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Abstract

Computational studies of large molecular systems are often hindered by resource

constraints, such as the available computational time. A common approach to reduce

the computational cost is to use a coarse-grained description instead of an all-atom

representation. However, such a simplification requires careful consideration of the

coarse-graining scheme to identify potential artefacts introduced and the limitations

of the model. In this contribution, we use the computational energy landscape frame-

work to explicitly explore the energy landscapes for a coarse-grained (HiRE-RNA) and

an all-atom potential (AMBER) for an example system, the Aquifex aeolicus tmRNA

pseudoknot PK1. The method provides insight into structural, thermodynamic and

kinetic properties within a common framework, and allows for a comparison of a vari-

ety of commonly computed observables, demonstrating the usefulness of this approach.
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For the specific case study, we observe that both potentials exhibit a number of com-

mon features, highlighting that the coarse-grained model captures essential physical

features of the system. Nonetheless, we observe shortcomings, and we demonstrate

how our approach allows us to improve the model based on the insight obtained from

the computational modelling.

1 Introduction

The functional importance of RNA in transcription for protein synthesis in living cells is well

known. However, RNA molecules are not limited to this important role, but they are also

involved in many regulatory processes.1–3 While the function fulfilled by RNA molecules is

strongly related to their three-dimensional structure,4 RNA molecules exhibit intrinsically a

structural plasticity, which leads to a number of possible configurations of comparable energy.

This observation is strongly linked to the underlying energy landscape, which in these cases

consists of multiple funnels, a feature strongly associated with multifunctionality.5 This

relationship has been shown explicitly for a range of systems, including RNA tetraloops6

and 7SK RNA.7,8

While this multifunctionality proves highly important in our understanding of the role

non-coding RNA plays in nature, it leads to a fundamental problem for experimental and

computational studies. The multifunnel character of the underlying energy landscapes ex-

hibits high energy barriers, which result in slow transition processes and kinetic trapping.

This observation is often framed in terms of the kinetic partition mechanism,9 and lies

at the bottom of many seemingly contradictory observations for example as reported for

G-quadruplexes.10 In silico, the key consequence of this behaviour is an increased compu-

tational cost and the requirement to use enhanced sampling algorithms to obtain a faithful

representation of the thermodynamic and kinetic behaviour of the molecules studies.

A common strategy employed to overcome these challenges is the use of coarse-grained

(CG) potentials in the study of RNAs. The advantage of this approach is twofold: Firstly,
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the reduced number of particles lowers the computational cost required, allowing for the

investigation of larger systems. Secondly, the coarse-graining smooths the energy landscape,

allowing the sampling to converge faster. The popularity of this approach can be seen in the

large number of available CG models for RNAs.11–16

Usually these CG representations are designed with a particular application in mind,

and there is no unique way to derive a CG representation for RNA.17 Given an appropriate

representation, CG models are successful in providing insight into multifunctional systems.18

Nonetheless, how faithful a CG model represents a system will strongly depend on a number

of factors,17 and careful consideration should be given before CG representations are used.

Given that many such models are based on specific experimental data used to derive the

necessary parameters, how well a CG representation matches the underlying physics is not

obvious.19

Of course this problem is universal for parameter based potentials, and applies for all atom

force fields as well. However, the coarse-graining may introduce artefacts due to the required

dimensionality reduction, or rely on coarse-graining parameters without clear correspondence

to an all-atom representation.19 A careful evaluation of CG models is therefore required.

The potential energy landscape for any molecular system contains all necessary infor-

mation to calculate thermodynamic, kinetic and structural properties. Due to the unique

topography associated with the complex interactions encountered in biomolecules the land-

scape in itself provides an interesting method of characterisation for a molecular system.

Through the potential energy landscape framework20,21 we have direct access to the energy

landscape and its topography, as well as thermodynamic, kinetic and structural observables.

We therefore propose that explicit explorations of energy landscapes of RNA molecules us-

ing CG and all-atom representations will provide a unique way of evaluating the validity of

CG models. While all-atom force fields also suffer from shortcomings, they are much better

studied, and the physical motivation behind them is better understood.17

In this study, we apply this approach to a small RNA pseudoknot using an AMBER
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all-atom force field in comparison with the coarse-grained representation given by HiRE-

RNA.11,12 We observe that the proposed comparison methodology provides us with a large

range of observables to compare, and we further report a good agreement between the CG

and all-atom models for the chosen example system for some key observables, and indicate

how future development of the CG force field may be driven by such a comparison of energy

landscapes. In particular, we discuss a variation of HiRE-RNA, where we alter the stacking

and torsional potential through the introduction of additional parameters to overcome some

shortcomings observed in the CG model.

