

Multilayer perceptrons (MLPs) like �1, �2, and �3 are used in various places below. They

are all of this form except that di↵erent number of W’s and b’s can be used and they take

di↵erent values. The feature vector vi of each atom i is similarly updated based on the

features of the atom itself, all neighboring atoms Ni that form bonds with the atom, the

formed bonds, and the global state:

v0
i = vi + ReLU

"
�4(vi) +

X

j2Ni

êij � �5(vj) + �6(u)

#
, (2)

êij =
�(e0ij)P

j02Ni
�(e0ij0) + ✏

, (3)

where each of �4, �5, and �6 is a two-layer perceptron, � denotes the elementwise Hadamard

product, � is the sigmoid function, ✏ is a small constant for numerical stability, and e0ij is

another way to denote the bond feature e0k such that atoms i and j form bond k, i.e. i = rk

and j = sk. Finally, the global feature vector u is updated based on all atoms, all bonds,

and itself:

u0 = u+ ReLU

"
�7

1

N v

NvX

i

v0
i

!
+ �8

1

N e

NeX

k

e0k

!
+ �9(u)

#
, (4)

where, again, each of �7, �8, and �9 is a two-layer perceptron.

The feature update mechanism in Eq. (1) to Eq. (4) is applied separately to each reactant

and product molecule in the reaction, and it is applied iteratively for multiple steps to get a

2

better representation of each molecule.

We then take the di↵erence of the atom features between the products and the reactants:

�v0
i = v0

i,p � v0
i,r, (5)

where v0
i,p denotes the feature vector of atom i in the products and v0

i,r the feature vector

of the same atom in the reactants. The final representation (fingerprint) of a reaction is

obtained by aggregating the set of di↵erence atom feature vectors {�v0
i} to a single vector

using the attentive pooling function,

h =
NvX

i

↵i�v0
i. (6)

The attention score ↵i for �v0
i is obtained via the softmax function,

↵i =
exp[lin(�v0

i)]PNv

k exp[lin(�v0
k)]

, (7)

where lin(a) = wTa + b is a linear layer that converts a feature vector to a scalar (w

and b are learnable parameters). Note that this part is slightly di↵erent from the original

BonDNet model, where all atom, bond, and global di↵erence features are aggregated into

the final representation via concatenation after set2set poolings. These modifications are

made because we found they improve the performance of the BonDNet model. To classify

the reactions, we input the fingerprint h to an MLP to obtain a class score,

s = MLP(h), (8)

and then minimize a cross-entropy loss function over the score and the true label.

For later discussion, let us name the above process to obtain the fingerprint h of a reaction

x as the reaction encoder, h = f(x).

3

S1.2 Contrastive self-supervised model

The contrastive model starts by modifying an input reaction using one or more augmentation

methods discussed in the main text. The algorithms to find functional groups in molecules

participating in a reaction and to augment reactions using the subgraph method are given

in Algorithm 1 and Algorithm 2, respectively. Given a reaction x, we create two augmented

versions of it,

x̃i = Aug(x) and x̃j = Aug(x), (9)

where Aug denotes a reaction augmentation. Using the reaction encoder discussed in Sec-

tion S1.1, we obtain a fingerprint for each of the two augmented reactions,

hi = f(x̃i) and hj = f(x̃j). (10)

The fingerprints are then passed through a projection head g (chosen to be an MLP) to get

a final vector representations of the reaction,

zi = g(hi) and zj = g(hj). (11)

Finally, we train the model by minimizing the NT-Xent loss function given in Eq. (1) of the

main text.

S1.3 Other GNN molecule encoders

The molecule encoder described in Section S1.1 (specifically Eq. (1) to Eq. (4)) is based on

the GatedGCN graph neural network (GNN). Our pretrain-fine-tuning strategy is flexible

and can be applied to other GNNs. To confirm its wide applicability, we tested on two other

widely used GNNs: the graph isomorphism network (GIN) and the graph attention network

(GAT). The original GIN and GAT GNNs do not support bond and global features; we

extended them in a similar way as we do for GatedGCN in BonDNet.

