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Abstract: Due to the sheer size of chemical and materials space, high throughput

computational screening thereof will require the development of new computational

methods that are accurate, efficient, and transferable. These methods need to be

applicable to electron configurations beyond ground states. To this end, we have

systematically studied the applicability of quantum alchemy predictions using a Tay-

lor series expansion on quantum mechanics (QM) calculations for single atoms with

different electronic structures arising from different net charges and electron spin

multiplicities. We first compare QM method accuracy to experimental quantities

including first and second ionization energies, electron affinities, and multiplet spin

energy gaps for a baseline understanding of QM reference data. We then investigate

the intrinsic accuracy of an approach we call “manual” quantum alchemy schemes

compared to the same QM reference data, which employ QM calculations where the

basis set of a different element is used for an atom as the limit case of quantum

alchemy. We then discuss the reliability of quantum alchemy based on Taylor series

approximations at different orders of truncation. Overall, we find that the errors

from finite basis set treatments in quantum alchemy are significantly reduced when

thermodynamic cycles are employed, which points out a route to improve quantum

alchemy in explorations of chemical space. This work establishes important technical

aspects that impact the accuracy of quantum alchemy predictions using a Taylor

series and provides a foundation for further quantum alchemy studies.

a)Electronic mail: jakeith@pitt.edu
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I. INTRODUCTION

Productive schemes for the computational screening of molecular compounds1,2 and

materials3–6 has been an area of interest for many years. Reliable computational pre-

dictions of molecular and material properties generally require quantum mechanics (QM)

calculations, ideally using the most sophisticated and accurate models possible to account

for different physical phenomena. However, the computational cost of schemes involving

highly accurate methods also usually their use for predictive insights.7 Schemes based on

Kohn-Sham Density Functional Theory (DFT) are often employed as a useful compromise

between computational efficiency and physical accuracy. However, comprehensive screening

would ideally consider different atomic-scale compositions, configurations, and system sizes,

and the resultant number of combinatorial possibilities makes DFT methods too compu-

tationally demanding to be practical. For this reason, many have developed alternative

approximate models such as tight binding QM methods,8–10 cluster expansion methods,11–15

analytic (reactive) forcefields,16–18 machine learning potentials,19 with varying degrees of

success.

A promising method applicable for high-throughput screening is quantum alchemy us-

ing a Taylor expansion.20–22 Instead of running many self-consistent field calculations for

many target systems by brute force, this method approximates the QM energies for these

systems using a Taylor series expansion around the energy of a reference system. This is

done by assuming that QM energies of systems are continuously relatable across alchemical

space, i.e. across the chemical and materials space where nuclear charge is a variable pa-

rameter. Various quantum alchemy methods have been evaluated in predicting molecular

properties,20,21,23,24 bulk material structural properties,25,26 and surface-adsorbate binding

energies and activation energies for catalytic applications.27–32 To date, most of these stud-

ies make use of different quantum alchemy schemes involving distinct implementations of

QM on various atomic scale systems that make it non-trivial to assess how and why quantum

alchemy using a Taylor series expansion is working overall across chemical space. To achieve

a fundamental understanding of the general accuracy and transferability of these Taylor

series approximations, we report the performance of quantum alchemy using Taylor series

expansions in predicting electronic energies of single atoms and compare to experimentally

observable quantities such as ionization energies, electron affinities, and spin multiplet gaps.
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Earlier work in this direction33, evaluating the alchemical derivatives in the context of con-

ceptual DFT, focused on DFT methods. In this work, we study a correlated wavefunction

method, namely the more accurate but more expensive CCSD(T) approach.

In this work, we first report reference calculations that use QM energies from a reasonably

high-level wavefunction method with a range of basis sets to show the accuracy of different

reference QM calculations when predicting thermodynamic energies that can be compared

to experimental data34–36. We then report the extent that these energies can also be calcu-

lated using “manual” quantum alchemy, which involve alchemical pathways from calculations

where nuclear charges have been explicitly modified with respect to a reference system. We

then evaluate the efficacy of quantum alchemy based on Taylor series expansions truncated

at different orders as a means to approximate the underlying “manual” alchemical pathways.

To predict atomic properties including ionization energies, electron affinities, and spin multi-

plet gaps, we employ thermodynamic cycles and quantify the accuracy of quantum alchemy

predictions using a Taylor series expansion. Based on this work, we can achieve a wholistic

perspective on how well quantum alchemy using a Taylor series expansion is approximating

high-level QM data absolutely on individual atoms, as well as when used in schemes with

thermodynamic cycles that would be expected to introduce error cancellations.

