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Binding Reactions at Finite Systems Abstract

Abstract

A perpetual yearn exists among computational scientists to scale-down the size of physical

systems, a desire shared as well with experimentalists able to track single molecules. A question

then arises whether averages observed at small systems are the same as those observed at large, or

macroscopic, systems. Utilizing statistical-mechanics formulations in ensembles in which the total

numbers of particles are fixed, we demonstrate that system’s properties of binding reactions are not

homogeneous functions. That means averages of intensive properties, such as the concentration

of the bound-state, at finite-systems are different than those at large-systems. The discrepancy

increases with decreasing numbers of particles, temperature, and volume. As perplexing as it

may sound, despite these variations in average quantities, extracting the equilibrium constant from

systems of different sizes does yield the same value. The reason is that correlations in reactants’

concentrations are ought be accounted for in the expression of the equilibrium constant, being

negligible at large-scale but significant at small-scale. Similar arguments pertain to the calculations

of the reaction rate-constants, more specifically, the bimolecular rate of the forward reaction is

related to the average of the product (and not to the product of the averages) of the reactants’

concentrations. Furthermore, we derive relations aiming to predict the composition of the system

only from the value of the equilibrium constant. All predictions are validated by Monte-Carlo and

molecular dynamics simulations. An important significance of these findings is that the expression

of the equilibrium constant at finite systems is not dictated solely by the chemical equation but

requires knowledge of the elementary processes involved.
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Consider the following association reaction,

A+B 
 AB , (1)

in which N ◦
A gas molecules of A and N ◦

B gas molecules of B are placed in an empty closed container

with fixed volume, V , and temperature, T , to reach equilibrium with the bound product, AB. The

experiment is then repeated at the same conditions but with λN ◦
A, λN

◦
B, and λV instead. Are

the concentrations of AB particles in the two experiments equal? In the thermodynamic limit the

answer is yes, because intensive and extensive properties are homogeneous zero-order and first-order

functions, respectively[1],

X(T, λV, λN
◦

A, λN
◦

B) = λ
α

X(T, V,N
◦

A, N
◦

B) , (2)

where α = 0 if X is an intensive property and α = 1 if X is extensive. However, would Eq. 2 hold if

we scale-down the system to a regime not belonging to the thermodynamic limit (hereafter, referred

to as small- or finite-system), for a example that of N ◦
A = N

◦
B = 1? Currently accepted dogma

assumes the validity of Eq. 2 for all system sizes[2–15], provided sufficient statistics is collected (yet,

it is understood that relative magnitudes of fluctuations are inversely proportional to the system

size). In this paper we argue that for bimolecular reactions, the homogeneous function character

of the system’s properties stated in Eq. 2 breaks-down at finite systems.

Results

We start by deriving the expression of the equilibrium constant in the canonical ensemble. The

total numbers of A and B particles, N ◦
A = NA +NAB and N ◦

B = NB +NAB, are fixed and labeled

to satisfy N ◦
A ≤ N

◦
B. All three components on both sides of Eq. 1 are assumed to be ’ideal gases’ in

the sense that apart from the reaction described they are not interacting with one another. When

an A particle associates with a B particle to form a bound AB particle, there is a change in the

potential energy of the system by an amount of ε
AB

. In this model, all possible interparticle energy
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states can be uniquely mapped onto NAB, and the partition function of the system can be written

as,

Q =

N
◦
A∑

i=0

q
N

◦
A−i

A

(N
◦
A − i)!

· q
N

◦
B−i

B

(N
◦
B − i)!

·
qi
AB

i!
, (3)

where index i represents NAB. qA and q
B
are single-particle partition functions of unbound A and

B particles and q
AB

is the pair-particle partition function of one bound AB particle (see Section 7

in Supporting Information for explicit expressions of these functions). A key step in the derivation

is the evaluation of the ratio q
AB
/(q

A
q
B

). By applying a sequence of algebraic operations, we show

(Section 1 in SI) this ratio to be equal to 〈NAB〉/〈NANB〉, where the brackets indicate ensemble

average under equilibrium conditions. From here it follows, the equilibrium constant of the reaction

is related to the concentrations of the different components by,

K =
〈c
AB
〉

〈c
A
c
B
〉
· c∅ , (4)

where c∅ is a standard reference concentration. Hence, K includes cross-correlations in the reactant

concentrations, a feature neglected had we used the following expression,

K ′ =
〈c
AB
〉

〈c
A
〉 〈c

B
〉
· c∅ , (5)

as currently performed in the literature. It is worth noting that in statistical mechanics textbooks[16–

18], the equilibrium constant is derived using an ensemble at constant NA, NB, NAB, V, T , where

the numbers of particles are identified as those at equilibrium upon imposing the macroscopic con-

dition of chemical equilibrium. Fixing the numbers of particles of all components in the system, and

inevitably their corresponding chemical potentials (conjugated parameters), render the description

of chemical equilibrium of the reaction macroscopic. Not surprisingly, the resulting equilibrium

constant is obtained in its thermodynamic form, K = c
AB
c∅/(c

A
c
B

), even if along the derivation

statistical mechanics relations were applied.

