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Abstract

Determination of the atomic structure of solid surfaces is a challenge that has resisted solu-

tion despite advancements in experimental methods. Theory-based global optimization has the

potential to revolutionize the field by providing reliable structure models as the basis for inter-

pretation of experiments and for prediction of material properties. So far, however, the approach

has been limited by the combinatorial complexity and computational expense of sufficiently ac-

curate energy estimation for surfaces. We demonstrate how an evolutionary algorithm, utilizing

machine learning for accelerated energy estimation and diverse population generation, can be

used to solve an unknown surface structure—the (4 × 4) surface oxide on Pt3Sn(111)–based

on limited experimental input. The algorithm is efficient and robust, and should be broadly

applicable in surface studies, where it can replace manual, intuition based model generation.
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Introduction

The atomic structure of surfaces and interfaces critically underpins our understanding of the

performance of various materials, from heterogeneous catalysts and electrocatalysts to semi-

conductor electronics and photovoltaics. Despite the enormous importance of such fundamental

information and the great advances in experimental instrumentation over the past decades, struc-

ture determination for complex surface reconstructions and ultrathin films remains a significant

challenge, and many structures remain unsolved. Surface crystallography is labor intensive and

prone to error, even when relatively simple structures are considered; complexity, disorder and

heterogeneity can easily render such problems intractable. This naturally hinders our ability

to interpret experiments that aim to establish structure-performance relationships for these ma-

terials, and especially our ability to predict and explain such relationships through quantum

chemical modelling.

The oxidation of platinum-tin alloys provides a clear example of these limitations. Though

the materials are of importance for a variety of catalytic processes,1–6 the structures of oxides

formed on their surfaces and the details of metal-oxide interfaces involved remain poorly un-

derstood at the atomic level. This is despite several attempts, using a variety of techniques, to

characterize experimentally the well-defined oxide layers formed on single crystal surfaces.7–12

A promising solution is to couple experiments closely with atomic structure prediction based on

theory-driven global optimization. Density functional theory (DFT) based global optimization

strategies have played an increasing role in structure prediction efforts since the early 1990s,13

partly replacing labor intensive, intuition guided strategies. These optimization methods have

gradually improved to handle increasingly large systems. Among others,14 evolutionary strate-

gies15–17 have been particularly successful on systems ranging from crystals to surfaces and

nanoparticles, etc.18

Applicability to larger systems is, however, limited by the computational cost. This is most

pronounced for systems involving a large number of atoms, as is the case for surfaces, which
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require inclusion of a certain number of bulk layers.19–21 As a solution, a new generation of

structure prediction methods22–24 have achieved orders of magnitude reductions in computation

time by partly replacing the expensive DFT potential with a machine-learned approximation

refined during the search. Nevertheless, for many systems of interest, the cost of such com-

putations remains high, and the exponentially-scaling complexity of the configuration space

increases the risk that the global optimum structures are not found.

We demonstrate here the successful application of a machine learning enhanced algorithm

to the problem of oxidized platinum-tin. Our approach makes use of the recently developed

GOFEE algorithm,24 extended with a new and powerful technique for sampling the space of

already identified structural candidates. The GOFEE method accomplishes a massive increase

in efficiency while maintaining accuracy at the ab initio level. It incorporates, alongside plane-

wave DFT, a machine-learned total energy surrogate model which is actively improved dur-

ing an evolutionary search. This inexpensive model replaces DFT where high accuracy is not

needed: in screening highly unstable candidate structures and in initial relaxation of structures

toward local minima. Exploration of the configuration space is driven by uncertainty estimates

from the surrogate model.

The extension of the method used here incorporates a feature based k-means clustering

procedure in the population generation. Aside from one previous study,25 where clustering

was employed to modify the fitness function used for deciding which population members to

extract for offspring creation, we are not aware of other work applying clustering to improve

population diversity in EA based atomistic structure search. Clustering has successfully been

used to promote diversity in other fields.26–28 In these works, however, clustering was applied

only to the very recent search history and much of the data accumulated during the search was

thus left unused. The current approach, in contrast, retains the entire search history and thus

utilizes all available data. This ensures structural diversity during the search, further improving

reliability, and enables identification of the targeted surface structure among global optimum
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Figure 1: (a) Scanning tunneling micrograph showing the (4 × 4) oxide phase partially cov-
ering the Pt3Sn(111) surface. Inset is a ball model of the metal surface showing the unit cell
dimensions of the alloy surface and the surface oxide. (b) Conductive non-contact atomic force
micrographs of the (4 × 4) phase showing the tunnel current and frequency shift acquired si-
multaneously.

structures found for a range of compositions.

Results

The system under consideration here is the (111) surface of Pt3Sn, the structure of which is

shown in Fig. 1(a). This surface has been identified as having particular relevance for elec-

trocatalytic reactions,29 and serves as a useful model for realistic materials. Oxidation of this

surface results in formation of a well ordered oxide with (4 × 4) periodicity relative to the un-

derlying face centered cubic metal lattice. Scanning probe microscope (SPM) images of the

oxide (Fig. 1) show an array of protrusions, 3 per unit cell, in a chiral arrangement suggesting

the symmetry of plane group p3.