4

Algorithm 1 Find the functional group in a molecule participating in a reaction
Input: m - molecule

S - set of predefined functional groups via SMARTS
Output: f - functional group in the molecule participating in the reaction

1: function FindFunctionalGroup
2: a = FindAlteredAtom() . find atoms in broken and formed bonds
3: f = None
4: for s in S do
5: if s ✓ m and s \ a 6= ; then
6: if f is None then
7: f = s
8: else
9: if size(s) > size(f) then . size() returns the number of atoms
10: f = s
11: end if
12: end if
13: end if
14: end for
15: return f
16: end function

Algorithm 2 Subgraph reaction augmentation method
Input: mr - reactant molecules

mp - product molecules
r - ratio of atoms outside reaction center to keep

Output: ma
r - augmented reactant molecules

ma
p - augmented product molecules

1: function Subgraph
2: N = int(r ⇤Nout) . Nout: # out-center atoms, N : # out-center atoms to keep
3: ain = FindReactionCenter() . get all atoms in center, e.g. via Algorithm 1
4: g = ain . initial subgraph, containing all atoms in center
5: for i in range(N) do
6: neigh = FindNeigh(g) . get one-hop neighbors of atoms in the subgraph
7: neigh = {a in neigh not in g} . remove neighbors already in the subgraph
8: aselected = RandomSelect(neigh) . randomly select a neighbor atom
9: g = g [aselected . add the selected atom to the subgraph
10: end for
11: ma

r = AugmentMolecule(mr, g) . augment the reactant molecules: keep atoms in g
12: ma

p = AugmentMolecule(mp, g) . augment the product molecules: keep atoms in g
13: return ma

r , m
a
p

14: end function

5

GIN. The bond feature vector is updated by concatenating the atom, bond, and and

global feature vectors and then putting it through an MLP,

e0k = ek +MLP[(vrk + vsk)kekku], (12)

where k denotes vector concatenation. The atom feature vector is updated in a similar

manner,

v0
i = vi +MLP [vikêiku] , (13)

where êi =
P

j2Ni
e0ij is the sum of the features of bonds formed with atom i. Finally, the

global feature vector is updated via

u0 = u+MLP [v̂kêku] , (14)

where v̂ = 1
Nv

PNv

i v0
i is the mean of all atom features in a molecule and ê = 1

Ne

PNe

k e0k is

the mean of all bond features in a molecule. Each of the MLPs in the GIN model has two

layers.

GAT. The GAT bond feature update function is the same as that for GatedGCN (i.e.

Eq. (2)),

e0k = ek + ReLU[�1(vrk + vsk) + �2(ek) + �3(u)]. (15)

The atom feature is updated from all neighboring atoms, all bonds that the atom form, and

the global feature,

v0
i = vi + ReLU

2

4
X

j2N v
i

↵vj�4(vj) +
X

j2N e
i

↵eij�5(e
0
ij) + ↵u�6(u)

3

5 , (16)

where N v
i denotes the set of atoms with which atom i forms a bond, N e

i denotes the set of

formed bonds, ↵vj is the attention score for neighboring atom j, ↵eij is the attention score

for bond i-j, and ↵u is the attention score for the global state. The attention scores are

6

computed as,

↵vj = �vj/A and ↵eij = �eij/A and ↵u = �u/A, (17)

in which

�vj = exp (LeakyReLU(av · [�4(vj)k�4(vi)]))

�eij = exp
�
LeakyReLU(ae · [�5(e

0
ij)k�4(vi)])

�

�u = exp (LeakyReLU(au · [�6(u)k�4(vi)]))

A =
X

j2N v
i

�vj +
X

j2N e
i

�eij + �u,

(18)

where av, ae, and au are trainable parameter vectors. Finally, the global feature is updated

from via

u0 = u+ ReLU

"
NvX

i

↵vi�7(v
0
i) +

NeX

k

↵ek�8(e
0
k) + ↵u�9(u)

#
, (19)

where N v and N e are the total number of atoms and bonds in a molecule. The attention

scores are computed in a similar way as in the atom feature update, i.e.

