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Abstract 

Dynamic catalysis—the forced oscillation of catalytic reaction coordinate potential energy 

surfaces (PES)—has recently emerged as a promising method for the acceleration of 

heterogeneously-catalyzed reactions. Theoretical study of enhancement of rates and supra-

equilibrium product yield via dynamic catalysis has, to-date, been severely limited by onerous 

computational demands of forward integration of stiff, coupled ordinary differential equations 

(ODEs) that are necessary to quantitatively describe periodic cycling between PESs. We establish 

a new approach that reduces, by ≳108×, the computational cost of finding the time-averaged rate 

at dynamic steady state (i.e. the limit cycle for linear and nonlinear systems of kinetic equations). 

Our developments are motivated by and conceived from physical and mathematical insight drawn 

from examination of a simple, didactic case study for which closed-form solutions of rate 

enhancement are derived in explicit terms of periods of oscillation and elementary step rate 

constants. Generalization of such closed-form solutions to more complex catalytic systems is 

achieved by introducing a periodic boundary condition requiring the dynamic steady state solution 

to have the same periodicity as the kinetic oscillations and solving the corresponding differential 

equations by linear algebra or Newton-Raphson-based approaches. The methodology is well-
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suited to extension to non-linear systems for which we detail the potential for multiple solutions 

or solutions with different periodicities. For linear and non-linear systems alike, the acute 

decrement in computational expense enables rapid optimization of oscillation waveforms and, 

consequently, accelerates understanding of the key catalyst properties that enable maximization of 

reaction rates, conversions, and selectivities during dynamic catalysis. 

Keywords: Dynamic catalysis, limit cycles, asymmetric oscillation, analytical solution, fast 

calculations, linear algebra 

1. Introduction 

Experimental (1–6) and theoretical (7–10) reports have demonstrated that periodic input of 

thermodynamic work (e.g. by oscillation of applied electric potential) can effect orders-of-

magnitude improvement in catalytic turnover rates and overcome static equilibrium limits to 

chemical conversion akin to molecular motors/ratchets in biological systems (11, 12). So-called 

dynamic catalysis circumvents both kinetic and thermodynamic barriers by leveraging the kinetic 

asymmetry of two or more energetic states of the catalytic material to, for example, promote 

reactant adsorption and product desorption in a cyclic, stepwise fashion. In this sense, dynamic 

catalysis proffers a method to surpass static limits to turnover rates prescribed by the Sabatier 

principle by de-coupling and separately optimizing reactant and product binding energies, which 

are otherwise fundamentally interdependent.  

The virtue of this technique has recently been demonstrated by calculation of rates and 

selectivities of various catalytic systems at dynamic steady state (i.e. the limit cycle). Dauenhauer 

and coworkers (2, 13) have shown that both simple three-step sequences and industrially-relevant 

reactions such as ammonia synthesis are, theoretically, profoundly accelerated by oscillation of 

the energetic state of the catalyst (e.g. by periodic oscillation of lattice strain). The current approach 
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for calculating dynamic steady-state rates in such studies, however, primarily involves 

computationally expensive numerical forward integration of coupled ordinary differential 

equations (ODEs) until a limit cycle is reached. Simulation of reaction kinetics in this manner 

requires large calculation times that increase with oscillation frequency, requiring ~1 day for three-

step reaction schemes at 106 Hz and an expected >300 days for a frequency of 1010
 Hz (14). These 

onerous computational demands hinder the exploration of vast parameter spaces that describe 

dynamic catalytic systems and, therefore, essentially proscribe discovery of the oscillation 

waveforms (shape and frequency) that maximize rate, yield, and/or selectivity.  

In this work, we develop new strategies for the calculation of dynamic limit cycles 

disencumbered of the need to forward integrate stiff, coupled ODEs—the numerical solutions for 

which do not provide the mechanistic clarity characteristic of closed-form rate expressions. Our 

developments are informed by physical and mathematical intuition established from the 

examination of a model catalytic system, A + * → A* → B + *, oscillating between two kinetic 

states—each of which exclusively permits either A + * → A* or A* → B + *. The simplicity of the 

two-step catalytic sequence allows for an exact analytical solution of dynamic steady-state rates 

and coverages solely in terms of elementary step rate constants and square waveform frequencies. 

The derived closed-form dynamic steady-state rate law reveals that (i) the optimal oscillation 

waveform is uniquely determined by elementary step rate constants, (ii) the optimal waveform 

may be asymmetric (e.g. more time is spent promoting A + * → A* than A* → B + *), and (iii) 

the concept of catalytic resonance is not general; for the two-step catalytic reaction, rate is 

accelerated indefinitely with increase to oscillation frequencies.  

