
Accelerating AutoDock Vina with GPUs

Shidi Tang,†,‡ Ruiqi Chen,¶ Mengru Lin,¶ Qingde Lin,§ Yanxiang Zhu,¶ Ji Ding,†,‡

Jiansheng Wu,∗,†,‡ Haifeng Hu,∥ and Ming Ling§

†School of Geographic and Biological Information, Nanjing University of Posts and
Telecommunications, Nanjing 210023, China

‡Smart Health Big Data Analysis and Location Services Engineering Research Center of
Jiangsu Province, Nanjing 210023, China

¶VeriMake Research, Nanjing Renmian Integrated Circuit Technology Co., Ltd., Nanjing
210088, China

§National ASIC System Engineering Technology Research Center, Southeast University,
Nanjing 210096, China

∥School of Telecommunication and Information Engineering, Nanjing University of Posts
and Telecommunications, Nanjing 210003, China

E-mail: jansen@njupt.edu.cn

Abstract

AutoDock Vina is one of the most popular
molecular docking tools. In the latest bench-
mark CASF-2016 for comparative assessment
of scoring functions, AutoDock Vina won the
best docking power among all the docking tools.
Modern drug discovery is facing the most com-
mon scenario on large virtual screening of drug
hits from huge compound databases. Due to
the seriality characteristic of the AutoDock
Vina algorithm, there is no successful report on
its parallel acceleration with GPUs. Current
acceleration of AutoDock Vina typically relies
on the stack of computing power as well as the
allocation of resource and tasks, such as the Vir-
tualFlow platform. The vast resource expen-
diture and the high access threshold of users
will seriously limit the popularity of AutoDock
Vina and the flexibility of usage in modern
drug discovery. Thus, the design of a new
method for accelerating AutoDock Vina with
GPUs is greatly needed for reducing the invest-
ment for large virtual screens, and also for a
wide application in large-scale virtual screen-
ing on personal computers, station servers or

cloud computing etc. Our proposed method
Vina-GPU greatly raises the number of initial
random conformations and reduces the search
depth of each lane, and then a heterogeneous
OpenCL implementation was developed to re-
alize its parallel acceleration leveraging thou-
sands of GPU cores. Large benchmarks show
that Vina-GPU reaches a maximum of 403-
fold docking acceleration against the original
AutoDock Vina while ensuring their compara-
ble docking accuracy, indicating its potential of
pushing the popularization of AutoDock Vina
in large virtual screens. The Vina-GPU code
and tool can be freely available at http://
www.noveldelta.com/Vina_GPU for academic
usage.

1 Introduction

Molecular docking studies how two or more
molecular structures (e.g., drug and target) fit
together. Molecular docking analysis has be-
come one of the most common way for modern
drug discovery.1 It allows to predict molecular
interactions where a protein and a ligand in-
ducted to fit together in the bound state. Also,

1

molecular docking tools provide an efficient and
cheap way in the early stage of drug design
for the identification of leading compounds and
their binding affinities.2–4

Among all molecule docking tools, the
AutoDock suite is the most popular, which
consists various tools including AutoDock4,5
AutoDock Vina,6 AutoDock Vina 1.2.0,7
AutoDock FR,8 AutoDock Crank Pep,9,10

AutoDock-GPU11,12 etc. AutoDock Vina is
usually recommended as the first-line tool in
the implementation of molecular docking due
to its docking speed and accuracy.13 More-
over, it wins the best docking power in the
last benchmark CASF-2016 for comparative
assessment of scoring functions14 and the best
scoring power under the comparison with ten
docking programs on a diverse protein–ligand
complex sets.15 AutoDock Vina uses a Monte-
Carlo iterated local search method that com-
prises iterations of sampling, scoring and op-
timization. First, an initial random confor-
mation is sampled for a given ligand, which
is represented by its position, orientation and
torsion (POT). Then, the position, orienta-
tion or torsion is randomly mutated with a
disturbance followed by an affinity evaluation
for the binding pose of a ligand and a pro-
tein. In AutoDock Vina, the binding affinity
is calculated by a scoring function which de-
scribes the sum of the intermolecular energy
(ligand-receptor) and the intramolecular energy
(ligand-ligand). Moreover, the conformation is
optimized with a Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method16 that considers the
gradients of the scoring function. These gradi-
ents can guide the ligand to achieve a better
conformation with a lower docking score. In
addition, a metropolis acceptance rule, which
relies on the difference between the docking
score of the initial conformation and that of
the optimized conformation, is arranged to de-
cide whether the optimized conformation can
be accepted or not. The accepted conformation
will be recorded as the initial conformation and
further optimized in next iterations. As all
we know, the Monte-Carlo based iterated local
search method in AutoDock Vina is highly se-
rial because the ongoing iteration depends on

the previous outputs.
Previous virtual screens pipeline typically op-

erates only on a scale of 106 ∼ 107 compound
molecules. Such scale of compounds will heav-
ily descend the capability and increase the fail-
ure risk of modern drug discovery. Fortunately,
the whole chemical space of drug-like molecules
has been estimated to reach more than 1060.17

The scale of compounds in virtual screens is
vital since the more candidate compounds to
be screened, the lower rate of failure and the
more favorable quality of leading compounds
can be reached. Hence, the virtual screens on
huge compound databases are urgent for identi-
fying excellent drug candidates in modern drug
discovery. However, original virtual screen-
ing with AutoDock Vina on huge databases
is very slow, which cannot meet the need for
modern drug discovery. Therefore, an accel-
eration of AutoDock Vina has become a cen-
tral problem in current virtual screens of drug
hits from huge compound databases. Till now,
there are several attempts for the acceleration
of AutoDock Vina in large virtual screens.18–20

For instance, VirtualFlow provides a drug dis-
covery platform that speeds up AutoDock Vina
in virtual screening of an ultra-large database
with more than 1.4 billion molecules by lever-
aging over 16,0000 CPUs.18 Such huge resource
investment and expenditure, as well as the high
entry threshold for users seriously weaken the
popularization of AutoDock Vina and the flexi-
bility of customer’s usage (such as a self-defined
target and small molecule dataset). Due to the
overall serial design of the AutoDock Vina al-
gorithm, its parallelization almost depends on
the stacking of computing powers as well as the
allocation of resources and tasks under such
a common scenario that facing large virtual
screens in modern drug discovery. A reduction
of computational resource investment and user
access threshold will advance the broad spread
of AutoDock Vina in large virtual screening for
modern drug discovery.