↵vi = �vi/A and ↵ek = �eij/A and ↵u = �u/A, (20)

in which

�vi = exp (LeakyReLU(av · [�7(v
0
i)k�9(u)]))

�ek = exp (LeakyReLU(ae · [�8(e
0
k)k�9(u)]))

�u = exp (LeakyReLU(au · [�9(u)k�9(u)]))

A =
NvX

i

�vi +
NeX

k

�ek + �u,

(21)

where av, ae, and au are trainable parameter vectors (note that they take di↵erent values

from those in Eq. (18)). In the GAT model, �1,�2, . . . ,�9 are two-layer perceptrons.

7

S2 In-depth technical description of model training

S2.1 Input features

Table S1: Input atom, bond, and global features for the GNN models.

Feature type Feature name Description
Atom atom type chemical specie of an atom (one-hot)

degree number of bonds an atom forms (one-hot)
hydrogens number of hydrogens connected to an atom (integer)
ring status whether an atom is in a ring (binary)
ring size number of atoms in the ring (3–7), “null” if the atom is not

in a ring (one-hot or null)
valence valence of an atom (one-hot)
aromatic whether an atom forms aromatic bond (binary)
radical number of radical electrons (one-hot)
hybridization s, sp1, sp2, or sp3 (one-hot or null)

Bond ring status whether a bond is in a ring (binary)
ring size number of atoms in the ring (3–7), “null” if the bond is not

in a ring (one-hot or null)
conjugated whether it is a conjugated bond (binary)
bond type single, double, triple, or aromatic (one-hot or null)

Global # atoms number of atoms in a molecule (integer)
bonds number of bonds in a molecule (integer)
weight weight of a molecule (integer)

S2.2 Hyperparameters

The GNN model hyperparameters (Table S2) are obtained using a grid search on the super-

vised classification task to ensure their best performance. Some hyperparameters need more

explanation:

• # graph to graph modules. Number of iterations the molecule encoder is applied

to update the atom, bond, and global features. (Eq. (1)⇠Eq. (4) for GatedGCN;

Eq. (12)⇠Eq. (14) for GIN; and Eq. (15)⇠Eq. (21) for GAT.)

• graph to graph layer size. Layer sizes of the two-layer MLPs used in the feature

update equations. Specifically, �1,�2, . . . ,�9 in Eq. (1)⇠Eq. (4) for GatedGCN; the

8

three MLPs in Eq. (12)⇠Eq. (14) for GIN; and �1,�2, . . . ,�9 in Eq. (15)⇠Eq. (21) for

GAT.

• # MLP layers. Number of hidden layers in the MLP in Eq. (8).

• MLP layer sizes. Hidden layer sizes in the MLP in Eq. (8).

• batch size. Mini-batch size for training the model.

The hyperparameters for the contrastive model are listed in Table S3. The contrastive

models use the same reaction encoder as the predictive models, so “# graph to graph mod-

ules” and “graph to graph layer size” are exactly the same as those in Table S2. Explanation

for some hyperparameters:

• # MLP layers in projection head. Number of layers of the MLP projection head

in Eq. (11).

• MLP layer sizes in projection head. Layer sizes of the MLP projection head in

Eq. (11).

Table S2: Hyperparameters of the predictive models for the three datasets

Schneider TPL100 Grambow
graph to graph modules 3 3 3
graph to graph layer size 128 256 128

MLP layers 2 2 2
MLP layer sizes 128, 64 256, 128 128, 64

batch size 100 100 64

Table S3: Hyperparameters of the contrastive models for the three datasets

Schneider TPL100 Grambow
graph to graph modules 3 3 3
graph to graph layer size 128 256 128

MLP layers in projection head 2 2 2
MLP layer sizes in projection head 128, 128 256, 256 128, 128

batch size 1000 1000 1000

9

S2.3 Augmentation probability

The reaction augmentations in the contrastive model are discarded when fine-tuning the

model for reaction classification. Therefore, after the model is fine-tuned and then used for

prediction, no augmentation is applied to a reaction. To respect this, one of the two aug-

mentations (e.g. augmentation i without loss of generality) has a 50% probability of being

applied. We denote this with the “+” symbol. As a concrete example, assume a pair of

augmentations “drop atom+” and “subgroup” are selected. This means, for augmentation

i, drop atom has a 50% chance of being applied and there is a 50% chance that no augmen-

tation is applied; for augmentation j, subgraph is always applied. In cases where the same

augmentation method is applied to both i and j, we simplify the notation by not using the

“+” symbol and only say that e.g. “drop atom” is applied as the augmentation. This is the

case in the main text.