To test our derivation we constructed a simple system of Lennard-Jones A and B molecules

able to establish the equilibrium binding reaction of Eq. 1. Three out of the four parameters
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specifying the system in the canonical ensemble, N ◦
A, N

◦
B, and V , were changed systematically

at constant temperature, producing three different series of simulations, S1, S2, and S3. The

first two series were subject to three different simulation methods; Monte-Carlo (MC), molecular

dynamics with Nosé-Hoover thermostat (MD-NH), and molecular dynamics with velocity-rescaling

thermostat (MD-VR). The third series of simulations (S3) was conducted only by MC. Section 5

in SI provides further details on the model system and computational methodologies.

Figure 1 displays the equilibrium constant, K, calculated by Eq. 4, as well as, the value of K ′

defined in Eq. 5. Clearly, inclusion of cross-correlations in the reactants’ concentrations are crucial

for the equilibrium constant to stay constant at finite systems. In contrast, K ′ depends on the

numbers of particles and volume of the system studied, where its deviation from K increases with

decreasing the size of the system. Because correlations become less important at larger systems,

in our model K ′ approaches K for systems with N ◦
x > 100 (S1 and S3) or Lbox > 28 nm (S2). In

Section 7 in SI we consider even a simpler model system, of single-site reactants, to facilitate an

easy comparison between the value of K obtained by Eq. 4 and analytical/numerical calculations.

Excellent agreements, with all three simulations methods, are attained.

As might be expected, the extent of divergence of K ′ from K is also a function of temperature.

To demonstrate this, we conducted additional simulations of S1 series at different temperatures.

Figure 2, as well as Fig. 6.1 in Section 6 in SI, indicate this divergence of K ′ increases with

decreasing temperature (or with increasing −εAB/kBT ). For example, for N ◦
A = N

◦
B = 1, K ′ is

larger than K by a factor of 300 at T = 200 K, whereas it is nearly equal to K at T = 1200 K.

Moreover, the number of particles above which K ′ −→ K, increases with decreasing T .

A direct consequence of taking the average of the product of reactants’ concentrations in

calculating K, and not the product of their averages, is on the condition for equilibrium. Using the

relation between the chemical potentials of component x at cx and at c∅ at the same temperature,

µx = µ∅
x

+ RT ln (cx/c
∅), and identifying ∆G∅ with µ∅

AB
− µ∅

A
− µ∅

B
, it follows from Eq. 4 that
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the condition for equilibrium is,

〈µ
AB
〉 − 〈µ

A
+ µ

B
〉 = 0 , (6)

and not that expressed by the stoichiometric sum of the average of each component,

〈µ
AB
〉 − 〈µ

A
〉 − 〈µ

B
〉 = 0 , (7)

unless the system is large enough to render the correlations negligible.

The statistical thermodynamics expression of the equilibrium constant (Eq. 4) can also be

rationalized from dynamics. At equilibrium, the average (over replica or over time) net change in

the product’s and reactants’ concentrations is zero, thus we have,〈
dc

AB

dt

〉
=

〈
−dcA
dt

〉
=

〈
−dcB
dt

〉
= 〈kfwcAcB − kbwcAB〉 = 0 , (8)

where kfw and kbw are the rate constants of the forward and backward reactions, respectively. The

backward reaction is a simple unimolecular process, while the forward reaction is a bimolecular

process and its rate is proportional to the collision probability between A and B. In turn, this

collision probability at each point in time is proportional to the product of the corresponding

instantaneous concentrations. That is, averaging the rate of the forward reaction in finite systems

requires the cross-correlations of the two reactants’ concentrations. By defining K as the ratio

between forward and backward rate constants, and rendering its value dimensionless via c∅, we

recover Eq. 4. We calculated kfw and kbw from the MD simulations (Section 5 in SI) and the

results corroborate kfw at finite systems must include correlations between c
A
and c

B
(Fig. 3).