Graphic processing unit (GPU) is a power-
ful parallel programmable processor with thou-
sands of computing cores that provide a tremen-
dous computational performance. GPU has be-
come an integral part of mainstream computing

2

systems due to the high price-performance ratio
and the ease of developing an implementation
with well-established standards such as Com-
pute Unified Device Architecture (CUDA)21

and Open Computing Language (OpenCL).22

GPU has been applied to accelerate molecu-
lar docking in several tools.11,12,21,23–31 For ex-
ample, AutoDock-GPU provides an OpenCL
implementation of AutoDock4 to exploit both
GPU and CPU parallel architectures. By ex-
ploring three levels of parallelism (runs, individ-
ual, fine-grained tasks) on the Lamarckian Ge-
netic Algorithm (LGA) algorithm, AutoDock-
GPU achieves the maximum of 350-fold ac-
celeration on total runtime against the single-
threaded CPU implementation.11 Recently, an
attempt has been put into the GPU parallel ac-
celeration of AutoDock Vina where the Viking
method tried to rewrite the pose search stage of
AutoDock Vina on GPU.30 Till now, no posi-
tive acceleration result has been reported. The
reasons for its deficiency probably involve the
following three points. Firstly, the Monte-Carlo
based optimization process in AutoDock Vina is
the most time-consuming (typically more than
90%) and highly dependent whose next itera-
tion relies on the previous outputs. Secondly,
each ligand file was presented as a heteroge-
neous tree structure whose nodes are recursively
traversed . Thirdly, the CUDA architecture on
NVIDIA GPU cards limits its cross-platform
portability.

In this work, we propose an efficient par-
allel method, namely Vina-GPU, to acceler-
ate AutoDock Vina with GPUs. First, Vina-
GPU applies a large-scale parallelism on the
Monte-Carlo based docking lanes and signifi-
cantly reduces the search depth in each lane.
Second, a heterogeneous OpenCL implemen-
tation is efficiently deployed on Vina-GPU by
converting the heterogeneous tree structure into
a list structure whose nodes are stored in the
traversed order. The two implementations en-
sure that Vina-GPU can leverage thousands
of computational cores on GPU and achieve
a large-scale parallelization and acceleration,
and realizes the cross-platform portability on
both CPUs and GPUs. Large benchmark tests
show that Vina-GPU reaches a maximum of 403

times speed-up on NVIDIA Geforce RTX 3090
against the original AutoDock Vina on a quad-
threaded CPU operation while ensuring their
comparable docking accuracy. To further en-
large its potential of pushing the popularity of
AutoDock Vina in large virtual screening, more
efforts have been taken as follows. First, we
fitted a heuristic function for automatically de-
termining the most important hyperparameter
(search_depth) on the basis of large testing ex-
periments in order to lower the usage threshold.
Second, we developed a user-friendly graphical
user interface (GUI) for a convenient operation
of Vina-GPU. Third, we enabled the implemen-
tation of Vina-GPU to be built on Windows,
Linux and macOS, ensuring their usability on
personal computers, station servers and cloud
computations etc. The code and tool of Vina-
GPU are freely available for academic usage at
http://www.noveldelta.com/Vina_GPU.

2 Methodology

The heterogeneous OpenCL architecture for
implementation of Vina-GPU is depicted in
Figure 1, which consists of a host part (on
CPU) and a device part (on GPU). The host
part is mainly in charge of the preparation and
post-refinement of the conformations. The de-
vice part focuses on the acceleration of the
most time-consuming Monte-Carlo iterated lo-
cal search method by enlarging the scale of
parallelism while reducing the number of itera-
tions.

2.1 Host part

The host part consists of two sections (see Fig-
ure 1). The first section includes four opera-
tions, which are the file reading, the OpenCL
setup, the data preparation and the device
memory allocation, and all operations are im-
plemented for the input to the device part.
Specifically, the file reading operation is to read
the ligand and protein files in .pdbqt format,
and the OpenCL setup operation is to setup the
OpenCL environment (platform, device, con-
text, queue, program and kernels). Further-

3

Figure 1: The OpenCL architecture for implementing Vina-GPU, which consists of a host (CPU)
and a device (GPU) part of execution. The device part implements thousands of docking lanes,
each of which is assigned with an OpenCL work item to perform a Monte-Carlo based local search
method with largely reduced search iterations.

4

more, the host part prepares all the required
data, including grid cache (for calculating the
energy of a conformation), random maps (for
generating probability random numbers) and
random initial conformations (for Monte-Carlo
based method to start from). The data is then
re-organized to load in the device memory ac-
cording to how it is accessed (read-only or read-
write). The read-only grid cache, random maps
and random conformations are allocated in the
constant device memory while the read-write
of best conformations returned by the device
part is allocated in the global device memory.
Such kind of memory management could effi-
ciently boost the speed of reading and writing
on GPU. The second section includes multiple
operations after the device part. All the best
conformations returned from the device part are
clustered and sorted in the container by their
docking scores. The best 20 conformations will
be concretely refined and optimized before gen-
erating the final output ligand files.

In the data preparation operation, AutoDock
Vina treats each conformation as a heteroge-
neous tree structure whose nodes are stored
with its frame information and a pointer to
its children node. Each node is traversed by a
depth-first search policy to calculates the con-
formation energy in a recursive process. How-
ever, for Vina-GPU, the OpenCL standard can-
not support any recursion in kernels because
the allocation of stack space for thousands of
threads is too expensive. Besides, various lig-
ands would generate different heterogeneous
trees that are not suitable for the OpenCL im-
plementation. Therefore, we transformed the
heterogeneous tree structure into a list type (see
Figure 2) each of whose node is stored in line
with its traversed order. These nodes can be
traversed simply by the order of the node list.
In addition, a children map is created to denote
the relationship among these nodes. For exam-
ple, the node 0 has two children-nodes (the node
1 and the node 4), so that the row 0 has two
“T”s (indicating “True”) in the 1st and 4th col-
umn (Figure 2). Thus, the recursive traverse
of the heterogeneous tree can be converted into
an iterative traverse of the node list and the
children map which fits the OpenCL standard.