S2.4 Training loss

Figure S1: A typical training loss versus epoch curve for the contrastive model. The training
loss plateaus quickly with the epoch and thus we terminate the training at epoch 100. The
shown curve is for the Schneider dataset; similar curves are observed for the TPL100 and
Grambow datasets.

10

S3 Extra results

S3.1 E↵ectiveness of augmentation strategies

Figure S2: F1 score obtained using 16 labelled reactions per class in the Schneider training
set, for di↵erent augmentation method, reaction center mode, and augmentation magnitude
(i.e. the percentage of atoms (bonds) outside the reaction center selected for augmentation).

Figure S3: Improvement of the F1 score of the fine-tuned model over the supervised model.
Each value in the matrix gives the improvement (i.e. the score di↵erence between the fine-
tuned model and the supervised model) when using the row label as augmentation i and
the column label as augmentation j to train the contrastive model. “Identity” means no
augmentation is applied. The superscript “+” denotes using both the augmentation method
specified before it and the identity, each with a 50% probability (see Section S2.3 for more
on the “+” notation). The supervised model has an F1 score of 0.64.

11

S3.2 Prediction confusion matrix

Using only 8 labelled reactions per class, the fine-tuned model achieves a prediction F1 score

of 0.861. Looking closer at the confusion matrix (Fig. S4), we see the incorrect predictions

are mainly from a few di�cult classes where the reactions are closely related. For example, 20

and 16 “Eschweiller-Clarke methylation” reactions are misclassified as “Iodo N-alkylation”

and “Methylation” reactions, respectively. It is easy to see that “Eschweiller-Clarke methy-

lation” and “Methylation” are closely related, both of which involve a methylation process.

We have noticed that in some of the “Iodo N-alkylation” reactions, the alkyl group is methyl

(see Fig. S5 for an example); therefore, these reactions can also be regarded as a methyla-

tion reaction. For the same reason, 14 and 13 “Iodo N-alkylation” reactions are misclassified

as “Eschweiller-Clarke methylation” and “Methylation” reactions, respectively. As another

example, both being esterification reactions, 13 “Methyl esterification” reactions are mis-

classified as “Fischer-Speier esterification” and 42 reactions are misclassified vice versa.

We emphasize that the results shown in Fig. S4 are obtained using a model trained on

only 8 labelled reactions per class. When more labelled data are used, the model performs

much better, achieving an F1 score of 0.928 with 32 reactions per class for example.

12

Figure S4: Prediction confusion matrix for the Schneider test set by the fine-tuned model
that is trained using 8 labelled reactions per class.

Figure S5: An exmaple iodo N-alklylation reaction, where the alkyl group is methyl.

13

S3.3 Performance with di↵erent molecule encoders

Table S4: Classification F1 score of the supervised and fine-tuned models using the Gat-
edGCN, GIN, and GAT molecule encoders. The scores are obtained using 4, 8, . . . , 128
labelled reactions per class from the Schneider dataset. Values outside and inside the paren-
theses are the mean and standard deviation of the score, respectively. The standard deviation
is computed from five runs, each with a di↵erent resampling of the training set. Trainset size
“all” means a model is trained on all labelled reactions in the training set (thus no standard
deviation is provided). Also included are the scores by the logistic regression model using
traditional fingerprints.