In constructing S1 series of simulations, we multiplied all extensive parameters specifying the

system by the same factor, exactly as described by Eq. 2. This means, intensive properties are

expected to have the same average values for all system sizes if the system’s properties were

homogeneous in character. However, Fig. 4 demonstrates this is not the case at finite systems. In

particular, the concentration of the bound state, as well as the inter-particle energy per particle,

exhibit rising divergence from a horizontal line as the number of particles decreases. We also plot
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the radial distribution function between a and b sites. Again Eq. 2 predicts overlapping curves

for all system sizes, however, different distributions are obtained where the maxima describing the

bound state for small-sized systems are higher in accordance with their larger concentrations. It

is worth mentioning, these changes in average properties at finite systems are not emerging from

artefacts due to applications of periodic boundary conditions in finite simulation boxes, but are a

consequence of incompatibility between two-body interactions and linear scaling.

It is well known that fluctuations are related to susceptibilities. In our system, the incessant

transitions at equilibrium between reactants and product force the number of particles of each

component to fluctuate. If the relative fluctuations between quantities ζ and η are defined by,

l(ζ, η) = (〈ζη〉 − 〈ζ〉〈η〉) / (〈ζ〉〈η〉), we show (Section 2 in SI) that,

l(NAB, NAB)− l(NAB, NANB) =
1

〈NAB〉
, (9)

the particle numbers, or concentrations, of the reactants and product of Eq. 1 can be calculated

from only the fluctuations in the system. Equation 9 can also be derived by a more conventional

procedure (Section 3 in SI), however there we need to assume K is given by Eq. 4. The relation

in Eq. 9 was tested for all simulations performed. In Fig. 5a we plot results at T = 300 K,

and in Fig. 6.2 results of the S1 series at different temperatures. All data points, independent of

temperature, fall on the same straight line as predicted. The correlation coefficients of the linear

regressions turned-out perfect, within the accuracy of the analyzing software, likely because com-

parison is made between two quantities calculated from the same simulation allowing elimination

of certain errors.

A drawback of Eq. 9 is when the system simulated or studied experimentally is not of the same

size as the target system. In this case, relative fluctuations of the target system are needed in order

to compute composition. Thus it would be more practical if we can determine the concentrations

from K and the parameters defining the target system. The concentration of the bound state can

be expressed by K and l(NAB, NAB) (Section 4 in SI), transforming the problem to the prediction

of l(NAB, NAB). For macroscopic systems l(NAB, NAB) = 0 and the well known result connecting
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concentrations and equilibrium constant is recovered (Eq. 4.3). It turns out, another special case is

that of N ◦
A = 1 where N ◦

B ≥ N
◦
A, for which the concentration of the bound state can be expressed

by,

〈c
AB
〉
N

◦
A

=1
=

N
◦
AN

◦
BK

V (V c∅ +N
◦
BK)

, (10)

and the relative fluctuations by,

l(NAB, NAB)
N

◦
A

=1
=

V c∅

KN
◦
B

. (11)

S2 and S3 series of simulations fall within this special case, and in Fig. 5b and Fig. 5c we predict

〈c
AB
〉 as stated by Eq. 10, whereas in Fig. 6.3 we predict l(NAB, NAB) according to Eq. 11. In

both cases, the agreement is almost perfect.

For other finite systems, i.e. N ◦
A > 1, we could not establish a link between l(NAB, NAB) and

K, therefore we propose an approximation based on the case of N ◦
A = 1,

l(NAB, NAB)
N

◦
A

≥1
' V c∅

KN
◦
B

· 1

(N
◦
A)

λ
, (12)

where λ ranges from zero to one and is given by, λ =
[
1 +K/(V c∅ lnN

◦
B)
]−1. This approximation

is investigated in Fig. 6.4 for the S1 series of simulations. Very good agreement with simulation

data is obtained where the accuracy of the prediction increases with temperature. Armed with the

ability to estimate l(NAB, NAB), we proceed to predict the concentrations via Eq. 4.2 in Fig. 6.5.

Although not perfect at lower temperatures, the approximation yields satisfactory agreement with

concentrations observed in the simulations. Due to the asymmetric roles of N ◦
A and N ◦

B in Eq. 12,

we examined the approximation also on another series of simulations, S4, in which N ◦
A and N ◦

B

are not equal (Section 5 in SI). Here the accuracy of the prediction, shown in Fig. 6.6, is even

better. Finally, we scale gab(r) obtained at finite systems to the corresponding distribution of a

macroscopic system, as shown in Fig. 6.7 and discussed in Section 4 in SI.
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Discussion

It is important to emphasize the arguments presented in this paper are pertinent to bimolecular

reactions or two-body properties. Consider the chemical equation,

A+B 
 2C , (13)

representing, for example, the recombination of hydronium and hydroxide ions to form two water

molecules. As it is a bimolecular process, the expression of the equilibrium constant is,