II. METHODS

A. QM calculations

QM calculations were performed with the open-source Gaussian basis set code, PySCF

(v1.7.6)37–39. Coupled cluster calculations with single, double, and perturbative triples based

on restricted and unrestricted (when necessary) Hartree–Fock (HF) references used default

convergence criteria (HF and CCSD were used for one- and two-electron systems, respec-

tively, while CCSD(T) was used for systems containing three electrons or more). We modeled

all atoms from H to Ar with charges of 0, 1±, and 2± when the number of electrons in the

system permitted it (Figure 1). We also modeled atomic ground states and a higher en-

ergy multiplet state to compute spin multiplicity gaps for each neutral case. Note that

some atoms exhibited unstable anions where the electronic energy of the anion was higher

than that of the less-negatively charged species. We omit these QM calculations in error
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analyses with respect to experiment, but we retain these in later discussions in this work

since quantum alchemy might still be useful in predicting QM calculations whether or not

they are experimentally justified. For all atoms we tested the aug-cc-pVTZ (aVTZ), aug-

cc-pVQZ (aVQZ), and aug-cc-pV5Z (aV5Z) basis sets40–44. All aV5Z basis sets were taken

from the basis set exchange45–47. When appropriate, we compared QM calculations to exper-

imental quantities including first and second ionization energies34, electron affinities35, and

multiplicity gaps36. All QM calculations used for quantum alchemy predictions that used

a Taylor series expansion converged. A few QM calculations at integer changes in nuclear

charge (manual quantum alchemy calculations, see below) did not converge, and these are

discussed in the SI (see Table S1). These calculations do not influence the data presented

here or the conclusions drawn from the data.

B. Alchemical potential energy surfaces (PESs)

Alchemical PESs were calculated for all cases above by modifying the nuclear charge (Z)

of the selected reference atom using manual quantum alchemy calculations. For example,

starting from a reference system that was a neutral C atom in a 3P state, a B− atom in

the same 3P state can be obtained by decreasing the nuclear charge on the C atom by one

(∆Z = −1). Alternatively, the neutral C atom could be used as a reference for the N+

atom in the same 3P state with a ∆Z = +1 transmutation. All alchemical transmutations

used here will retain the same number of electrons as the reference system. Since practical

applications of QM calculations normally use incomplete Gaussian basis sets, a basis set

designed for a C atom but used on a B− atom will be expected to introduce some error.

These basis set errors are expected to decrease when more complete basis sets are used,48

but we report the extent these errors are present to understand a baseline accuracy for

alchemical PESs.

C. Quantum alchemy predictions using a Taylor series expansion

The energy of a target system can be predicted using quantum alchemy as a Taylor series

expansion around the reference system with respect to an arbitrary alchemical pathway
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defined by λ,21 where λ = 0 at the reference and λ = 1 at any target:
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This expression relies on the assumption that the Hellmann-Feynman theorem holds for first

order derivatives.49 From QM, the change in energy with respect to an arbitrary alchemical

pathway can be described by nuclear, atomic position, and electronic terms using the chain

rule:
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where ∂NI is the partial differential for nuclear charge of atom I, ∂RI is the partial differ-

ential for position of atom I, and ∂Ne is the partial differential for number of electrons.27

Since this work is only focused on studies of individual atoms that can always be centered

at the origin of the coordinate axes, the second term of Equation 2 is zero. As mentioned

above, since all alchemical pathways involve a constant number of electrons, the third term

of Equation 2 is also zero, which eliminates the dependence of discontinuous derivatives.

Thus, our treatment of quantum alchemy only involves energy terms related to so-called

alchemical derivatives for the change in energy with respect to the change in nuclear charge.

An ongoing concern about using Taylor series expansions is that it may not always con-

verge to a physically meaningful result. However, it has been recently shown that the Taylor

series will converge in Hartree–Fock calculations of small molecules.22 While other mathe-

matically equivalent protocols exist to calculate the energy derivatives from the Taylor series

expansion,32,48 in this work we employ central finite differences22 with the general formula:
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2
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where h represents a small displacement from λ = 0. We used h = 0.01 with the findiff50

Python package and a general accuracy of 2. This requires evaluating the energies for

systems at non-integer λ values; in other words, PySCF calculations on a reference atom

with a conventional nuclear charge of Z used nuclear charges of Z, Z ± 0.01, and Z ± 0.02.
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Using finite differences, various orders of alchemical derivatives can be used for expressing the

Taylor series. The Taylor series at zeroth order would assume that the energy of the reference

system itself is a valid approximation for the target system, and so we exclude this order from

discussions. By virtue of truncation after the first order being a linear function of the first

alchemical derivative, it approximates the alchemical PES as a straight line. Truncations

of the Taylor series after the second order in turn approximates the alchemical PES as a

second order polynomial, truncations after the third order as a third order polynomial, and

truncations after the fourth order as a fourth order polynomial, etc. The use of the finite

differences method requires several QM calculations along each alchemical pathway, but

it is expected that in computational screening of systems having many possible alchemical

transmutation sites, quantum alchemy predictions using a Taylor series will require far fewer

calculations overall than that of brute-force investigations.48

D. Thermodynamic cycles to predict atomic properties

Computational applications of quantum chemistry usually make use of calculation

schemes that introduce systematic error cancellations to improve predictive power. Amongst

other uses, thermodynamic cycles are a means to introduce error cancellations. Here, ther-

modynamic cycles were used to calculate first and second ionization energies, electron

affinities, and multiplicity gaps for atoms. An example thermodynamic cycle is shown in