2 Methodology

2.1 The example system

The example system chosen for this work is the Pseudoknot1 (PK1) from the thermophilic

bacterium A.aeolicus, which is predicted to be the smallest of all transfer-messenger RNA

(tmRNA) with a size of 21 nucleotides, and has been studied by NMR experiments.22 PK1

is involved in trans-translation, a ribosomal rescuing mechanism in bacteria.23 There are

a number of reason for our choice of this system. RNA pseudoknots are a commonly en-

countered motif, but the motif is not sequence dependent and therefore poses a challenge to

RNA structure prediction.24–26 At the same time, pseudoknots are involved in a large num-

ber of important processes,1 such as regulation of gene expression,27 splicing,28 telomerase

activity,29 frameshifting,30–32 and ribozyme catalysis.33 This importance has lead to a large

number of studies, providing us with experimental insight into the behaviour of RNA pseu-

doknots, which can be applied in analysing our results. Last but not least, the small size of

PK1 means we can explore the coarse-grained and all-atom landscapes at low computational

cost.
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2.2 Force field specifications

The AMBER force field employed is the ff9934 force field with the Barcelona α/γ backbone

modification35 and the χ modification tuned for RNA36,37 with implicit solvent (igb = 2).

The HiRE-RNA model describes each nucleotide by 6 or 7 beads – a single particle each for

the phosphate and group and backbone oxygen, three beads for the sugar, and a single bead

for pyrimidine bases and two particles for purine bases. The CG representation implicitly

accounts for solvation and ions. The model is specifically designed to represent non-standard

RNA structures, including high accuracy of base stacking and canonical as well as non-

canonical base pairings.11,12

2.3 Exploration of the energy landscapes

The exploration of the energy landscapes is based on the computational potential energy

landscape framework,20,21 employing discrete pathsampling (DPS)38,39 to derive kinetic tran-

sition networks.40,41 Low energy minima to initiate the landscape explorations were located

using basin-hopping global optimisation42–44 For both potentials, searches were initiated

from sequence and from the available PDB entry (2G1W).22 Transition state candidates

were located with the doubly-nudged elastic band (DNEB) algorithm,45–47 employing the

quasi-continuous interpolation (QCI) scheme.48,49 The candidate structures were converged

to true transition states using hybrid eigenvector-following (HEF).50

The energy landscapes are represented using disconnectivity graphs.51,52

2.4 Parameter optimisation for the extended CG scheme

HiRE-RNA force-field consists of local interactions (bond, angles and torsions), electrostat-

ics, excluded volume, base pairing and staking interactions. All these terms contain a specific

scaling constant and their sum gives the overall energy of the system. Considering all pos-

sible interactions accounted for, the original HiRE-RNA model has 25 external parameters
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that can be varied upon optimisation, with a single energy parameter to optimise torsional

energies, and a generic stacking potential independent of the nature of the nucleotide.

After a first comparison between the energy landscapes obtained from AMBER and

the one from HiRE-RNA highlighted some shortcomings of the CG model, we introduced

a new parametrisation scheme of the coarse-grained model that accounts in more detail

torsions and staking. We then introduced a new scheme including 47 energy parameters in

which the energies associated to each torsion can be varied independently upon optimisation,

and stacking parameters are different for purine-purine, purine-pyrimidine, and pyrimidine-

pyrimidine interactions. We will refer to the original HiRE-RNA as HiRE-RNA-25, and to

the new version ad HiRE-RNA-47.

HiRE-RNA-47 was optimised using a genetic algorithm maximising the difference in

total energy between native structures and decoys on a set of 16 RNA motifs extracted

from the RNA motifs atlas,53 including stems, internal and apical loops. For each structure

we generated 20 decoys both preserving base pairing (non-optimal folded structures) and

partially unfolded. For each new set of parameters during the optimisation, energy evaluation

was performed after quenching each decoy in order to reach a local minimum and have a

structure effectively competing with the native. The genetic algorithm ran with 80 genes

and with up to 100 generations, though often convergence was reached before.