Attempts at structure determination for this phase have been made using several techniques,

including scanning tunneling microscopy (STM), low energy electron diffraction (LEED), X-

ray photoelectron spectroscopy and diffraction (XPS/XPD) and low energy ion scattering (LEIS),10, 11
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Figure 2: Sketch of the population scheme. For simplicity, data from a GOFEE search for 2D
Sn3O6 clusters with Npop = 5 are shown. First, the current set of DFT evaluated structures are
represented in a feature space and are subsequently clustered using the k-means++ algorithm,
to identify groups of related structures. The population is then created by selecting one repre-
sentative structure from each cluster.

and further attempts have been made to characterize very similar tin oxide phases formed by

deposition and oxidation of Sn on Pt(111).7, 9 Though it has been established that the structure

is terminated by tin and oxygen,11 the tin in the structure shows an XPS binding energy very

close to that of tin in the alloy, hindering characterization of tin in the oxide and leading to

the suggestion that most of the tin in the structure is in fact still alloyed with platinum, in a

so-called ‘quasimetallic’ state.9 The dominance of only three protruding atoms–of unknown

type–per unit cell in scanning probe micrographs and the absence of other features that would

guide the construction of atomic models has further hindered structure determination by direct

deduction.
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As the composition of the (4 × 4) phase can not be deduced from experiment, the structure

search algorithm must be applied to a range of Sn:O combinations, and afterward subjected to

thermodynamic analysis or comparison with experimental data to identify a likely candidate.

The robustness of the search is therefore critical; the correct global minimum-energy structure

must be identified for each composition if it is to be applied with confidence. In evolutionary

algorithms, the concentration of members in the population with similar structural features can

easily lead to premature convergence at a local minimum. This problem becomes increasingly

pronounced for more complex systems, which exhibit many structurally diverse minima close in

energy to the global minimum. The use of a machine-learned surrogate potential for candidate

screening, as applied in GOFEE, increases the risk still further, as well-explored regions of the

search space exhibit artificially lower predicted energies compared to the more conservative

predictions in unexplored regions, thus reinforcing the bias toward structures that have already

been tested.

The new population scheme which we have implemented to address this problem is depicted

in Fig. 2, where we illustrate the approach with a 2D Sn3O6 cluster. The population is generated

from the full set of structures evaluated by DFT so far, after exclusion of those more than a fixed

energy ∆E above the current lowest-energy structure. The remaining structures are represented

in feature space and divided using the k-means++ clustering algorithm,30 which arranges them

into families sharing similar characteristics. The population is generated by selecting the lowest-

energy member of each family, promoting convergence to multiple local structural minima.31

In this way, the diversity of the population is maintained during the course of the search and

sensitivity to the exploration diminishing effects inherent to the algorithm is reduced.

In our search for the structure of the (4 × 4) phase, we applied this algorithm using ∆E =

5 eV and a population size Npop = 10. We assumed a (4 × 4) periodic unit cell and a substrate

consisting of bulklike Pt3Sn(111). The initial range of Sn:O compositions selected for testing

was based on the hypothesis that the (4× 4) phase consists of a Sn2+ oxide monolayer of some
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Figure 3: (a) Minimum energy structures found by the search algorithm for various composi-
tions of Sn and O on Pt3Sn(111). (b) Calculated free energies for the different structures under
the experimental conditions (10−5 mbar, 600 ◦C), relative to the Sn11O12 structure. (c) Model
of the lowest-energy Sn11O12 structure, corresponding to the observed (4 × 4) phase.

sort, taking inspiration from bulk SnO and SnS, which are composed of van der Waals sheets,

with Sn2+ in 4-fold and 3-fold coordination, respectively. Supported on Pt3Sn(111), such sheets

would exhibit tin densities between 8 and 13 atoms per (4×4) unit cell. With this density range

in mind and supposing somewhat higher coverages of oxygen compared to tin due to presumed

oxygen affinity of tin in the substrate, we selected 16 combinations, with 9-12 Sn and 11-14 O

per cell.

The search algorithm was then executed for all of these compositions and repeated three

times from independent starting configurations to check for consistency. For all but three com-
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positions (Sn9O11, Sn9O13 and Sn9O14), the same minimum-energy structures were found in all

four runs of the search. The lowest-energy structures found are depicted in Fig. 3. Most of the

structures found exhibit a common feature: a minority of Sn atoms protrude from the surface

and show a lateral spacing of ∼5-6 Å, consistent with SPM images of the (4 × 4) and related

phases. The remaining Sn atoms are at the metal interface, with O atoms forming a layer in be-

tween. One of the 16 structures found exhibits the p3 symmetry expected from experiment: that

with a composition Sn11O12, with three protruding Sn atoms, 8 Sn atoms at the interface, and

12 nearly coplanar O atoms in between. Estimates of the free energies of the different structures

under the conditions of the experiment also indicate that the phase is the most stable (Fig. 3b).

Surface X-ray diffraction (SXRD) confirms this structure and enables further refinement.