Figure S3, which can be used to calculate any of these four atomic properties. The top leg

(state A to B) represents the reference property calculated using QM calculations (∆E1),

and the bottom leg (state C to D) represents the target property (∆E4) predicted using

alchemical transmuation energies for the vertical components:

0 = ∆E4 −∆E1 −∆E3 +∆E2 (4)

∆E4 = ∆E1 +∆E3 −∆E2 (5)

Since vertical legs represent alchemical transmutations, the number of electrons in state

A and C must be equal, and the number of electrons in state B and D must be equal. The

alchemical transmutation energies ∆E3 and ∆E2 can be obtained using manual quantum

alchemy calculations (obtained with self-consistent field calculations using different nuclear
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charges) or quantum alchemy using a Taylor series expansion. Considering the chemical

space of this work, several possible reference states could be used for each desired target

state. For example, if the aim was to use alchemical treatments to predict the first ionization

energy of N (N → N+ + e−, ∆E4), suitable reference species for ∆E1 include: C− → C +

e−, O+ → O2+ + e−, and B2− → B− + e−, using transmutations of ∆Z = 1, -1, and 2,

respectively.

III. RESULTS AND DISCUSSION

A. Comparing QM to experiment

To first assess the accuracy of QM reference data, we used conventional QM calculations to

calculate the first and second ionization energies, electron affinities, and excitation energies

for atoms H – Ar (when applicable, Figure 1).

FIG. 1. Illustration of the chemical space sampled in this work. Atoms from H to Ar were studied

with different charge states, as labeled on the left. Examples of the first and second ionization

energies (IE) and electron affinity (EA) are shown in the solid boxes (target states). Within the

thermodynamic cycle, the possible references for each of those targets are also highlighted (dotted

boxes). The quantum alchemy schemes we use assume that the number of electrons remains constant

between the reference and targets, which limit the possible reference and target combinations.

The first ionization energy describes the energy required to remove an electron from a

neutral atom to form a cation:

X → X+ + e− (6)
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The second ionization energy describes the energy required to remove an electron from a

cation to form a dication:

X+ → X2+ + e− (7)

The first and second ionization energies were calculated for atoms with their ground state

multiplicities and compared to experimental values34. Table I reports the mean absolute

error (MAE), root mean square error (RMSE) and maximum error (max error) for all pos-

sible first and second ionization energies calculated using different basis sets (see Figure S1

illustrating errors on an individual-atom basis). As expected, calculated errors decrease as

basis set size increases from aVTZ to aV5Z, indicating that more complete basis sets are

needed to achieve highest accuracy (Figure S2). Also as expected, errors were generally

larger for the second ionization energies than the first ionization energies because the more

highly charged dication states are expected to be more challenging to accurately calculate

without a tighter core basis set. The maximum errors using the aV5Z basis set were 0.062

eV and 0.540 eV for the first and second ionization energies, respectively. However, errors

for aV5Z second ionization energy calculations for individual atoms are all below 0.078 eV

except for cases involving Na, Li, and Cl atoms, which have errors ≥ 0.1 eV (Figure S1).

For achieving higher accuracies, one might consider using even larger basis sets suitable for

additional core-valence effects51,52 or a fully saturated basis set that effectively reaches the

complete basis set limit.

TABLE I. Summary of MAE, RMSE, and maximum error by basis set in QM-calculated first and

second ionization energies compared to experiment.

IE Basis Set MAE (eV) RMSE (eV) Max Error (eV)

1st aVTZ 0.094 0.112 0.210

aVQZ 0.045 0.056 0.123

aV5Z 0.024 0.028 0.062

2nd aVTZ 0.206 0.272 0.794

aVQZ 0.136 0.215 0.708

aV5Z 0.103 0.187 0.540

The electron affinity is described as the change in energy to add an electron to a neutral
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system:

X + e− → X− (8)

Electron affinities were calculated and compared to experiment.35 Some resulting anions (i.e.

He, Be, N, Ne, Mg, Ar) do not have experimental records due to their instability,35 so these

data are excluded from the error analysis. As expected, errors in electron affinities decrease

as the basis set size increases from aVTZ to aV5Z (Table II and Figure S2). The maximum

errors in electron affinities were lower than those obtained from ionization energies, indicating

that the augmented correlation consistent basis sets are well suited for calculating electron

affinities of atoms (Figure S1).

Basis set MAE (eV) RMSE (eV) Max Error (eV)

aVTZ 0.059 0.078 0.133

aVQZ 0.022 0.029 0.061

aV5Z 0.015 0.019 0.041

TABLE II. Summary of MAE, RMSE, and maximum error by basis set in QM-calculated electron

affinities compared to experiment.

