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Summary Paragraph a-Amino acids are among the essential chemical building blocks of life.1 These 

structures are embedded in many small molecule pharmaceuticals and are the primary components of 

peptide-based therapeutics and biologics.2 Isotopically labeled a-amino acids and their derivatives have 

widespread use in structural and mechanistic biochemistry,3 quantitative proteomics,4 absorption 

distribution metabolism and excretion (ADME) profiling,5-6 and as imaging agents in positron emission 

tomography (PET) techniques.7-9 The preparation of carbon-labeled a-amino acids remains difficult and 

time consuming, with established methods involving label incorporation at an early stage of synthesis. 

This explains the high cost and scarcity of C-labeled products and presents a major challenge in 11C 

applications (11C t1/2 = 20 min). Here we report that simple aldehydes catalyze the isotopic carboxylate 

exchange of native a-amino acids with *CO2 (* = 14, 13, 11). Proteinogenic a-amino acids and many 

non-natural variants containing diverse functional groups undergo labeling. The reaction likely proceeds 

via the trapping of *CO2 by imine-carboxylate intermediates to generate aminomalonates that are prone 

to monodecarboxylation.10 Tempering catalyst electrophilicity was key to preventing irreversible 

aldehyde consumption. The pre-generation of the imine carboxylate intermediate allows for the rapid 

and late-stage 11C-radiolabeling of a-amino acids in the presence of 11CO2. 

 

 The preparation of molecular targets where a native isotope is substituted with a heavier or 

radioactive isotope is essential to drug development and medical imaging.11 It is often preferable to use 

carbon-based isotope labels rather than hydrogen isotopomers (2H or 3H) because carbon labels are 

not prone to washing out, and they do not cause metabolic shifting.12 Despite over 70 years of study, 

the synthesis of a-amino acids incorporating carbon isotopes remains a challenge and generally 

involves the early introduction of the *C label into a precursor molecule followed by several additional 

synthetic steps (Fig 1a). Representative methods include substitution or addition reactions of 

electrophiles with *CN– sources,13 the early-stage addition of simple alkyl or aryl organometallics to 

*CO2,14 alkylations using labeled electrophiles like *CH3I,15 and sequences that start with *C-acetate.16-

17 Auxiliary-controlled asymmetric syntheses of *C-amino acids exist, however they occur with low to 

moderate radiochemical yields and require time-consuming, multi-step approaches.18-20 The 

biosynthesis of labeled a-amino acids by fermentation in the presence of *C-glucose or *C-acetate is 

possible but requires specialized equipment, carefully optimized pilot studies, and tedious isolation and 

purification of labeled products.5, 21-22 Furthermore, the short half-life of 11C (20 minutes) makes the multi-

step preparation of amino acid targets needed for PET problematic. Current approaches are restricted 

to cyanation/hydrolysis reactions using 11CN–, and for certain products like 11C-methionine, methylation 

with 11CH3I.23-24 Additionally, 11C glutamine or glutamate can be prepared by conjugate additions of 11C-

acrylates.25 In this regard, a general approach to prepare C-labeled a-amino acids that uses a late-stage 
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label incorporation strategy conceptually analogous to hydrogen isotope exchange26-28 would help 

accelerate drug development and would allow the expansion of amino acid radiotracers in PET imaging. 

 Carbon dioxide is the primary source of all isotopically labeled carbon reagents.14 The use of *CO2 

in late-stage labeling applications is difficult because of the lack of methods for its effective capture and 

incorporation without resorting to the use of highly nucleophilic reaction intermediates and large 

excesses of *CO2.29-30 In concert with Audisio and co-workers, we established that certain electronically 

stabilized carboxylic acids, like aryl acetates and malonic half-esters, undergo reversible 

decarboxylation in polar aprotic solvents.31-32 a-Amino acids lack the required anion stabilizing ability to 

undergo decarboxylation under normal laboratory conditions and their spontaneous decarboxylation is 

exceptionally slow.33 Net carboxylate exchange reactions34 of carboxylic acids using N-

hydroxyphthalimide derivatives in the presence of Ni-promotors can be used to generate [13C]-C5-

labeled glutamic acid, however C1-carboxylate and amino group protection is required and the process 

is not general for other amino acids.35  

 Nature catalyzes CO2 extrusion from a-amino acids with decarboxylases, which convert amino 