The learnings from this didactic example are critically enabling in the development of linear 

algebra and Newton-Raphson based approaches that generalize analytical methods used to derive 
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closed-form solutions and, in doing so, calculate the limit cycle for three-step reactions in 

milliseconds to seconds, ≳108× faster than previous methods (14). The expedience of the 

developed mathematical and algorithmic methods enables facile discovery of dynamic catalysis 

conditions that optimize both (i) the magnitude of oscillation of, for example, A* binding energy 

and (ii) the wavelength/duration of the oscillation in each energetic state. Linear algebra methods 

reveal that previously observed resonance regimes are defined by eigenvalues of the matrices that 

describe governing reaction ODEs; these eigenvalues formalize the concept of 

characteristic/resonance time scales of catalysis and, like in the two-step example, are relatable, in 

closed-form, to elementary step rate constants.  

Complex reaction sequences proceeding via non-linear elementary steps (e.g. bimolecular 

surface reaction) are not fully describable by matrix algebra methods and, therefore, we instead 

recast the description of non-linear systems as an optimization problem solved by Newton-

Raphson-based approaches. Formulation of non-linear catalytic reactions in the framework of 

mathematical optimization enables calculation and physical characterization of non-unique steady 

states that we surmise are intrinsic to non-linear reactions and therefore may hinder dynamic 

control of industrially-relevant reactions.   

2. Methods 

All functions and scripts are written in Octave GNU and Matlab ® 2020a. The code available to 

download for free from https:\\www.github.com/foley352/dynamic. Computational times are 

measured using the “tic” and “toc” functions. 
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3. Results and Discussion 

3.1. Finding analytical solutions for limit cycles in dynamic catalysis 

 We begin our discussion by considering the simplest kinetic system suitable for rate 

enhancement under dynamic catalysis conditions (Scheme 1), for which we will derive an 

analytical solution for the time-averaged rate at dynamic steady state. In Scheme 1, there are two 

reaction steps in series: the adsorption of A and the desorptive conversion of A* to B. We consider 

the case where there is a square-wave oscillation between two kinetic states, j. Each kinetic state 

represents a different state of the catalyst (e.g., strain, electric potential) and has a different set of 

elementary step rate constants 𝑘𝑖
[𝑗]

, for state j and elementary step i.  During dynamic catalysis, the 

catalytic state, or potential energy surface (PES), oscillates with a wavelength 𝜆 (or frequency 𝑓 =

1/𝜆). In this example, the rate constants are 𝑘𝑖 = 𝑘𝑖
[1]

 for time 𝛿𝑡[1] = 𝜆/2 followed by 𝑘𝑖 = 𝑘𝑖
[2]

 

for time 𝛿𝑡[2] = 𝜆/2, as illustrated in Figure 1a. This oscillation repeats indefinitely.  

Without oscillation, the static steady-state rate, 𝑟SS, for the reaction network in Scheme 1 

is 𝑟SS = 𝑘1𝑘2𝑎A/(𝑘1𝑎𝐴 + 𝑘2), which is zero for kinetic states 1 and 2. Dynamic catalysis enables 

the coupling of these kinetic states to give a nonzero reaction rate, by first operating at kinetic state 

1 to accumulate A* on the surface and then switching to kinetic state 2 to convert A* to B. Figure 

1b illustrates the oscillatory response of A* coverage caused by the periodic switch between 

kinetic states 1 and 2 (Figure 1a).   
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Figure 1. (a) Kinetic oscillation for 𝑘1 and 𝑘2. (b) Convergence to the limit cycle from a clean 

surface (𝜃∗ = 1) during dynamic catalysis for a symmetric oscillation between the kinetics states 

in Scheme 1 with 𝜆 = 10−4 s and 𝑎A = 1. 

 

 The surface concentration history in Figure 1b is determined by forward integration of the 

differential equation (eq. (1)):  

d𝜃A∗

d𝑡
= −𝑘2(𝑡)𝜃A∗ + 𝑘1(𝑡)𝑎A𝜃∗ = −𝑘2(𝑡)𝜃A∗ + 𝑘1(𝑡)𝑎A(1 − 𝜃A∗) (1) 

where 𝜃∗ + 𝜃A∗ = 1, 𝑘𝑖 = 𝑘𝑖
[1]

 for 𝑛𝜆 ≤ 𝑡 < (𝑛 + 1/2)𝜆 and 𝑘𝑖 = 𝑘𝑖
[2]

 for (𝑛 + 1/2)𝜆 ≤ 𝑡 <

(𝑛 + 1)𝜆, with the initial condition 𝜃𝐴∗(𝑡 = 0) = 0. After forward integration of hundreds of 

wavelengths, the fractional coverage of A* converges to a periodic limit cycle where (eq. (2)): 

𝜃A∗(𝑡) = 𝜃A∗(𝑡 + 𝑛𝜆) (2) 

We contend that numerical forward integration (e.g. of eq. (1)), while quantitatively accurate, (i) 

does not provide the same physical insight or mathematical clarity as an analytical solution and 

(ii) is needlessly computationally intensive because the differential equations in dynamic catalysis 

are very stiff, and much of this computational cost is for calculating unnecessary information—
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the transient leading up to the limit cycle. In practice, we primarily are concerned with the behavior 

at the “dynamic steady state”, which as shown in Figure 1b, is a limit cycle. 