Multiplicity gaps were calculated to assess the relative energy difference between a neutral

atom’s ground state and an excited state with a different multiplicity (S):

Xground(S = y) → Xexcited(S = y ± 2) (9)

For example, the ground state multiplicity of carbon is 3, and the most easily distinguishable

excited state with a different electron spin has a multiplicity of 1. Multiplicity gaps were

calculated using PySCF by running calculations on ground states and other states having

different spin multiplicities, and these values were compared to experiment.36 Of the available

experimental data on excitation energies, we compared this data to experimental excitation

data that corresponded best to the output orbital populations from the PySCF calculations

(Table S3). Compared to ionization energy and electron affinity data presented thus far, we

observe that multiplicity gaps bring the largest errors, but again, errors were lowest overall

for the aV5Z (Table III and Figures S1 and S2). Improving the accuracy of calculations

of multiplicity gaps would likely require some form of multireference method in lieu of QM

calculations using wavefunctions based on a single determinant as well as even more extensive

basis sets than those used here.
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Basis set MAE (eV) RMSE (eV) Max Error (eV)

aVTZ 0.327 0.515 1.369

aVQZ 0.240 0.328 0.756

aV5Z 0.162 0.220 0.565

TABLE III. Summary of MAE, RMSE, and maximum error by basis set in QM-calculated spin

multiplet gaps compared to experiment.

To summarize, we determined errors in atomic energy calculations using CCSD(T) and

different basis sets with respect to experimental data. Across all data, the largest basis set,

aV5Z, resulted in the most accurate results, and only data using this basis set will be used

for the rest of this study. The data reported above should not be considered a paragon of

QM calculation data, but it instead demonstrates a useful baseline understanding of errors

that would be expected for brute force QM calculations of these atomic properties. We will

now report how well related data can be obtained using quantum alchemy predictions that

provide a means of circumventing numerous brute force calculations.

B. Manual quantum alchemy

1. Alchemical PESs

The alchemical PES relates system energies to their nuclear charges, and this can be

reflected as an (arbitrary) alchemical pathway along a variable λ. Two methods to calculate

these surfaces are to explicitly do so with QM calculations using variable nuclear charges,

which we refer to as “manual” quantum alchemy, or by quantum alchemy using a Taylor

series expansion, calculated in this work using finite differences. We first discuss the former.

We calculated the alchemical PESs for all transmutations involving atomic systems with

up to 18 electrons considering systems with charges of 0, 1±, and 2±. For example, the

16 electron cases involved Ar2+, Cl+, neutral S, P−, and Si2−. Alchemical PESs relating

these systems were constructed by starting from one of these systems (always with the
3P spin state) and then running new QM calculations with the same basis set but with

different nuclear charges assigned (i.e., manual quantum alchemy). This procedure leads

to five different alchemical PESs, each using a different element as a reference and that
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element’s basis set for all other target species. Figure 2 shows the five alchemical PESs

constructed from each reference state, and errors between each target and reference are

reported in Figure 3. The same procedure explained above was done for all systems up

to and including 18 electrons. For approximately 95% of the cases we studies, alchemical

errors increase as |∆Z| increases. (The remaining 5% of the data will be re-investigated in

future work.) This outcome is expected because the validity of using a reference system’s

basis set for any target system will decrease the larger the difference in nuclear charge

from that reference. We also find that alchemical errors are smaller for ∆Z = −1 than

∆Z = +1. Previous work using conceptual DFT in predicting atomic properties had also

seen a dependence on transmutation direction.33 This observed asymmetry in errors was

also noted in work by others on diatomic molecules, which showed that the description of

different target systems using the basis set of one reference system relied on the direction

of ∆Z.48 In the case for atoms, this appears to be due to the augmented finite basis sets

for one element generally being slightly more suitable when describing anions than cations

of another element. We note that the range of actual errors in an alchemical PES is rather

large, ranging from effectively zero to as large as hundreds of eV. Plots depicting these

alchemical errors for other reference and target combinations can be generated using our

Jupyter Notebooks available free of charge (github.com/keithgroup/qa-atoms-dimers). We

also investigated these errors for Hartree–Fock and correlation energies. Overall, we observe

similar ratios of energy to error, suggesting that quantum alchemy impacts both of these

energy predictions.

2. Thermodynamic cycles

As shown above, the errors resulting from manual quantum alchemy calculations can

be quite large. Since atomic properties will be calculated using thermodynamic cycles,

we next report the performance of manual quantum alchemy calculations when used in

thermodynamic cycles (see Figure S3). More specifically, an energy explicitly calculated

from QM in the form of an ionization energy, electron affinity, or multiplicity gap (e.g., ∆E1:

C → C+ + e−) will serve as a reference energy. Manual quantum alchemy calculations will

then be used to predict other energy contributions (e.g., ∆E2: C → N+ and ∆E3: C+ →

N2+) that allow the prediction of a target energy (e.g., ∆E4: N+ → N2+ + e−).
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FIG. 2. Alchemical PESs for 16 electron systems as generated from manual quantum alchemy

calculations. Each curve makes use of a different reference state and uses self-consistent QM calcu-

lations to evaluate energies of the other systems by changing the nuclear charges of the reference

to the appropriate target systems. Reference systems are labeled in the legend, and target systems

are labeled on the x-axis. Black lines represent the energy of the target system calculated using

QM and their own basis set.