Figure 2: Transformation the node tree struc-
ture into the node list format. The het-
erogeneous tree is re-constructed in its tra-
versed order(depth-first). An additional chil-
dren map is built to reflect the relationship be-
tween nodes.

2.2 Device part

On the device part, the allocated constant
memory (highlighted in pink) is for the ini-
tialization and calculation during the reduced-
step Monte-Carlo iterated local search pro-
cesses (highlighted in green) and the final best
conformations are stored in global memory
(highlighted in orange).

Vina-GPU enables thousands of reduced-
steps iterated local search processes running
concurrently within the GPU computational
cores. We denote each reduced-step iterated lo-
cal search process as a docking lane. Within
each lane, an OpenCL work item is assigned to
a randomly initialized conformation C , which
can be represented by its position, orientation
and torsion (POT):

C = {x, y, z, a, b, c, d, ψ1, ψ2, ..., ψNrot} (1)

where x, y, z correspond to the position of
the conformation in a pre-determined searching
space; a,b,c,d denote its orientation as a rigid
body in the quaternion form; ψ1, ψ2, ..., ψNrot

represent torsions of Nrot rotatable bonds.
Then, each conformation C is to be randomly
mutated in one of its POT with the uniform
distribution. The conformation will be con-
tinuously evaluated with a scoring function
that quantifies the free energy of the binding
pose. Generally, the free energy e is calculated
with the sum of intermolecular energy and in-
tramolecular energy:

5

e = einter + eintra (2)

In which einter represents the interaction energy
between the ligand and the receptor. It is calcu-
lated using trilinear interpolation that approx-
imates the energy of each atom pair by looking
up the grid cache. eintra indicates the interac-
tion energy of the pairwise atoms within the
ligand. Considering that both einter and eintra
are related to the binding pose of the complex,
the scoring function can be denoted as a func-
tion SF of POT variables:

SF = f(x, y, z, a, b, c, d, ψ1, ψ2, ..., ψNrot) (3)

After the energy evaluation, a Broyden-
Fletcher-Goldfarb-Shanno (BFGS)16 optimiza-
tion is applied to minimize the score function
SF with its gradients of POT iteratively. Next,
a metropolis acceptance criterion is adopted to
decide whether to accept the optimized confor-
mation or not with a comparison of the energy
before the mutation e0 and after the optimiza-
tion eopt, the accept probability P is represented
by:

P =

{
1 e0 > eopt
exp(e0−eopt)

1.2
e0 ≤ eopt

(4)

It indicates that the accepted conformation is
more likely to have a lower energy. Once ac-
cepted, the conformation will be further eval-
uated and optimized with BFGS for a second
time. After that, the next iteration will be per-
formed based on the optimized conformation
from the previous iteration. After a largely-
reduced searching iterations compared to the
original Monte-Carlo based iterated local search
method in AutoDock Vina, all the best confor-
mations found by work items will be transferred
back into the host part. The pseudocode of our
proposed algorithm Vina-GPU is shown in Ta-
ble 1.

3 Results and Discussion

3.1 Experimental Settings

All 140 complexes in the AutoDock-GPU
study12 are assigned as our experimental
dataset, which is comprised of 85 complexes
from the Astex Diversity Set,32 35 complexes
from CASF-2013,33 and 20 complexes from the
Protein Data Bank.34 They cover a wide range
of ligand complexities and targets properties.
Each complex file includes an X-ray structure,
an initial random pose of its ligand and the
corresponding receptor (in .pdbqt format). Be-
sides, we create a config.txt file for each com-
plex (see the example in Supplementary Ta-
ble S1), which involves the center (indicated
by centerx, centery, centerz) and the recom-
mended volume of the docking box (indicated
by sizex, sizey, sizez). The details of our ex-
perimental data can be seen in Supplementary
Table S4.

AutoDock Vina can be customized by several
configurable arguments, including the center
and the volume of searching spaces, the number
of CPU cores to be utilized (cpu) and docking
runs (exhaustiveness) etc. The most impor-
tant two arguments (cpu and exhaustiveness)
are set to 4 and 8, and the best docking result
of AutoDock Vina are regarded as the golden
line in all performance comparison. For Vina-
GPU, an acceptable docking is defined by ei-
ther of the following two criteria. One is the fi-
nal docking score, which represents the binding
affinity between a ligand and a receptor (the
lower the score is better). If a difference of
less than 1 kcal/mol occurs between the lowest
docking score output by Vina-GPU and that by
AutoDock Vina on the same complex, the per-
formance of Vina-GPU is regarded as similar to
that of AutoDock Vina, hence being an accept-
able docking.6 The other criterion is the root-
mean-square deviation (RMSD) which repre-
sents the atom distance between each output
structure and the ground truth X-ray structure
(also the lower the better), and an acceptable
docking was defined if the least RMSD among
all output structures is smaller than 2 Å.6

AutoDock Vina is executed on Intel (R) Xeon

6

Table 1: Pseudocode of Vina-GPU

1. Generate N Random Conformations: {conftmp0 , conftmp1 , . . . , conftmpN}
2. for each lanei (i = 0, . . . , N) concurrently do:
3. for search_depth = 1, ..., r:
4. confcandi = Mutation(conftmpi)
5. (confcandi , energycandi) = BFGS Optimization & Energy Evaluation(confcandi)
6. if(search_depth == 0 ||Metropolis Accept(energycandi , energytmpi))
7. conftmpi = confcandi
8. (conftmpi , energytmpi) = BFGS Optimization & Energy Evaluation(conftmpi)
9. end if
10.end for
11.end for
12.Clustering & Sorting out the top 20 best conformations from N lanes

(R) Gold 6130 CPU @ 2.1GHz using Win-
dows 10 Operating System with 32 GB mem-
ory. The two hyperparameters of AutoDock
Vina (cpu and exhaustiveness) are set to 4
and 8, respectively. Extras including the box
center (centerx, centery, centerz) and the vol-
ume (sizex, sizey, sizez) are properly set in
the config.txt file (also see Supplementary Ta-
ble S1). Vina-GPU is developed with OpenCL
v.3.0 and executed on three different GPUs
(Nvidia Geforce GTX 1060, Nvidia Geforce
RTX 2080Ti, Nvidia Geforce RTX 3090). De-
tails are included in Supplementary Table S2.
For Vina-GPU, more configurations are needed,
including the number of work items (thread)
and the size of searching iterations in each
work item (search_depth). The hyperparam-
eter "thread" is set to 2500, 5000, 7500 for
Nvidia Geforce GTX 1060, Nvidia Geforce RTX
2080Ti and Nvidia Geforce RTX 3090 in order
to take full use of their computational resource
(from low to high).