acids to Schiff bases (imines) via condensation with pyridoxal phosphate (Fig 1b). After condensation 

between an a-amino acid and the aldehyde unit of pyridoxal phosphate, decarboxylation leads to an 

aza-allyl quinonoid intermediate which is subsequently protonated and hydrolyzed to give an amine 

product.36-37 In contrast, the small molecule catalysis of a-amino acid decarboxylation is known but 

occurs only at high temperatures (150 ºC).38 Given the propensity of a-amino acid derived imino 

carboxylic acids to undergo a-H/D exchange in the presence of D2O39 and the potential for 

decarboxylation to be reversible in a range of contexts,40-42 we viewed this reaction manifold as an 

opportunity to develop methods for the direct C1-labeling of a-amino acids using *CO2. This process 

can be realized by using simple aryl aldehyde catalysts (Fig 1c). The reaction is general for most 

proteinogenic substrates and can be modified to accommodate (radio)labeling with 14C, 13C, or 11C.  
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Figure 1 A Overview of methods to prepare C-labeled a-amino acids. B Simplified mechanism for pyridoxal 
phosphate catalyzed a-amino acid decarboxylation with aromatic L-amino acid decarboxylase. C Aldehyde-
catalyzed C1-carboxylate exchange of a-amino acids. 
 

 Figure 2a provides an overview of experimental parameters important to observing productive a-

amino acid carboxylate exchange with externally supplied 13CO2. In the presence of 20 mol% 4-

anisaldehyde and 40 mol% Cs2CO3 in DMSO at 70 ºC, C1-exchange in phenylalanine to generate 1-

[13C]-phenylalanine is observed with 75% 13C incorporation and 84% yield when ~8 equivalents of 13CO2 

are supplied. Side products, including aldehyde-trapped species and protodecarboxylation, are detected 

but in <5% under the standard conditions (see the SI for details). Other polar aprotic solvents (DMF or 

DMA) can be used but the extent of incorporation is decreased. The reaction does not occur in MeOH 

or H2O and unlabeled substrate is quantitatively recovered. Trace carboxylate exchange is detected at 

room temperature with near-quantitative recovery of substrate, while at 130 ºC high incorporation and 

yields are observed after 30 minutes using 75% catalyst (60% incorporation, 80% yield). When 

approximately one equivalent of 13CO2 is supplied, exchange equilibrium is nearly achieved with a 

moderate reduction in yield (40% incorporation, 65% yield). Catalyst loadings as low as 5 mol% can be 

used in combination with higher reaction temperatures (90 ºC). The addition of one equivalent of water 

under the standard conditions slows reactivity, presumably by shifting the equilibrium away from imine 

condensation intermediates, however, it does not increase the amount of a-amino acid 

protodecarboxylation. Without catalyst, no isotope exchange is observed up to 160 ºC (see the SI for 

additional details and control experiments). 
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 4-Anisaldehyde is the optimal catalyst for carboxylate exchange because of its balanced 

electrophilicity. The use of more electrophilic aryl aldehyde catalysts43 resulted in lower yields due to 

competitive trapping, while less electrophilic catalysts mediate slow rates of isotope exchange (Fig 2a). 

Pyridoxal phosphate, alkyl aldehydes, and various ketones catalyze carboxylate exchange but only with 

low levels of incorporation (8–14%). The impact of catalyst electrophilicity on reaction rates and a-amino 

acid recovery was examined in more detail (Fig 2b, note that reaction sampling decreases final 13C 

incorporation compared to standard conditions in a sealed vial). 4-Anisaldehyde provided relatively slow 

rates of exchange but exhibited a long lifetime, ultimately resulting in a larger amount of labeled product. 

The more electrophilic catalysts 4-CF3- or 4-CN-benzaldehyde gave fast initial rates of carboxylate 

exchange but are consumed quickly in the reaction (<20% catalyst remains after 1 hour, compared to 

60% for 4-anisaldehyde). This catalyst decomposition results in worse terminal 13C incorporation and 

reduced phenylalanine mass balance (~30% incorporation and 80% yield). 