Alchemy-based PESs can be used to predict ∆E2 and ∆E3, and together ∆E1, ∆E2, and

∆E3 are used to calculate a desired target property ∆E4 (see Equation 5). We hypothesized

that systematic deficiencies in these predictions would result in error cancellation within the

thermodynamic cycle. We now quantify errors in terms of MAE, RMSE, and max error for

the first and second ionization energies, electron affinities, and multiplicity gaps using al-

chemical PESs generated from manual quantum alchemy calculations using thermodynamic

cycles (Table IV). Overall, the resulting errors in atomic property predictions from thermo-

dynamic cycles are significantly smaller (MAE < 0.6 eV and max error < 5.4 eV) relative to

the alchemical errors discussed above (which were sometimes observed to be two orders of

magnitude larger). Specifically, the MAE for thermodynamic cycles is lowest for predictions

of the first and second ionization energies (0.143 eV and 0.356 eV, respectively), somewhat

higher for electron affinities (0.411 eV), and even higher for multiplicity gaps (0.582 eV).

These observations illustrate two main points. First, while PESs calculated using manual

quantum alchemy provide fairly significant errors across different systems as shown in Figure

3, when used within thermodynamic cycle schemes, these errors cancel to far less concerning
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FIG. 3. Plot quantifying the errors in alchemical PESs calculated using manual quantum alchemy

for the 16 electron systems shown in Figure 2. Reference systems are labeled in the legend, and

target systems are labeled on the x-axis. Alchemical errors are calculated by subtracting the target

system energy calculated using the reference’s basis set (i.e., manual quantum alchemy) from the

energy of that same target system that was calculated using the correct basis set (i.e., regular QM

calculation).

values. Second, the magnitude of these errors are clearly different depending on the charges

of the states used in the calculation, and this provides insight into how to improve or at least

systematically correct quantum alchemy-based approximations. Again, we see that MAEs

increase as |∆Z| increases (Table IV). This is expected since states involving larger changes

in nuclear charge with respect to the QM reference calculation are expected to be less ac-

curate, since the basis set used in the quantum alchemical calculation is designed for the

reference, not the target. As mentioned above with trends for alchemical PESs, we also see

that accuracy depends on the direction of ∆Z, as has been observed previously33 using other

quantum alchemy schemes. In most cases, using a reference in which the nuclear charge is

reduced to achieve the target system (i.e., ∆Z = −1) provides the most accurate predictions

(again, likely caused by finite basis sets better suited for modeling anions of adjacent atoms

rather than cations). This provides insight into what types of references and target combi-

nations may be the most reliably predicted by manual quantum alchemy calculations. For

ionization energies, manual quantum alchemy numbers are comparable to DFT accuracy, as

shown in Table IV, while the MAE for electron affinities is roughly twice as large compared
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to DFT. This points towards electron affinities being more strongly affected by the choice

of basis set than ionization energies. In the context of quantum alchemy, this means that

more complete basis sets have to be chosen for electron affinities.

Property ∆Z MAE (eV) RMSE (eV) Max Error (eV)

1st IE -1 0.038 0.074 0.219

1 0.074 0.179 0.716

2 0.320 0.756 2.929

Overall 0.143 0.447 2.929

PBE/def2-QZVP 0.174 0.224 0.441

2nd IE 1 0.126 0.197 0.498

2 0.210 0.290 0.787

3 0.758 1.341 4.589

Overall 0.356 0.785 4.589

EA -2 0.459 1.092 3.814

-1 0.370 1.064 3.861

1 0.406 0.917 3.135

Overall 0.411 1.053 3.861

PBE/def2-QZVP 0.189 0.217 0.335

MG -2 0.558 1.222 4.286

-1 0.564 1.146 3.551

1 0.495 0.869 2.015

2 0.715 1.556 5.312

Overall 0.582 1.218 5.312

TABLE IV. Summary of MAE, RMSE, and maximum error for first and second ionization energies,

electron affinities, and multiplicity gaps calculated using manual quantum alchemy with respect to

QM. DFT comparison values for PBE/def2-QZVP are shown for the subset of systems included in

the GMTKN55 data set53.
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C. Quantum alchemy using a Taylor series expansion

1. Alchemical PESs

Quantum alchemy using a Taylor series expansion can also be used to approximate al-

chemical PESs. Unlike manual quantum alchemy, which uses explicit QM calculations using

the basis set of the reference to construct the PES, quantum alchemy using a Taylor series

simply relies on a few QM calculations at and near the reference state to estimate the PES

using finite differences. To continue with the example used above, alchemical PESs can be

approximated using a Taylor series for each 16 electron system as a reference. Figure 4 shows

Taylor series-approximated PESs when Si2−, S, or Ar2+ are used as the reference. These

plots also depict the performance of various truncations of the Taylor series. This example

depicts the ability of higher orders, specifically second and third orders, to accurately predict

alchemical PESs. While it may appear that the most accurate Taylor series-predicted PES

uses S as a reference, note that this PES was constructed for ∆Z values up to and including

±2, whereas the PESs predicted using Si2− or Ar2+ as references contain |∆Z| up to and

including 4.