3.2 Runtime Comparison

Our OpenCL implementation of Vina-GPU di-
vides the whole computational process into the
host and the device part (see Figure 1). Here,
we evaluate the runtime acceleration from two
aspects: (1) the device runtime Accd, and (2)
the total (device + host) runtime Accd+h, which

are defined by

Accd =
tmc

td
(5)

Accd+h =
tall
td+h

(6)

where tmc and tall are the Monte-Carlo itera-
tion runtime and the total runtime of AutoDock
Vina; td and td+h are the device runtime and the
total runtime of Vina-GPU, respectively. We
classified the 140 complexes into 3 subsets by
their atom sizes Natom (small: 5-23, medium:
24-36, large: 37-108), and gave out their run-
time acceleration on different scales of complex-
ities using violin plots (Figure 3). The average
acceleration on each GPU card is highlighted
by a white dot.

For Accd, Vina-GPU achieves acceleration
with the maximum of 403X, as well as the av-
erages of 54X, 49X and 57X on the 1060, 2080ti
and 3090 GPU cards, respectively; The maxi-
mum 152X, and the averages of 13X, 13X, 17X
acceleration on three GPUs are for Accd+h (Fig-
ure 3). In addition, there are three interesting
observations in Figure 3. One is that Vina-GPU
on NVIDIA Geforce GTX 1060 shows larger
acceleration in some cases (Accd in the small
subset and Accd+h in the small and medium
subsets) than those on higher-end GPU cards.
This is probably because that the GPU exe-
cution time only occupies a small part of the
total runtime, and for higher-end GPUs, more
time is needed to configure their running en-

7

Figure 3: Runtime acceleration in terms of the device part (Accd with the maximum of 403X) and
the "device + host" part (Accd+h with the maximum of 152X) on three different GPUs. To explore
the acceleration on different scales of complexity, we divide our datasets into 3 subsets by their
Natom sizes (small: 5-23, medium: 24-36, large: 37-108). 1060: NVIDIA Geforce GTX 1060; 2080:
Nvidia Geforce RTX 2080Ti; 3090: Nvidia Geforce RTX 3090.

vironment before starting the docking process,
resulting in their relatively lower acceleration.
Another is that the average acceleration on
medium complexes are larger than other com-
plexes in most cases. This is probably caused
by that the largest decrease of searching itera-
tions is obtained on the medium complexes by
our Vina-GPU method. The last one is that the
runtime acceleration on the device part (Accd)
are much higher than the total-runtime accel-
eration Accd+h. This is due to the fact that
the CPU runtime of one case on three different
servers are almost the same, and the Amdahl’s
law35 decides Vina-GPU to obtain a lower ac-
celeration in terms of the total runtime.

To exhibit the detailed acceleration on dif-
ferent GPU cards, Figure 4 and 5 show the
Accd and Accd+h performance of all 140 com-
plexes with different Natom and Nrot. Each bar
represents a complex coupling with its corre-
sponding acceleration. The acceleration of Accd
and Accd+h varies from 2X to 403X and 1X to
152X, respectively. The maximal acceleration
is achieved on the 3drf complex (PDBid) under
Nvidia Geforce RTX 3090.

3.3 Docking Accuracy

We compare the docking accuracy in terms of
score and RMSD of AutoDock Vina and our
Vina-GPU on all 140 complexes (Figure 6).
The red dashed line denotes the score or the
RMSD criterion that defines an acceptable
docking. As for the score performance in Fig-
ure 6, the score criterion divides these com-
plexes into two parts. The first part represents
that the docking score of Vina-GPU succeeds to
meet the score criterion, while the second part
means the failed docking by Vina-GPU. It can
be seen that all docking scores succeed to meet
the score criterion, hence Vina-GPU performed
all 140 successful dockings. As for the RMSD
performance in Figure 6, the RMSD criterion
partitions these complexes into four parts. The
first part means that both AutoDock Vina and
Vina-GPU meet the RMSD criterion. The sec-
ond part denotes that Vina-GPU succeeds to
meet the RMSD criterion while AutoDock Vina
fails, and vice versa in the third part. The last
part indicates that neither AutoDock Vina nor
Vina-GPU meet the RMSD criterion. There-

8

Figure 4: Runtime acceleration in terms of the device part (Accd) on 140 complexes with different
Natom and Nrot. The vertical axis ranges from 0 to 410. Each bar represents a complex coupling
with its corresponding acceleration. Vina-GPU 1060, Vina-GPU 2080ti and Vina-GPU 3090 mean
that Vina-GPU is executed on Nvidia Geforce GTX 1060, Nvidia Geforce RTX 2080Ti and Nvidia
Geforce RTX 3090, respectively.

Figure 5: Runtime acceleration in terms of the "device + host" part (Accd+h) on 140 complexes
with different Natom and Nrot. The vertical axis ranges from 0 to 160. Each bar represents a complex
coupling with its corresponding acceleration. Vina-GPU 1060, Vina-GPU 2080ti and Vina-GPU
3090 denote that Vina-GPU is implemented on Nvidia Geforce GTX 1060, Nvidia Geforce RTX
2080Ti and Nvidia Geforce RTX 3090, respectively.

9

fore, regardless from the score or the RMSD
aspect, our Vina-GPU achieves a comparable
docking accuracy in contrast with the original
AutoDock Vina.