K =
〈c2
C
〉

〈c
A
c
B
〉

. (14)

Another process that can also be represented by exactly the same chemical equation is, for example,

the transitions between different conformations of a peptide, where A, B, and C denote α-helix,

β-sheet, and random-coil. In this case, Eq. 13 is actually a sum of two chemical equations in

which α-helix and β-sheet, separately, form equilibrium with coil conformation. The transitions

between the different conformations are unimolecular in nature and the expression of K in Eq. 14

is not appropriate. As no correlations exist between the α-helix and β-sheet conformations, the

equilibrium constant should be computed by,

K =
〈c
C
〉2

〈c
A
〉〈c

B
〉

. (15)

The outcome of these two examples contradicts the principle upon which chemists view chemical

equilibrium, that is, K is dictated only by the chemical equation of the reaction, irrespective of its

nature. This is indeed true as long as the system is macroscopic or large enough. However at finite

systems, the expression of the equilibrium constant of two reactions with the same chemical equation

can be different. The distinction emerges because different averaging applies for calculating K

depending on the order of the elementary process(es) involved, as is the case when determining

rate constants.
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Figure 1: The equilibrium constant K defined by Eq. 4 (c∅ ≡ 1 M) for three series of simulations

at: (a) constant c◦
A
= c◦

B
= 0.026 M (S1), (b) constant N ◦

A = N
◦
B = 1 (S2), and (c) constant

N
◦
A = 1 and c◦

B
= 0.026 M (S3), all performed in the canonical ensemble at T = 300 K. The

value of K ′ defined by Eq. 5 is shown in red for comparison. The lower panels are magnified

plots around the value of K. The simulations were performed by three methods: Monte-Carlo

(MC), molecular-dynamics with a Nosé-Hoover thermostat (MD-NH), and molecular-dynamics

with a Velocity-Rescaling thermostat (MD-VR). The left-most point in all series represents the

same system (N ◦
A = N

◦
B = 1, Lbox = 4 nm). The estimated errors for the values of K are smaller

or about the size of the symbols. Results from simulations at lower and higher temperatures are

shown in Fig. 6.1 in the Supporting Information.
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For comparison we present also k′fw calculated by uncorrelated reactants’ concentrations.

13



Binding Reactions at Finite Systems Figures

0.18 0.20 0.22 0.24 0.26

r  [nm]

0

500

1000

1500

2000

2500

3000

g
a

b
(r

)

N
A

o
 = N

B

o
 = 1

N
A

o
 = N

B

o
 = 2

N
A

o
 = N

B

o
 = 3

N
A

o
 = N

B

o
 = 4

N
A

o
 = N

B

o
 = 8

N
A

o
 = N

B

o
 = 64

N
A

o
 = N

B

o
 = 4096

c

MC

1 10 100 1000

N
A

o 
 = N

B

o

0.011

0.012

0.013

0.014

0.015

<
c

A
B
>

  
[M

] MC

MD-NH

MD-VR a

1 10 100 1000

N
A

o 
 = N

B

o

-15

-14

-13

-12

-11

U
L

J
 / 

N
A

o
  
[k

J
/m

o
l]

MC

MD-NH

MD-VR

b

Figure 4: Results exhibiting the inhomogeneous character of properties of bimolecular reactions

upon scaling-down system size. The analyzes were performed on S1, i.e. the series of simulations

generated by scaling all extensive parameters specifying the system (N ◦
A = N

◦
B, V ) by the same

factor. (a) The concentration of bound molecules, 〈cAB〉, (b) the inter-particle energy per particle,

and (c) the radial distribution function between a and b sites for different system sizes. (a) and (b)

are almost perfect mirror-image of each other, and the estimated errors are smaller than the size of

the symbols. In (c), only results from MC simulations are shown, however, very similar figures are

obtained for MD-NH and MD-VR. If average quantities of the system were homogeneous functions,

the data points in (a) and (b) would follow the horizontal dashed line, and the pair-distribution

functions in (c) would collapse on the curve of the largest system.
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Figure 5: (a) A relation between two relative fluctuations and the reciprocal of average number of

bound particles. All simulations results (here displayed for T = 300 K, for other temperatures see

Fig. 6.2 in SI) fall on a linear line crossing the origin with a slope of one as described in Eq. 9.

Results obtained from linear regression (using xmgrace) of all data points are indicated. All points

of S3 have the same x, y values. (b) The concentration of bound particles as a function of box

length for S2 series. The results obtained from simulations are shown along predictions based on

the value of the equilibrium constant (Eq. 10). (c) Same as (b) but for S3 series of simulations, in

which case, the concentration is plotted as a function of the total number of B particles.
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