We find that the Taylor series at the fourth order deviates from the quantum alchemical

PES near ∆Z ≥ 2 when Si2− is used as a reference. Interestingly, this order does not

significantly deviate from the PES, even at larger ∆Z values, when Ar2+ is used as a reference.

These observations highlight two possible sources of error in predictions of PESs using a

Taylor series. First, these observations support our above discussions that the sign of ∆Z

can significantly impact predictions. As observed in Figure 2, more deviation in manual

quantum alchemy-calculated PESs is observed for the right side of the plot (for positive

∆Zs) than the left side of the plot (for negative ∆Zs). When the nuclear charge of the

reference is decreased (negative ∆Z), quantum alchemy predictions using a Taylor series are

more accurate, in line with earlier observations for mean-field calculations33. Second, the

deviations in Taylor series-predicted PESs are only observed here in for the fourth order.

This indicates that while the sign of ∆Z is important in the accuracy of quantum alchemy

using a Taylor series, another factor is at play. Lower orders of the Taylor series accurately

capture the alchemical PESs using Si2− as a reference, which suggests that observed errors

in the fourth order predicted PESs may be attributed to insufficient numerical precision
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and/or insufficiently tight convergence of reference system calculations that are required for

higher order derivatives in the Taylor series to be reliable.22 Other approaches to evaluate

higher order alchemical derivatives such as the conceptual DFT route face similar numerical

issues from the fourth order onwards33.

FIG. 4. Comparison of predicted PESs using a Taylor series expansion truncated at various orders

for (left) Si2−, (middle) S, or (right) Ar2+ as a reference. Gray solid line indicates alchemical PES

calculated using manual quantum alchemy (QA).

Recall that PESs calculated using manual quantum alchemy resulted in large errors with

respect to QM-calculated PESs. These same errors will manifest in the Taylor series-

predicted PESs when compared to QM calculations. However, quantum alchemy using

a Taylor series expansion predicts the alchemical PES calculated using manual quantum

alchemy. In other words, the alchemical PESs predicted by the Taylor series rely on the

basis set of the reference, similar to how the PES can be constructed using manual quantum

alchemy calculations where the nuclear charge of the reference was altered. Therefore, Tay-

lor series-predicted PESs in Figure 4 are compared to manual quantum alchemy-calculated

PESs. Qualitatively, we find good agreement between higher orders of the Taylor series-

predicted PESs and manual quantum alchemy-calculated PESs. Quantitatively, second and

third order truncations of the Taylor series provide the most accurate predictions of the

PESs calculated using manual quantum alchemy (Figure 5). These results provide insight

into how the Taylor series expansion calculated using finite differences may impose its own

error when predicting alchemical PESs, where as expected, increased errors are observed as

the magnitude of |∆Z| increases. However, our main goal is to assess any errors in Tay-
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lor series-predicted atomic properties when using thermodynamic cycles, which is discussed

next.

FIG. 5. Plot quantifying the errors in PESs predicted by second and third order Taylor series

expansions for the 16 electron systems shown in Figure 2. Reference systems are labeled in the

legend, and target systems are labeled on the x-axis. Errors are with respect to PESs calculated

using manual quantum alchemy.

2. Thermodynamic Cycles

To assess the performance of quantum alchemy predictions of atomic properties using a

Taylor series expansion, we now report errors in these Taylor series predictions at various

truncations of the expansion with respect to QM-calculated values. All predictions here use

thermodynamic cycles to predict atomic properties (see Figure S3). Within this framework,

∆E2 and ∆E3 are estimated using a Taylor series expansion about the references A and

B, respectively. For first and second ionization energy and electron affinity predictions, we

find that second order predictions provide the lowest overall MAE (Table V). There are two

reasons why the second order Taylor series approximation likely leads to the most accurate

results overall. First, the alchemical PESs resemble a relatively shallow parabola (Figure