3.4 Influence of Search Depth

We analyzed the influence of the hyperparame-
ter search_depth (from 1 to 100) on the dock-
ing accuracy of Vina-GPU, which is evaluated
by docking score (kcal/mol) and RMSD (Å).
Six typical complexes are selected to represent
various levels of complexities (see Table 2), and
their results are shown in Figure 7 and Fig-
ure 8. The score or RMSD criteria for defin-
ing an acceptable docking (see Section 3.1) are
plotted with red dashed lines. The average per-
formances on three GPU cards are indicated in
blue solid lines. The score or RMSD value of
the golden line (defined in Section 3.1) is plot-
ted in a gold straight line.

Table 2: Properties of six complexes

PDBid Natom Nrot

5tim 5 0
2bm2 33 7
1hvy 34 9
1os0 39 13
1jyq 60 20
3er5 108 31

With the increase of search_depth, the per-
formance of Vina-GPU on docking score be-
comes better and better, where most of com-
plexes can converge to the golden line (Figure
7). Meanwhile, we notice two special cases.
One is that for the complex 5tim, its docking
score keeps the same as the golden line with
the increase of search_depth. This is probably
because that 5tim is a small complex with its
Natom = 5 and Nrot = 0, and both Vina-GPU
and AutoDock Vina can find the global mini-
mum with a small size of search_depth, and its
increase cannot bring any improvement on the
score. Another is that, for the complex 3er5,
the docking score reaches beyond the golden
line when the size of search_depth is over 30.
It means that the score performance of Vina-
GPU is superior to that of AutoDock Vina.

This is caused by that the Monte-Carlo method
used in AutoDock Vina is non-deterministic,
and for such a large complex 3er5 (Natom = 108
and Nrot = 31), local minimums instead of the
global one are obtained in the typical imple-
mentation.

As indicated in Figure 8, the RMSD of Vina-
GPU in most cases keeps below the RMSD cri-
terion with the increase of search_depth, ex-
cept for two complexes 5tim and 3er5. For the
small complex 5tim, the exception is probably
caused by two reasons. One is the inconsistency
between the change of docking score and that of
RMSD. The docking results of AutoDock Vina
on the complex 1hvy (see Supplementary table
S3) verifies our guess. Another one is that in
the host part of Vina-GPU (see Figure 1), the
best conformations are sorted by their dock-
ing scores. Such scheme forces Vina-GPU to
pick up those conformations with lower dock-
ing scores. However, the chosen conformations
occasionally have higher RMSDs, resulting in a
worse RMSD performance on the complex 5tim.
As for the large complex 3er5, this is because
that Vina-GPU utilizes the same scoring func-
tion as that of AutoDock Vina, and hence both
of them cannot meet the RMSD criterion on the
complex 3er5.

3.5 Fitting the Search Depth

The hyperparameter search_depth is of the
most importance, and its value is sensitive to
the docking performance of Vina-GPU. For
a convenient usage of Vina-GPU, a heuristic
formula is fit to automatically determine the
proper size of search_depth for a given com-
plex. A large number of test experiments
are executed on all 140 complexes to examine
their docking performances and runtimes un-
der different sizes of search_depth using the
same scheme in Section 3.4. The best size of
search_depth for each complex is arranged by
the smallest value in those meeting the score
criterion. The best sizes of search_depth on
the six complexes are shown in Table 3, and
those of all 140 complexes can be seen in the
supplementary Table S4.

Then, the least squares method is used to fit

10

Figure 6: Comparison of docking accuracy between AutoDock Vina and our Vina-GPU on 140
complexes. The color bar encodes the number of atoms of one ligand. The score and RMSD
criteria that define an acceptable binding pose are represented by red dashed lines. As for the
score performance, the score criterion divides these complexes into two parts, where the first one
means that the docking score of Vina-GPU succeeds to meet the score criterion, and the second one
denotes the unsuccessful docking score by Vina-GPU. As for the RMSD performance, the RMSD
criterion divides these complexes into four parts. The first part means that the docking results
of Vina-GPU and AutoDock Vina both succeed to meet the RMSD criterion. The second part
denotes that Vina-GPU meets the docking RMSD criterion while AutoDock Vina fails, and vice
versa in the third part. The last part represents that neither AutoDock Vina nor Vina-GPU meet
the RMSD criterion.

Figure 7: Docking scores of Vina-GPU on six complexes with various levels of complexity. The
straight lines (gold) denote the score value of the best conformation returned by AutoDock Vina
with the cpu = 4 and exhaustiveness = 8. The dashed lines (red) denote the upper bounds of the
docking score (score criterion) for an acceptable docking. The solid lines (blue) denote the average
scores of Vina-GPU on three GPU cards. The horizontal axis indicates the number of searching
iterations in each docking lane of Vina-GPU.

11

Figure 8: Docking RMSDs of Vina-GPU on six complexes with various levels of complexity. The
straight lines (gold) denote the RMSD value of the best conformation returned by AutoDock Vina
with the cpu = 4 and exhaustiveness = 8. The dashed lines (red) denote the upper bounds of the
RMSD value (RMSD criterion) for an acceptable docking. The solid lines (blue) denote the average
RMSD of Vina-GPU on three GPU cards. The horizontal axis indicates the number of searching
iterations in each docking lane of Vina-GPU.

Table 3: Best sizes of search_depth on the six
complexes

PDBid Best size of search_depth
5tim 1
2bm2 1
1hvy 10
1os0 20
1jyq 30
3er5 10

an empirical formula of the best search_depth
with respect to their Natom and Nrot of all 140
complexes. The formula can automatically de-
termine the proper size of search_depth of a
given ligand as follows,

search_depth = floor(0.24×Natom

+ 0.29×Nrot − 5.74) (7)

Where the function floor(∗) gives the largest
integer less than or equal to ∗.

3.6 Conformation Spaces Analy-
sis

To verify their equivalence in molecular dock-
ing, we intend to analyze the full conformation
spaces explored by AutoDock Vina or our Vina-
GPU. Firstly, we discussed the searching strat-
egy of Vina-GPU and explained the reason why
Vina-GPU can achieve a great acceleration on
the premise of an acceptable docking accuracy.
Then, we visualized and made a comparison of
their whole searching spaces of conformations.