Trainset size GatedGCN GIN GAT Traditional
(# per class) supervised fine-tuned supervised fine-tuned supervised fine-tuned fingerprints

4 0.469 (0.013) 0.725 (0.015) 0.406 (0.009) 0.673 (0.017) 0.504 (0.033) 0.633 (0.038) 0.541 (0.008)
8 0.637 (0.013) 0.861 (0.007) 0.594 (0.010) 0.836 (0.012) 0.672 (0.014) 0.821 (0.012) 0.628 (0.005)
16 0.841 (0.002) 0.905 (0.003) 0.817 (0.009) 0.899 (0.002) 0.855 (0.006) 0.907 (0.005) 0.701 (0.011)
32 0.907 (0.004) 0.928 (0.002) 0.906 (0.003) 0.930 (0.004) 0.908 (0.008) 0.929 (0.004) 0.747 (0.002)
64 0.931 (0.004) 0.944 (0.003) 0.933 (0.003) 0.943 (0.003) 0.936 (0.002) 0.942 (0.002) 0.782 (0.004)
128 0.942 (0.002) 0.950 (0.001) 0.946 (0.004) 0.949 (0.003) 0.945 (0.004) 0.947 (0.002) 0.811 (0.002)
all 0.961 0.959 0.958 0.958 0.955 0.956 0.861

Table S5: F1 score for the TPL dataset.

Trainset size GatedGCN GIN GAT Traditional
(# per class) supervised fine-tuned supervised fine-tuned supervised fine-tuned fingerprints

4 0.499 (0.008) 0.769 (0.018) 0.492 (0.011) 0.746 (0.003) 0.529 (0.025) 0.716 (0.009) 0.587 (0.002)
8 0.799 (0.022) 0.888 (0.005) 0.817 (0.005) 0.879 (0.005) 0.824 (0.015) 0.883 (0.005) 0.678 (0.002)
16 0.938 (0.002) 0.947 (0.005) 0.929 (0.003) 0.949 (0.006) 0.924 (0.001) 0.962 (0.009) 0.758 (0.004)
32 0.974 (0.001) 0.978 (0.000) 0.973 (0.003) 0.980 (0.002) 0.966 (0.010) 0.980 (0.001) 0.813 (0.004)
64 0.984 (0.001) 0.985 (0.000) 0.984 (0.001) 0.986 (0.002) 0.970 (0.015) 0.985 (0.001) 0.855 (0.002)
128 0.989 (0.001) 0.990 (0.001) 0.989 (0.001) 0.989 (0.001) 0.970 (0.007) 0.988 (0.001) 0.882 (0.001)
all 0.993 0.993 0.993 0.993 0.984 0.992 0.918

Table S6: F1 score for the Green dataset.

Trainset size GatedGCN GIN GAT Traditional
(# per class) supervised fine-tuned supervised fine-tuned supervised fine-tuned fingerprints

4 0.688 (0.074) 0.740 (0.036) 0.712 (0.048) 0.728 (0.072) 0.708 (0.043) 0.724 (0.052) 0.536 (0.078)
8 0.712 (0.052) 0.764 (0.061) 0.744 (0.041) 0.752 (0.091) 0.736 (0.061) 0.784 (0.029) 0.584 (0.070)
16 0.816 (0.034) 0.844 (0.032) 0.774 (0.032) 0.804 (0.056) 0.784 (0.028) 0.820 (0.070) 0.560 (0.044)
32 0.876 (0.023) 0.916 (0.032) 0.840 (0.039) 0.876 (0.031) 0.860 (0.022) 0.876 (0.029) 0.604 (0.020)
64 0.920 (0.018) 0.944 (0.015) 0.868 (0.027) 0.892 (0.055) 0.864 (0.015) 0.896 (0.043) 0.608 (0.020)
all 0.980 0.960 0.960 0.940 0.920 0.940 0.640

14

S3.4 Search similar reactions

0.908

0.906

0.897

0.858

0.830

0.830

0.742

0.755

0.693

0.779

0.719

0.745

Similarity
 score

Query:

Retrieved:

Figure S6: Extra retrieved reactions when querying for the Fischer–Speier esterification
reaction.

15

	Introduction
	Contrastive self-supervised model
	Results
	Reaction augmentation strategy
	Model performance on small datasets
	Analysis of reaction fingerprints
	Searching for similar reactions

	Conclusions
	Methods