2), which is modeled sufficiently well as a second-order polynomial rather than third- and

fourth-order polynomials predicted from finite differences calculations. Second, higher order

predictions were recently shown to require high numerical precision and tight convergence
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criteria,22 suggesting that in this work, higher orders require derivatives to be calculated

with much higher precision. However, since errors for the second order predictions are

relatively low, the current numerical precision used to calculate Taylor series derivatives

may be acceptable up to this order. Further, if greater numerical precision is used, this

study suggests that we may be able to further decrease errors associated with quantum

alchemy using a Taylor series and approach QM accuracies. The first order Taylor series

approximation provides the most accurate predictions compared to QM-calculated properties

for multiplicity gaps (Table V). However, errors significantly increase as the Taylor series

order increases. We suspect that the a large fraction of these errors are due to employing a

Taylor series expansion of QM calculations that did not employ multireference methods, not

due to the Taylor series expansion itself. Further, errors in the Taylor series are uncontrolled,

meaning that numerical noise in the prediction of one leg of the thermodynamic cycle may

not necessarily occur in the other vertical leg. Thus, some errors at higher order predictions

using the Taylor series may be caused by uncontrolled errors. Overall, errors due to quantum

alchemy predictions using a Taylor series expansion are higher than that of errors calculated

using manual quantum alchemy when compared to QM, which suggests that the Taylor

series expansion introduces some error of its own.

We cannot compare overall errors for each atomic property predicted by quantum alchemy

using a Taylor series because each atomic property has a unique set of ∆Z values that were

explored within the scope of this study. This is most easily depicted in Figure 1. For example,

first ionization energies used references whose nuclear charges were changed by either ∆Z =

-1, 1, or 2, whereas second ionization energies used references whose nuclear charges were

changes by either ∆Z = 1, 2, or 3. Electron affinities used references whose nuclear charges

were changed by either ∆Z = -2, -1, or 1, and multiplicity gaps used references whose nuclear

charges were changed by either ∆Z = -2, -1, 1, or 2. Therefore, we can better understand

the performance and errors of the Taylor series approximation by considering the errors as

a function of ∆Z (Tables S4, S5, and S6 report errors by ∆Z for all Taylor series orders and

Table VI reports errors by ∆Z for the most accurate Taylor series order). When the errors

are broken down by ∆Z, depending on the atomic property, the most accurate predictions

appear to depend on the order of the Taylor series approximation (see Tables S4, S5, and

S6). To be consistent across atomic properties and ∆Zs, we will only compare errors in

the Taylor series approximation using the second order for ionization energies and electron
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Property Taylor Series Order MAE (eV) RMSE (eV) Max Error (eV)

1st IE 0 14.917 16.576 50.521

1 5.328 6.728 16.978

2 2.948 6.045 21.682

3 10.636 42.447 284.473

4 181.430 726.470 4.928x103

2nd IE 0 26.061 28.941 74.353

1 12.889 17.025 54.106

2 7.756 14.621 52.571

3 39.957 149.165 980.702

4 989.062 3.823x103 2.541x104

EA 0 15.155 20.144 74.353

1 6.222 10.411 54.190

2 1.116 1.629 3.835

3 1.641 5.317 34.304

4 11.464 43.040 291.468

MG 0 12.451 26.520 137.316

1 6.579 14.677 74.357

2 447.857 2.189x103 1.643x104

3 2.289x104 9.948x104 5.650x105

4 4.341x106 2.189x107 1.644x108

TABLE V. Summary of MAE, RMSE, and maximum error for first and second ionization energies,

electron affinities, and multiplicity gaps as predicted using a Taylor series expansion truncated at

various orders with respect to QM and using thermodynamic cycles.

affinities and using the first order for multiplicity gaps.

Based on the second order Taylor series errors for ionization energies and electron affini-

ties shown in Table VI as a function of ∆Z, we have identified three main sources of error
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Propertya ∆Z MAE (eV) RMSE (eV) Max Error (eV)

1st IE -1 0.085 0.149 0.480

1 0.688 0.902 2.745

2 8.213 10.537 21.682

2nd IE 1 0.152 0.222 0.576

2 3.570 3.891 6.512

3 20.332 25.566 52.571

EA -2 0.911 1.329 3.567

-1 0.456 0.977 3.393

1 2.023 2.311 3.835

MG -2 12.765 25.183 74.357

-1 3.413 6.517 19.263

1 2.892 5.112 12.519

2 7.864 14.031 45.548

TABLE VI. Summary of MAE, RMSE, and maximum error for first and second ionization energies,

electron affinities, and multiplicity gaps as predicted using a Taylor series expansion and thermo-

dynamic cycles with respect to QM as a function of ∆Z.

aReported Taylor series data for second order (IE and EA) and first order (MG) truncations.

in predictions when using a Taylor series expansion for quantum alchemy: 1) magnitude of

change in nuclear charge from reference to target (magnitude of |∆Z|), 2) direction of change

in nuclear charge from the reference to target (sign of ∆Z), and 3) intrinsic uncertainties

associated with reference systems. Some of these trends do not hold for Taylor series predic-

tions of multiplicity gaps, which may be due to the first order truncation or a result of the

overall large errors. As mentioned previously, we attribute these large errors to using single

reference QM methods for the Taylor series expansion and since higher numerical precision

is likely required for higher orders of the Taylor series. Even with the current numerical

settings, the results in Table VI are comparable to DFT accuracy as reported in Table IV
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for ∆Z of -1.