Vina-GPU enables thousands of docking lanes
to calculate concurrently. In each lane, there
is a randomly initiated conformation. These
docking lanes will divide the whole search space
into thousands of subspaces, in each of which
an initial conformation is optimized. We de-
fine the solution space that covers all possi-
ble conformations as a high-dimensional space
S = {C0, C1, C2, . . . }. By dividing S into n
sub-spaces, we have

S = {Ssub0 ,Ssub0 , ...,Ssubn} (8)

Where each initial conformation belongs to a

12

sub-space
Ci ∈ Ssubi (9)

For each initial conformation Ci, the corre-
sponding searching space Ssubi is much smaller
than the whole searching space S. Therefore,
we can greatly reduce the searching iterations of
each initial conformation in each Ssubi . By clus-
tering and sorting all the best conformations,
Vina-GPU can ensure a comparable docking ac-
curacy with that of the original AutoDock Vina.

To verify their equivalence, Figure 9 shows a
comparison of solution space S using AutoDock
Vina and Vina-GPU on a representative com-
plex (PDBid: 2bm2, Natom = 33, Nrot = 7).
AutoDock Vina is executed with the configu-
ration of “cpu = 1, exhaustiveness = 1 and
searching iterations = 22365”. Vina-GPU is ex-
ecuted under various strategies, where differ-
ent scales of docking lane and search_depth
size in each lane are used. The whole search-
ing spaces reached by these strategies (lanes×
search_depth) are almost the same as that by
the original AutoDock Vina. All conformations
searched by AutoDock Vina or Vina-GPU dur-
ing iterations are indicated as orange or blue
dots, respectively. Each conformation is repre-
sented by its POT and shown in cartesian coor-
dinates, in which a principal component analy-
sis (PCA) method is used to reduce the dimen-
sionality of orientation and torsion into three.
The best conformation is shown in red star (in-
dicated by an arrow).

As shown in Figure 9a and Figure 9b, the
whole conformation space reached by Vina-
GPU or AutoDock Vina are almost the same in
their position, orientation or torsion. With the
increase of Vina-GPU on its parallelism scale
and the reduce of its search depth in each lane,
their observations keep almost unchanged (Fig-
ure 9c and Figure 9d). Moreover, the best
conformations found by Vina-GPU are close to
those by AutoDock Vina. It demonstrates that
our Vina-GPU has a similar possibility to find
excellent conformations with AutoDock Vina
through expanding the scale of parallelism and
reducing the size of searching iterations in each
lane.

3.7 Docking the DrugBank Datasets

To show the acceleration effect of our Vina-
GPU in implementing real virtual screens of
large compound databases, an example is de-
tailed on the receptor 3drf (PDBid) with the
docking of DrugBank.36 The total of 9137
molecules on the DrugBank database were
downloaded from https://go.drugbank.com/
releases/latest#structures. Only about
9.52 hours are taken to execute the whole dock-
ing process by Vina-GPU while ∼ 66.28 hours
by AutoDock Vina. In addition, Figure 10 vi-
sualized the binding poses of 3 molecules (drug-
bank4200, drugbank7520, drugbank8545) with
the best docking scores (-11.6, -11.5, -11.5) us-
ing Pymol.37

3.8 Usage of Vina-GPU

We developed a user-friendly graphic user in-
terface (GUI) instead of the original terminal
form. Our GUI can be utilized without instal-
lation. It consists of five main components (see
supplementary Figure S1). The first one is the
input files that defines both the ligand and the
receptor, these files can be easily chosen by a
select file button. The second one is the out-
put files that determine the final output file of
the ligand. The third one is the docking box
that includes box center and box size. These
parameters determine the position and the size
of the docking pocket, others including thread
and search_depth can be defined in optional
parameters of the fourth component. The last
part is the prompt that outputs the informa-
tion during the runtime. Finally, Vina-GPU
can be executed by the start button. In addi-
tion, we provide a detailed guideline on how to
build and run Vina-GPU on mainstream oper-
ating systems (Windows, Linux and MacOS),
and it can also ensure the usability of Vina-
GPU on personal computers, station servers
and cloud computations etc. All source codes
and tools of Vina-GPU can be freely available
at http://www.noveldelta.com/Vina_GPU for
academic usage.

13

(a) AutoDock Vina: 1 initial conformation with 22365 searching iterations

(b) Vina-GPU: 10 docking lanes with search_depth set to 2237

(c) Vina-GPU: 100 docking lanes with search_depth set to 224

(d) Vina-GPU: 1000 docking lanes with search_depth set to 22

Figure 9: Conformation spaces (of PDBid: 2bm2) explored by AutoDock Vina or Vina-GPU during
iterations. AutoDock Vina (cpu = 1, exhaustiveness = 1) is executed with one initial conformation
and 22365 searching iterations by default. Vina-GPU is executed under different scales of lanes
with different search_depth in each lane. The overall searching iterations (lanes× search_depth)
are kept almost the same. Each conformation is represented by its position, orientation and torsion
(POT) and is plotted with bule or orange dots. The principal component analysis (PCA) method
is used to reduce the dimensionality of orientation and torsion into three. The best conformations
are highlighted with red stars (pointed by arrows).

14

(a) drugbank4200 (b) drugbank7530 (c) drugbank8545

Figure 10: Binding poses of conformations with the lowest docking scores on a receptor (PDBid:
3drf). The three small molecules are drugbank4200, drugbank7530 and drugbank8545, and obtain
the docking scores of -11.6, -11.5, -11.5, respectively.