 The process can be readily modified to introduce 14C-labels for applications in radiolabeling 

studies (Fig 2c). 14CO2 is generated in-situ from Ba14CO3 and can be used to label Phe with 53% 14C 

incorporation, which was obtained in 51% yield after HPLC purification (14% overall radiochemical yield 

from Ba14CO3). The reaction cleanly generates 14C-Phe with no significant radiolabeled side-products 

(Fig 2c, inset).  
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Figure 2 A Overview of impact of reaction parameters and catalyst structure on the carboxylate exchange of a-
amino acids. B Kinetic analysis and lifetime of aldehyde catalysts on the carboxylate exchange of phenylalanine. 
C Translation of a-amino acid carboxylate exchange to 14C radiolabeling.  
 

 The aldehyde catalyzed carboxylate exchange is amenable to labeling a diverse range of 

unprotected a-amino acids, including most proteinogenic substrates and non-natural variants containing 

potentially reactive functional groups (Fig 3). Aliphatic and aromatic a-amino acids can be labeled in 

31–75% 13C-incorporation with >50% yield (phenylalanine, alanine, leucine, glycine, tyrosine, 

tryptophan, methionine; 1–3, 6–9) (Fig 3a). In most cases, products were isolated as the corresponding 

N-tert-butyloxycarbonyl (N-Boc) products for convenience. b-Branched aliphatic substrates like 

isoleucine (4 23%), valine (5 18%), and proline (10 9%) were labeled to a lower extent under modified 

conditions. Acidic or basic side-chain groups were generally well tolerated to give 28–81% incorporation 
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of label (arginine, lysine, glutamic acid, asparagine, glutamine; 12–14, 16–17). Aspartic acid (15) and 

serine (11) underwent successful exchange but to a lower degree (18% and 27% respectively). 

Nonetheless, in all cases except histidine, cysteine, and threonine, levels of isotope incorporation useful 

for ADME studies were obtained.35 In cases where very high label incorporation is needed, the product 

can be re-subjected to the exchange conditions, for example in the case of Phe, where 96% 13C labeling 

and 54% yield is achieved after a second exchange cycle. 

 Racemization of the a-amino acid occurs under the standard reaction conditions, as expected for 

reactions proceeding by imino carboxylate condensation intermediates.44-45 Enantioenriched labeled 

products (³94% ee) can be readily obtained by established approaches. Chymotrypsin catalyzed ester 

hydrolysis allowed labeled L-phenylalanine to be obtained in 99% ee (1a 86% 13C incorp., 26% overall 

yield). Acylase catalyzed hydrolysis of N-acetyl leucine was used to prepare L-leucine in >99% ee (3a 

38% 13C incorp., 38% overall yield). In cases where it is preferable to achieve >50% product yields, Ni-

mediated dynamic kinetic resolution (DKR)46 can be used, as demonstrated for L-phenylalanine (1a 63% 
13C incorp., 70% overall yield, 97% ee) and L-methionine (9a 58% 13C incorp., 54% overall yield, 94% 

ee). Chromatographic resolution can also be readily accomplished from the corresponding Fmoc-Phe 

derivative (L-1b, 96% ee). 

 The exchange process is not impeded by various functional groups, as seen in phenylalanine 

derivatives containing fluoride, bromide, and iodide groups, (21–23), or azide (24), nitro (25), and 

boronic acid groups (26) (Fig 3b). Other aromatic containing a-amino acids, including thyroxine (27), 3-

(2-naphthyl)alanine (28), quinolone-derivative (29), and homophenylalanine (30) undergo labeling with 

useful yields and incorporation. Alkyl-substituted a-amino acids N6-benzoyl lysine (31), glutathione (32), 

norvaline (33), and norleucine (34) are each amenable to carboxylate exchange. Cyclopropyl (35) and 

terminal alkyne groups (36), along with selenomethionine (37) smoothly undergo isotopic labeling under 

the standard conditions. Labeled targets containing protic and/or electrophilic groups would be difficult 

to prepare by de-novo methods without chemical protection. Substrates that do not undergo carboxylate 

exchange include b-amino acids, N-protected a-amino acids, and dipeptides (see the SI for details). 
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Figure 3 A Aldehyde-catalyzed carboxylate exchange of proteinogenic a-amino acids with 13CO2. B Scope with 
non-proteinogenic a-amino acids. C a-Amino acid scope of 11C labeling. RCY = TE × radiochemical purity. See 
the SI for complete details. [a] Yield determined by 1H NMR spectroscopy. [b] From pre-formed imine. [c] 75 mol% 
catalyst, 100% Cs2CO3, 0.017 M.  
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 Modification of the reaction conditions enables direct radiolabeling of a-amino acids using 11CO2. 