3 Results and discussion

In this section, we will present and discuss the results of the comparison of the energy

landscapes, followed by an account of how changes introduced to the CG potential improve

the properties of the structural ensembles observed.
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3.1 The AMBER energy landscape for PK1

The free energy disconnectivity graph for AMBER is shown in Fig. 1. The global minimum is

the correctly folded hairpin, with all native contacts formed. Higher energy configuration in

the same funnel exhibit some degree of unfolding, with the 3′-end unfolding first. Higher in

energy we observe funnels with partially folded structures, and unfolded structures highest

in energy. The unfolding pathways consist of unfolding of the 3′-end base pairs, followed

by unfolding of the 5′-end base pairs. This order of unfolding events is expected, as the

unfolding order will be determined by individual stabilities of the helical segments,54 and

the 5′-end helix contains more base pairs than the 3′-end helix. The formation of H-type

pseudoknots like PK1 has been described before,1 and such hierarchical folding is observed

in other pseudoknots as well.30

Overall, we find that the energy landscape for the AMBER potential represents the sys-

tem well, and our findings are in good agreement with experiment. Hence, it is a reasonable

model to compare with the CG representation. The one shortcoming of the energy land-

scape exploration in this case is the undersampling of the unfolded region, but the folded

and partly folded ensembles, as well as the relative energies are representative.

3.2 The HiRE-RNA-25 energy landscape for PK1

The free energy disconnectivity graph for the HiRE-RNA model with 25 parameters is pre-

sented in Fig. 2. Significant differences with the all-atom model are observed, while some

features are preserved.

One point of agreement between AMBER and CG model are the correct folding of the

global minimum. We again observe the native structure as the global minimum, and its

structure and the contacts formed are in good agreement with experimental structures. As

the HiRE-RNA force field was developed using MD simulations with the aim to obtain folded

native structures, it is perhaps not surprising that the native structure is found accordingly.

Nonetheless, this highlights that the CG correctly stabilises the global minimum, and we do
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10.0 kcalmol−1

Figure 1: Free energy disconnectivity graph for the PK1 pseudoknot at 310 K using the
all-atom AMBER potential.

not observe alternative low energy structures with different base pairing patterns. Around

the native fold we observe a large number of structures with small deviations, indicating

the start of the unfolding process. These structures, in agreement with the AMBER energy

landscape and experiment, are showing some unfolding at the 3′-end.
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However, the higher energy regions of the energy landscape are poorly represented, and

not consistent with the energy landscape observed for AMBER. On the energy scale pre-

sented, we do not observe any fully unfolded structures. We located some such structures in

our simulations, but their energies were off the scale. The unfolding structures we located at

lower energies1 maintain hydrogen-bonded base pairs, while we observe large distortions of

the backbone. Interestingly, the CG model explores also molecules with an inverted chirality

that are found in the high-energy funnel on the left of Fig. 2. However, contrary to what

one may expect, these structures are still connected to the native funnel without adopting

unfolded transition states. Instead we observe that the molecule switches conformation while

preserving most base pairing while losing stacking an straining torsions.

Both of these observation, the very high energy of unfolded structures and the persistence

of the hydrogen bonding patterns, hint at a relative overstabilisation of the hydrogen bonding

compared to other energy contributions. While in AMBER such interactions are a result

of the interplay between van der Waals and electrostatic interactions, in the HiRE-RNA

potential, there are explicit terms for base pairing and stacking.

3.3 Improving the CG representation

While the low energy description of the system is in agreement between all atom and CG

representations, clearly the CG model fails in the exploration of higher energy structures cor-

responding to the partially folded and unfolded ensembles. From the comparison between

the energy landscapes of AMBER and of HiRE-RNA-25 it is clear that base pairing interac-

tions are too strong compared to all other terms and possibly torsions are unbalanced, given

they allow the switch in chirality. We therefore looked more carefully into these 3 terms and

two main problems became evident. The first one, concerning torsion, was the fact that the

strength of all torsions was adjusted as a whole in the optimisation of HiRE-RNA-25. The

model accounted for different weights for different dihedral angles, but in the optimisation

1Some of these structures are shown with their location in the disconnectivity graph.
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Figure 2: Free energy disconnectivity graph for the PK1 pseudoknot at 310 K using the
coarse-grained HiRE potential with 25 scale parameters.

process their weights altered together uniformly. This coupling of the strength of all torsions

resulted in some torsions being too weak while others are too strong. The second problem

concerned stacking and the fact that we did not make any distinction between residues com-

posed by one or two aromatic rings. During optimisation, this simplification also resulted

in a compromise between a stronger interaction when two purines are stacked and a weaker
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interaction when pyrimidines are staked.