4 Conclusion

In modern drug discovery, huge resource in-
vestment and high entry threshold seriously
weaken the popularity of AutoDock Vina in vir-
tual screening from large compound databases.
To advance the wide spread of AutoDock Vina
in large virtual screens, we propose a novel
method Vina-GPU to speedup AutoDock Vina
with GPUs. Vina-GPU obtains a large-scale of
parallelism on the Monte-Carlo based docking
lanes and greatly reduces the search steps in
each lane. Besides, a heterogeneous OpenCL
implementation of Vina-GPU is efficiently as-
signed by transforming the heterogeneous tree
structure into a list structure whose nodes
are visited in the traversed line. Vina-GPU
can fully utilize abundant computational GPU
cores to reach a large-scale of parallelization
and acceleration. Also, Vina-GPU can real-
ize the cross-platform operation on both CPUs
and GPUs. Large benchmarks demonstrate
that Vina-GPU achieves a maximal speed-up
of 403 folds on NVIDIA Geforce RTX 3090 over
the original AutoDock Vina when keeping their
comparable docking accuracy. To further en-
large its popularity of AutoDock Vina in large
virtual screens, more efforts have been taken as
the follows. A heuristic function is automati-
cally fitted the most important hyperparameter
(search_depth) after large testing experiments.
Moreover, a graphical user interface (GUI) was

designed for a convenient usage of Vina-GPU.
In addition, an extension of Vina-GPU was pro-
vided on Windows, Linux and macOS, and also
ensure its usage on personal computers, sta-
tion servers and cloud computations etc. The
source codes of Vina-GPU are freely accessible
at http://www.noveldelta.com/Vina_GPU for
academic usage.

In future studies, the following aspects would
be taken into consideration for pushing the pop-
ularization of AutoDock Vina in large virtual
screens. We will further analyze and mend the
AutoDock Vina algorithm so that it can obtain
a higher acceleration with GPUs. In addition,
we will analyze other mainstream tools in the
AutoDock Vina suites and accelerate them with
GPUs. Besides, we will rewrite the AutoDock
Vina algorithm to realize its acceleration on
FPGA with higher price-performance ratio and
more flexibility.

Data and Software Availabil-
ity

The authors declare no competing financial in-
terest. All the source codes, the documen-
tation and the updates related to Vina-GPU
have been uploaded to our website http://
www.noveldelta.com/Vina_GPU (in the user
guideline section) under an Apache-2.0 license.
The 140 complexes described in Section 3.1

15

are available at https://zenodo.org/record/
4031961#.Yags3NBByUk and the 9137 Drug-
Bank molecules used in Section 3.7 are avail-
able at https://go.drugbank.com/releases/
latest#structures. If there is any problem in
reproducing our work, please feel free to contact
us.

Acknowledgement This work was sup-
ported in part by the National Natural Science
Foundation of China (61872198, 81771478 and
61971216); the Basic Research Program of Sci-
ence and Technology Department of Jiangsu
Province (BK20201378). We acknowledge the
support from Mr. Xianqiang Shi for providing
the Huawei cloud service and Ms. Yemin Diao
for offering us a work place.

References
(1) Meng, X.-Y.; Zhang, H.-X.; Mezei, M.;

Cui, M. Molecular docking: a powerful
approach for structure-based drug discov-
ery. Current computer-aided drug design
2011, 7, 146–157.

(2) Lengauer, T.; Rarey, M. Computational
methods for biomolecular docking. Cur-
rent opinion in structural biology 1996, 6,
402–406.

(3) Cherkasov, A.; Muratov, E. N.;
Fourches, D.; Varnek, A.; Baskin, I. I.;
Cronin, M.; Dearden, J.; Gramatica, P.;
Martin, Y. C.; Todeschini, R., et al. QSAR
modeling: where have you been? Where
are you going to? Journal of medicinal
chemistry 2014, 57, 4977–5010.

(4) Golbraikh, A.; Shen, M.; Xiao, Z.;
Xiao, Y.-D.; Lee, K.-H.; Tropsha, A. Ra-
tional selection of training and test sets for
the development of validated QSAR mod-
els. Journal of computer-aided molecular
design 2003, 17, 241–253.

(5) Morris, G. M.; Huey, R.; Lindstrom, W.;
Sanner, M. F.; Belew, R. K.; Good-
sell, D. S.; Olson, A. J. AutoDock4

and AutoDockTools4: Automated dock-
ing with selective receptor flexibility. Jour-
nal of computational chemistry 2009, 30,
2785–2791.

(6) Trott, O.; Olson, A. J. AutoDock Vina:
improving the speed and accuracy of dock-
ing with a new scoring function, efficient
optimization, and multithreading. Jour-
nal of computational chemistry 2010, 31,
455–461.

(7) Eberhardt, J.; Santos-Martins, D.;
Tillack, A.; Forli, S. AutoDock Vina 1.2.
0: new docking methods, expanded force
field, and Python bindings. 2021,

(8) Ravindranath, P. A.; Forli, S.; Good-
sell, D. S.; Olson, A. J.; Sanner, M. F.
AutoDockFR: advances in protein-ligand
docking with explicitly specified binding
site flexibility. PLoS computational biology
2015, 11, e1004586.

(9) Zhang, Y.; Sanner, M. F. AutoDock
CrankPep: combining folding and dock-
ing to predict protein–peptide complexes.
Bioinformatics 2019, 35, 5121–5127.

(10) Zhang, Y.; Sanner, M. F. Docking flexible
cyclic peptides with AutoDock CrankPep.
Journal of chemical theory and computa-
tion 2019, 15, 5161–5168.

(11) Santos-Martins, D.; Eberhardt, J.;
Bianco, G.; Solis-Vasquez, L.; Ambro-
sio, F. A.; Koch, A.; Forli, S. D3R Grand
Challenge 4: prospective pose prediction
of BACE1 ligands with AutoDock-GPU.
Journal of computer-aided molecular
design 2019, 33, 1071–1081.

(12) Santos-Martins, D.; Solis-Vasquez, L.;
Tillack, A. F.; Sanner, M. F.; Koch, A.;
Forli, S. Accelerating AutoDock4 with
GPUs and gradient-based local search.
Journal of Chemical Theory and Compu-
tation 2021, 17, 1060–1073.

(13) Goodsell, D. S.; Sanner, M. F.; Ol-
son, A. J.; Forli, S. The AutoDock suite
at 30. Protein Science 2021, 30, 31–43.

16

(14) Su, M.; Yang, Q.; Du, Y.; Feng, G.;
Liu, Z.; Li, Y.; Wang, R. Comparative as-
sessment of scoring functions: the CASF-
2016 update. Journal of chemical informa-
tion and modeling 2018, 59, 895–913.