Fig. 4(a) shows fits to measured rod profiles following structure refinement with the theory-

based Sn11O12 structure as the starting point. The fits to the experimental rod profiles are

excellent, and the in-plane structure factors calculated for the relaxed model reproduce the ex-

perimental ones as well (Fig. 4(b)). During refinement, the overlayer atoms moved toward

the surface by 0.1-0.2 Å, consistent with the well-known underbinding of the employed DFT

functional, but the final structure is otherwise nearly identical to that produced by the search

algorithm. Simulated AFM images for the structure (Fig. 4(c)) also show good agreement with

experiment, exhibiting the characteristic chiral pattern with 3 protrusions per unit cell, corre-

sponding to the three protruding Sn atoms in the structure.

Discussion

The (4 × 4) phase can be described as a Sn2+ surface oxide–a contiguous two-dimensional

network related to SnO, but with a structure strongly influenced by bonding with the metal

substrate. The basic structural element is Sn in 3-fold oxygen coordination, with a strongly

asymmetrical pyramidal geometry. This geometry differs somewhat from that found in bulk

SnO, a layered material composed of buckled SnO sheets where Sn adopts a 4-fold pyramidal
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Figure 4: (a) Measured (black) and fitted (blue) X-ray diffraction rod profiles for the (4 × 4)
phase. (b) Reciprocal space map showing the measured and calculated in-plane X-ray structure
factors for the (4 × 4) phase. Dashed lines and arrows indicate the (2 × 2) unit cell of the
ordered alloy surface used as a reference. (c) Simulated AFM frequency-shift image of the
Sn11O12 structure, based on DFT calculations.32

geometry. The trigonal pyramidal geometry found here is nevertheless typical of Sn2+, as seen

in halides and in tin(II) sulfide, and attributed to the occupation of a stereoactive lone pair

orbital derived from the Sn5s state. This geometry has also been observed or predicted in

oxidic phases, including layered, mixed-valence Sn3O4,33 in polyoxometalate clusters,34 and in
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the surface layers of reduced SnO2(101)35 and SnO2(110).20

Bonding between Sn in the oxide layer and Pt in the substrate is also typical of Sn2+. The

strength of these bonds is reflected in outward buckling of surface Pt (opposite to the clean

Pt3Sn(111) surface, where outward buckling of Sn is observed36), and in contracted Pt-Sn bond

lengths similar to what is found in organometallic clusters.37, 38 The solution of the structure

of the well-ordered (4 × 4) phase thus yields the likely generalization that strong interfacial

Pt-Sn2+ bonding is a characteristic feature of Pt/SnO interfaces. The particular structure found

here results from optimization of these bonds at the (111) surface, constrained by preferred

Sn-O bond geometry.

Although these structural features can be rationalized rather easily in hindsight, the structure

itself could not be directly deduced from experiment or guessed based on chemical intuition,

primarily due to its multi-layered arrangement and relatively low symmetry. An automated

search method based on theory can, however, be used to generate physically plausible struc-

tural candidates for comparison with experiment, leading to the correct structure model. This

methodology depends on a search algorithm that is both efficient and reliable. Our strategy

utilizes the full history of the evolutionary search both to accelerate structure evaluation and to

maintain a sufficiently diverse population so that premature convergence is avoided. With this

we take a step towards optimal search algorithms in which all components leverage the available

data to maximum benefit.

The (4×4) surface oxide on Pt3Sn(111) is relatively complex, but it nevertheless represents

a rather ideal case, where quantitative diffraction measurements can be used to verify the result

of the structure search. In general, surfaces can exhibit considerable degrees of disorder, with

various coexisting phases and minority structures that cannot be characterized in detail by aver-

aging techniques. The combination of scanning probe microscopy with theoretical simulations

is often the only viable methodology in these cases, resulting in considerable uncertainty and

occasionally gross misinterpretation. A reliable global optimization method like GOFEE can
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enable surface studies of this type to be conducted with much greater confidence.

Broad application of this approach, however, will also require the ability to characterize

larger-scale features like defects and superstructures. For this, the search algorithms must be

able to scale toward hundreds of atoms, resulting in drastically more demanding searches due to

the combinatorial scaling of the configuration space and the increased cost of DFT evaluations.

This will require even more effective data utilization in search strategies, where the efforts pre-

sented in this work, along with recent advances in transferable machine learning potentials39–41

and reinforcement learning protocols42 may pave the way for such scalable approaches. Av-

enues for continued progress in search methodologies are thus foreseen to ensure improved

thoroughness and efficiency of automated structural search methods.

Conclusions

Surface structure determination is a notoriously difficult problem due to the limitations of ex-

perimental techniques and the high cost of accurate theoretical modeling. In this work we have

demonstrated how a machine learning driven search algorithm can be used to overcome such

limitations, through the characterization of an experimentally observed (4 × 4) surface oxide

on Pt3Sn(111). For this application, we have extended a previously reported algorithm with

a clustering-based strategy to maintain diversity in in search population which leverages the

full history of structures visited in the search. The result is a structure prediction algorithm

that is both robust and efficient, and represents a significant improvement over the traditional

search method involving generation of trial structures manually based on intuition. This should

increase the efficiency and reliability of surface studies in the future.
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