These factors combines likely result in the observed overstabilisation of the base pairing.

In HiRE-RNA-25, the base pairing description includes a more detailed description of var-

ious different possible interactions, and distinguishes between canonical and non-canonical

interactions, as well as between base pairing formed by different nucleobase pairs. When

optimising, the structures used to find good parameters will exhibit different base pairing

and stacking, but only the former is detailed enough to allow the stabilisation of distinct

interaction patterns over others. In other words, the difference between a U-U and a A-

U base pair is known to the model, but the the difference between pyrimidine-purine and

purine-purine stacking is not. As a result, more weight will be given to the base pairing, as

it explains more of the structural variations.

To alleviate this problems, we introduced the HiRE-RNA-47 version where energy pa-

rameters of all torsions are independent from one another and three stacking terms, for

purine-purine, purine-pyrimidine, pyrimidine-pyrimidine, replace the generic term for all nu-

cleotides. Importantly, these additional parameters also allow for a better balancing between

stacking, torsions and base pairing, once the parameters have been optimised.

3.3.1 Changes in the structural ensembles and energy contributions

To compare the details of the energetic contributions of HiRE-RNA-25 and HiRE-RNA-47 we

consider the structures of the low-energy funnel from HiRE-RNA-25 energy landscape and,

for each one, we compute the different terms of the potential energy using both HiRE-RNA-

25 force field and HiRE-RNA-47 force field. The comparison is shown in Fig. 3. Structures

are organised horizontally from lowest total energy to highest. The first remark is that

for HiRE-RNA-25 the energy spread between torsional, base-pairing and stacking energy

is much larger than for HiRE-RNA-47. This confirms the overstabilization of base pairing

and points to an excessive rigidity of torsions as well. In HiRE-RNA-47 base-paring and

stacking energies have similar magnitudes and torsional energy is significantly reduced. A
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Figure 3: Torsional, base pairing and stacking energies computed on the structures of the
lowest energy funnel obtained from HiRE-RNA 25 simulations, computed using HiRE-RNA
25 parameters set and HiRE-RNA 47 parameters set. Numbering of the structures in the
funnel is done according to increasing total energy: frame 1, lowest energy, frame 8171
highest energy.

second observation concerns the fluctuations of each energy term across structures that are all

very similar (less than 4Å RMSD). In HiRE-RNA-25 there is a large spread in base-pairing

energy and, to a lesser extent, this is also the case for torsions. This variation is indicative

of a poorly balanced term as one would expect the energies to change only minimally when

structural changes do not involve the breaking of base pairing and significant rearrangements

of the backbone. If we give fluctuations as percentage of the average value for each term, we

compute 25% fluctuations for torsional energy for HiRE-RNA-47 to be compared to 7% for

AMBER and to 65% for HiRE-RNA-25, 21% for base pairing energy for HiRE-RNA-47 to

be compared to 25% HiRE-RNA-25 and with 14% of fluctuations in Van der Waals energy
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for AMBER, and 22% for stacking energy for HiRE-RNA-47 vs. 27% HiRE-RNA-25. Even

though values for HiRE-RNA-47 are still higher than those of AMBER, the modifications

introduced to the model go in the right direction. A third observation is that for HiRE-

RNA-47 the loss in energy between the structures in the funnel is mainly due to variations

in stacking, as shown by the slight decrease in staking energy going from lowest-energy to

highest-energy structure, while base-pairing remains roughly constant. This observation is

consistent with having conformations with the same secondary structure. On the contrary,

for HiRE-RNA-25 the loss in total energy is clearly due to a decrease in base pairing energy,

despite the fact that there is no change in secondary structure, i.e. base pairs become looser

but the bond does not break.