(15) Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.;
Li, Y.; Tian, S.; Hou, T. Comprehen-
sive evaluation of ten docking programs
on a diverse set of protein–ligand com-
plexes: the prediction accuracy of sam-
pling power and scoring power. Physical
Chemistry Chemical Physics 2016, 18,
12964–12975.

(16) Fletcher, R. Practical methods of opti-
mization; John Wiley & Sons, 2013.

(17) Bohacek, R. S.; McMartin, C.;
Guida, W. C. The art and practice
of structure-based drug design: a molec-
ular modeling perspective. Medicinal
research reviews 1996, 16, 3–50.

(18) Gorgulla, C.; Boeszoermenyi, A.;
Wang, Z.-F.; Fischer, P. D.; Coote, P. W.;
Das, K. M. P.; Malets, Y. S.; Rad-
chenko, D. S.; Moroz, Y. S.; Scott, D. A.,
et al. An open-source drug discovery plat-
form enables ultra-large virtual screens.
Nature 2020, 580, 663–668.

(19) Li, H.; Leung, K.-S.; Wong, M.-H. idock:
A multithreaded virtual screening tool for
flexible ligand docking. 2012 IEEE Sym-
posium on Computational Intelligence in
Bioinformatics and Computational Biol-
ogy (CIBCB). 2012; pp 77–84.

(20) Jaghoori, M. M.; Bleijlevens, B.; Olabar-
riaga, S. D. 1001 Ways to run AutoDock
Vina for virtual screening. Journal of
computer-aided molecular design 2016,
30, 237–249.

(21) Kannan, S.; Ganji, R. Porting autodock to
CUDA. IEEE Congress on Evolutionary
Computation. 2010; pp 1–8.

(22) Munshi, A.; Gaster, B.; Mattson, T. G.;
Ginsburg, D. OpenCL programming guide;
Pearson Education, 2011.

(23) Mermelstein, D. J.; Lin, C.; Nel-
son, G.; Kretsch, R.; McCammon, J. A.;
Walker, R. C. Fast and flexible gpu ac-
celerated binding free energy calculations
within the amber molecular dynamics
package. 2018.

(24) Hwu, W.-M. W. GPU computing gems
emerald edition; Morgan Kaufmann Pub-
lishers Inc., 2011.

(25) Stone, J. E.; Hynninen, A.-P.;
Phillips, J. C.; Schulten, K. Early
experiences porting the NAMD and VMD
molecular simulation and analysis soft-
ware to GPU-accelerated OpenPOWER
platforms. International conference on
high performance computing. 2016; pp
188–206.

(26) LeGrand, S.; Scheinberg, A.;
Tillack, A. F.; Thavappiragasam, M.;
Vermaas, J. V.; Agarwal, R.; Larkin, J.;
Poole, D.; Santos-Martins, D.; Solis-
Vasquez, L., et al. GPU-accelerated drug
discovery with docking on the summit su-
percomputer: porting, optimization, and
application to COVID-19 research. Pro-
ceedings of the 11th ACM international
conference on bioinformatics, computa-
tional biology and health informatics.
2020; pp 1–10.

(27) Fan, M.; Wang, J.; Jiang, H.; Feng, Y.;
Mahdavi, M.; Madduri, K.; Kan-
demir, M. T.; Dokholyan, N. V. Gpu-
accelerated flexible molecular docking.
The Journal of Physical Chemistry B
2021, 125, 1049–1060.

(28) Ding, X.; Wu, Y.; Wang, Y.; Vilseck, J. Z.;
Brooks III, C. L. Accelerated CDOCKER
with GPUs, parallel simulated annealing,
and fast Fourier transforms. Journal of
chemical theory and computation 2020,
16, 3910–3919.

(29) Imbernón, B.; Serrano, A.; Bueno-
Crespo, A.; Abellán, J. L.; Pérez-
Sánchez, H.; Cecilia, J. M. METADOCK

17

2: a high-throughput parallel metaheuris-
tic scheme for molecular docking. Bioin-
formatics 2021, 37, 1515–1520.

(30) Shin, J. H.; Kim, J.; Chae, J.; Yun, S. J.
GPU-accelerated autodock vina: Viking.
2020.

(31) Solis-Vasquez, L.; Santos-Martins, D.;
Tillack, A. F.; Koch, A.; Eberhardt, J.;
Forli, S. Parallelizing Irregular Com-
putations for Molecular Docking. 2020
IEEE/ACM 10th Workshop on Irregu-
lar Applications: Architectures and Algo-
rithms (IA3). 2020; pp 12–21.

(32) Hartshorn, M. J.; Verdonk, M. L.; Ches-
sari, G.; Brewerton, S. C.; Mooij, W. T.;
Mortenson, P. N.; Murray, C. W. Diverse,
high-quality test set for the validation
of protein- ligand docking performance.
Journal of medicinal chemistry 2007, 50,
726–741.

(33) Li, Y.; Han, L.; Liu, Z.; Wang, R. Compar-
ative assessment of scoring functions on an
updated benchmark: 2. Evaluation meth-
ods and general results. Journal of chem-
ical information and modeling 2014, 54,
1717–1736.

(34) Berman, H. M.; Westbrook, J.; Feng, Z.;
Gilliland, G.; Bhat, T. N.; Weissig, H.;
Shindyalov, I. N.; Bourne, P. E. The pro-
tein data bank. Nucleic acids research
2000, 28, 235–242.

(35) Hill, M. D.; Marty, M. R. Amdahl’s law
in the multicore era. Computer 2008, 41,
33–38.

(36) Wishart, D. S.; Feunang, Y. D.;
Guo, A. C.; Lo, E. J.; Marcu, A.;
Grant, J. R.; Sajed, T.; Johnson, D.;
Li, C.; Sayeeda, Z., et al. DrugBank 5.0: a
major update to the DrugBank database
for 2018. Nucleic acids research 2018, 46,
D1074–D1082.

(37) DeLano, W. L., et al. Pymol: An open-
source molecular graphics tool. CCP4

Newsletter on protein crystallography
2002, 40, 82–92.

18

TOC Graphic

19