To promote faster reactions, pre-formed imine carboxylates were generated quantitatively by 

condensation of a-amino acids with aryl aldehydes in basic MeOH47 and examined as reagents for 

carboxylate exchange. Benzaldehyde-derived imines outperformed 4-anisaldehyde or 4-

cyanobenzaldehyde analogs to give 33% 13C incorporation when using 3 equivalents of 13CO2 after 30 

minutes, which could be improved to 62% incorporation at 90 ºC (Extended Data Fig 1a). Translation of 

these conditions allowed for preparation of [11C]phenylalanine in 24% radiochemical yield (RCY). 

Reactions of the imine carboxylate salt were superior to those using catalytic amounts of aldehyde under 
11CO2 conditions (Extended Data Fig 1b). The 11C radiolabeling of a-amino acids is general to aromatic, 

aliphatic, polar sidechain containing products including tyrosine, tryptophan, leucine, methionine, lysine, 

glutamine, as well as non-proteinogenic substrates thyroxine, and glutathione (Fig 3c). The speed and 

operational simplicity of the 11C isotope exchange reaction provides opportunities for use in positron 

emission tomography. 
 The mechanism for carboxylate exchange likely occurs by the carboxylation of imino-enol or imino 

dienolate intermediates48 followed by decarboxylation10 (Fig 4a, i-1 to 1), rather than by trapping from 

an aza-allyl anion formed by an initial decarboxylation (Fig 4a, i-3).49 When D2O is added to a reaction 

conducted under otherwise standard conditions using 1, products arising from both H/D and 12C/13C 

exchange are observed (Fig 4a).50 The presence of D2O slows the rate of carboxylate exchange, 

however the amount of proto- or deuterodecarboxylation product 38 remains low (<1%). Assuming the 

exchange processes occur from a common intermediate, these results suggest an aza-allyl anion is not 

an intermediate formed during the reaction. Electrophilic catalysis is established to promote the fast 

monodecarboxylation of aminomalonates,10, 51 however, attempts to determine the rate of 

decarboxylation of i-2 under the standard conditions were thwarted by a lack of solubility. Any amine 

generated from a-amino acid protodecarboxylation is unable to re-enter the exchange pathway via 

carboxylation (Fig 4b).49, 52 Acetone catalyzes the carboxylate exchange, leading to 14% exchange in 1, 

while non-enolizable a-amino acid 2-aminoisobutyric acid (39) was unreactive to carboxylate exchange 

despite the ability to form a benzylic stabilized aza-allyl anion by decarboxylation of imine i-4 (Fig 4c). 

The positional selectivity of carboxylation from pseudo-symmetrical intermediates generated by 

condensation between 4-bromophenylalanine (22) and phenylacetaldehyde also supports the formation 

of a malonate intermediate i-6 rather than an aza-allyl intermediate i-7 that would generate some amount 

of phenylalanine (Fig 4d). When conducting carboxylate exchange reactions, the corresponding 

arylglycine regioisomers were not observed at various aldehyde loadings, further suggesting an aza-

allyl nucleophile like i-3 is not generated (see the SI for details). An aminomalonate mechanism for 

carboxylate exchange helps to explain the relative mildness in conditions compared to non-enzymatic 
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protodecarboxylation reactions38 and may aid in the development of related a-amino acid 

functionalization reactions.  

 

 
Figure 4 Mechanistic studies probing the nature of isotopic carboxylate exchange. A Concurrent H/D exchange 
under carboxylate exchange conditions. B Imine substrates do not carboxylate under the standard conditions. C 
Carboxylate exchange occurs only at the enolizable a-carboxylate. D Generation of Phe (1) is not observed in 
potential crossover studies. All reactions conducted in DMSO with Cs2CO3, protonation steps omitted for clarity, 
Ar = 4-OMe-C6H4. 
 

 In conclusion, the carboxylate exchange of a-amino acids with *CO2 can be catalyzed by aryl 

aldehydes to give general access to C1-labeled products in a direct and operationally trivial manner. 

Productive catalysts must have balanced electrophilicity to enable carboxylate exchange without being 

irreversibly consumed in the process. Given the widespread use of labeled a-amino acids in discovery 

science, drug development, and medical imaging, we expect this finding to have immediate application. 
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Extended Data Figure 1 A Development of fast conditions for carboxylate exchange. B Translation of the reaction 
to radiolabeling with 11CO2. 
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