When we repeat the landscape exploration with HiRE-RNA-47, we observe the same

trends in the minima around the native structure. Furthermore, we do not observe the chiral

structures any longer, indicating a better balance in the torsions. Nonetheless, the energy

landscape is still showing artefacts, in particular unfolded and partially folded structures are

still far too high in energy. This result is not surprising, as no unfolded and partially folded

targets where used in the reoptimisation procedure, but only native structures.

As previously mentioned, HiRE-RNA was developed to give an accurate description of

folded molecules, so we did not expect it to match results from AMBER for high ener-

gies. The modification in the force field introduced from HiRE-RNA-25 to HIRE-RNA-47

were motivated by observations on the overall landscape, including high-energy structures.

Nonetheless, the benefits of these modifications are also clearly noticeable in the low energy

structures closely resembling the native fold. This improvement can be observed analysing

the local behaviour of the ensemble of structures in the low energy funnels obtained with

AMBER, with HIRE-RNA-25 and with HIRE-RNA-47, as shown in Fig. 4. For every struc-

ture in the funnel we compute the overall number of staking interactions, of canonical and

of non-canonical base pairs. These values are computed using the program Barnaba55 for

atomistic structures, and using HiRE-RNA energies for CG structures. We can observe that
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Figure 4: Comparison of overall staking, canonical base pairing and non-canonical base
pairing computed for each nucleotide for AMBER, HiRE-RNA 25 and HiRE-RNA 47, for
structures included in the lowest energy funnels for each simulation (folded structures).
Shaded backgrounds indicate the regions forming the two stems in the native structure.

stacking of each nucleotide by HiRE-RNA-47 has a better correspondence to AMBER than

HiRE-RNA-25, with similar values and similar trends. The one noticeable exception is for

nucleotide 9, which is a base exposed to the solvent in the native state and in AMBER fun-

nel, but that gets packed inside a loop in the CG models. Similarly, canonical base pairing of

HiRE-RNA-47 corresponds better to that of AMBER with the two stems more consistently

present than for HiRE-RNA-25. However, the most external base pair, between nucleotides

1 and 13 is less stable in the CG model than in the atomistic. Both HiRE-RNA models

behave similarly with respect to non-canonical base paring.

The detailed comparison between the folded structures of the CG model and those of
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the atomistic model shows the margin of improvement still required by the coarse-grained

force field. While the CG model overstabilises base-pairing, this is however not specific

enough to stabilise stems to the extent observed in the atomisic structures. Some spurious

non-canonical interactions contributing to the destabilisation of canonical base pairs should

be eliminated in a future refinement of the force field. It is important to notice that these

observations are possible only when looking at ensembles of structures, where it is possible

to extract statistically relevant behaviours.

4 Conclusions

In this study we have shown how an explicit exploration of energy landscapes across different

scales of representations allows insights into how faithful structural features are preserved

across all structural ensembles. Not only can we identify missing ensembles and ensembles

with too much or too little stability, but we can further identify the features of the underlying

model that lead to such behaviour. We demonstrated that it is possible to use this insight

to improve coarse-grained representations, achieving significant improvements with modest,

but well-motivated modifications.

The method presented is agnostic to the nature of the potentials and representations

compared, and allows readily to compare and contrast computational models with each other

and with experiment. As the energy landscapes allow detailed insight into structural features

and transition mechanism, as well as thermodynamic and kinetic observables, the presented

approach provides a useful tool in the development of reliable and faithful coarse-grained

models.

As the approach considers all structural ensembles on the energy landscape, fine balanc-

ing between competing structures is possible, with the ability to assign changes in relative

stability to the underlying model and potential energy functions used.

The availability of multiple structural ensembles representing folded, partially folded and
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unfolded structures furthermore provides a future avenue to improve parameter optimisa-

tion. Ideally, we would like to optimise our model for folded, partially folded and unfolded

structures, but often only folded structures are available from experiment and more tradi-

tional simulation methods. This limitation means that optimisation for example in a genetic

algorithm stabilises the native fold compared to decoys. Given the access of all ensembles

through the energy landscape, it is possible to optimise with respect to energy differences

between states, without decoys, enabling better relative stabilities, and providing correspon-

dence between energy scales of different models. This approach will also improve the energies

of transition states, making kinetic information accessible through the coarse-grained scheme.
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