Generally, Taylor series errors increase as the magnitude of |∆Z| increases. Considering

the Taylor series expansion, this observation is expected and has been noted in previous

studies.48 When the Taylor series is truncated after the second order, the performance will

be limited more locally to the reference system. As higher order corrections are calculated

reasonably, this error is expected to decrease, as has been shown recently.22

Our results also suggest that more work is needed to establish if the sign of ∆Z truly

impacts the intrinsic accuracy of predictions in quantum alchemy using a Taylor series

expansion. As discussed above, negative ∆Zs usually provide more accurate predictions

than their positive counterparts, but this may be due to systematically smaller errors in

anions with the finite basis sets used here. Since our work focuses on single atoms, we

hypothesize that errors that are dependent on ∆Z sign likely arise because incomplete basis

sets are used, which are not designed for handling nuclear charge changes or optimized for

charged systems. This trend was also observed in the manual quantum alchemy data, further

supporting this hypothesis (Figure S4). These errors are expected to decrease significantly

(and thus the difference in errors from positive and negative ∆Zs are expected to decrease)

as one approaches the complete basis set limit.

In addition to errors identified pertaining to the magnitude of |∆Z| and the direction of

∆Z, we also find evidence of a third source of error in predictions using a Taylor series, which

involves the intrinsic uncertainty in QM calculations of the reference. Specifically, increased

errors are observed when dianionic references are used. For example, second order Taylor

series predictions of electron affinities indicate that the MAE for ∆Z = -2 is smaller than

for ∆Z = 1. This observation is unexpected, as smaller |∆Z| values usually provide more

accurate predictions than larger ones. We attribute this observation to the use of a dianionic

reference whose nuclear charge is altered by 1. While dianions can be calculated using QM,

none of these reported here have been observed experimentally. Our results indicate that

unstable references should not be used for quantum alchemy predictions, as it is difficult to

extrapolate from an unstable reference.
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IV. CONCLUSIONS

We have quantified errors arising from manual quantum alchemy calculations and quan-

tum alchemy predictions using a Taylor series expansion for atomic alchemical PESs and

properties. We find that significant errors can arise when a manual quantum alchemy cal-

culations are used, which use a reference atom’s basis set and then alter the nuclear charge

to represent a target atom, some of which can be hundreds of eV. However, we show that

when atomic properties are calculated using manual quantum alchemy and thermodynamic

cycles, these errors are significantly reduced (MAE < 0.6 eV). This same concept is applied

to quantum alchemy predictions of atomic properties using a Taylor series expansion, where

error cancellation is observed, leading to more accurate results. While this thermodynamic

scheme has been used previously for other quantum alchemy predictions, our atomic studies

have provided a clear understanding as to why predictions using a Taylor series have been

quite promising in thermodynamic cycles. For ionization energies and electron affinities, we

find that the second order Taylor series predictions are the most accurate, and for multi-

plicity gaps, we find that the first order Taylor series predictions are the most accurate. We

attribute these findings to the fact that, while higher orders of the Taylor series expansion

should be more accurate, higher numerical precision and tighter convergence is required to

observe this in practice. Further, we identify that for quantum alchemy using a Taylor series,

there are three significant sources of error: the magnitude of the change in nuclear charge

from the reference to the target, the sign of the change in nuclear charge from the reference

to the target, and the intrinsic uncertainty of the QM-calculated reference. These sources of

error easily explain errors in ionization energies and electron affinities, but these errors do not

robustly explain trends in first order Taylor series predictions of multiplicity gaps. However,

we note that errors can be quite large for multiplicity gap predictions and that first order

Taylor series predictions provide the most accurate results, which may explain why these

errors deviate from the sources of error and trends discussed here. Taylor series predictions

are more accurate for smaller |∆Z| values, which is expected due to the nature of the Taylor

series expansion at second order approximations. The sign of the nuclear charge change

is important in the accuracies of Taylor series predictions, and we find that more accurate

predictions are provided when the nuclear charge of the reference is decreased to the target.

This directionality is attributed to the use of finite basis sets, where quantum alchemy pre-
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dictions are likely to generally be dependent on direction. Further, this directionality may

be leveraged so that reference’s are strategically chosen based on the desired target systems.

Lastly, our results suggest that the intrinsic uncertainty of reference calculations can impact

predictions using a Taylor series expansion. These errors should decrease as higher order

corrections are used, given the necessary numerical precision and tight convergence crite-

ria are reached,22 providing a positive outlook for using a Taylor series expansion. Taken

together, this work highlights fundamental areas that accuracies from predictions obtained

via quantum alchemy using a Taylor series expansion depend on and provide a foundation

for understanding more complicated systems involving atomic interactions.
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