To this end, we establish a computationally efficient method for calculating the limit cycle 

for the reaction in Scheme 1 by finding the analytical solution to the limit cycle itself. Deriving 

the analytical solution is enabled by two key observations: (i) the differential equation in eq. (1) 

can be solved in piecewise fashion on the ranges from 0 to 𝛿𝑡[1] and from 𝛿𝑡[1] to 𝛿𝑡[1] + 𝛿𝑡[2] 

because the rate constants are time-invariant over these ranges, and (ii) instead of an initial 

condition, as is used for forward integration, we can introduce continuity and periodic boundary 

conditions that satisfy the defining behavior of a limit cycle (eq. (2)). The analytical solution to 

eq. (1) in general is eq. (3): 

𝜃A∗(𝑡) = 𝑐𝑗 exp (−(𝑘1
[𝑗]

𝑎A + 𝑘2
[𝑗]

) 𝑡) +
𝑘1

[𝑗]
𝑎A

𝑘1
[𝑗]

𝑎A + 𝑘2
[𝑗]

 (3) 

where 𝑐𝑗 are the arbitrary constants of integration. Equation (3) collapses to the static steady-state 

solution for 𝑡 →  ∞ in the absence of oscillation. Substituting 𝑘𝑖
[1]

and 𝑘𝑖
[2]

 into eq. (3) gives the 

piecewise solution 

𝜃A∗(𝑡) = {
𝑐1 exp (−𝑘1

[1]
𝑎A𝑡) + 1

𝑐2 exp (−𝑘2
[2]

(𝑡 − 𝛿𝑡[1]))
         

0 ≤ 𝑡 < 𝛿𝑡[1]

𝛿𝑡[1] ≤ 𝑡 < 𝛿𝑡[1] + 𝛿𝑡[2]
 (4) 

where the (𝑡 − 𝛿𝑡[1]) term is arbitrary and chosen for convenience when solving for the two 

unknown constants of integration, 𝑐1 and 𝑐2. The integration constants are determined by 

satisfaction of the continuity condition (eq. (5)): 

lim
𝑡→𝛿𝑡[1]−

𝜃A∗(𝑡) = lim
𝑡→𝛿𝑡[1]+

𝜃A∗(𝑡) (5) 
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𝑐1 exp (−𝑘1
[1]

𝑎A𝛿𝑡[1]) + 1 = 𝑐2 

and the periodic boundary conditions (eq. (6)): 

𝜃A∗(0) = 𝜃A∗(𝛿𝑡[1] + 𝛿𝑡[2]) 

𝑐1 + 1 = 𝑐2 exp (−𝑘2
[2]

𝛿𝑡[2]) 

(6) 

which ensure coverages are equal on either side of the switch from kinetic state 1 to 2 and from 

kinetic state 2 to 1. The solution to the continuity and periodic boundary conditions gives (eq. (7)): 

𝑐1 =
1 − exp (−𝑘2

[2]
𝛿𝑡[2])

exp (−𝑘1
[1]

𝑎A𝛿𝑡[1] − 𝑘2
[2]

𝛿𝑡[2]) − 1
 

𝑐2 =
exp (−𝑘1

[1]
𝑎A𝛿𝑡[1]) − 1

exp (−𝑘1
[1]

𝑎A𝛿𝑡[1] − 𝑘2
[2]

𝛿𝑡[2]) − 1
 

(7) 

Thus, we now have an analytical solution for 𝜃A∗(𝑡) after substitution of eq. (7) into eq. (4). The 

time-averaged rate during the limit cycle is defined as (eq. (8)): 

〈𝑟〉 =
∫ 𝑟(𝑡) d𝑡

𝜆

0

∫ d𝑡
𝜆

0

=
∫ 𝑘2

[1]
𝜃A∗  d𝑡

𝛿𝑡[1]

0
+ ∫ 𝑘2

[2]
𝜃A∗  d𝑡

𝛿𝑡[1]+𝛿𝑡[2]

𝛿𝑡[1]

𝛿𝑡[1] + 𝛿𝑡[2]
 

〈𝑟〉 =
(1 − exp (−𝑘1

[1]
𝑎A𝛿𝑡[1])) (1 − exp (−𝑘2

[2]
𝛿𝑡[2]))

(𝛿𝑡[1] + 𝛿𝑡[2]) (1 − exp (−𝑘1
[1]

𝑎A𝛿𝑡[1] − 𝑘2
[2]

𝛿𝑡[2]))
 

(8) 

which, as expected, is a mathematically symmetric function (i.e. interchange of terms 

corresponding to states 1 and 2 gives an identical equation). The functional form of eq. (8) 

demonstrates that, unlike previously reported dynamic catalysis case studies, there is no effect of 
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“catalytic resonance” (Figure 2a). The only condition relevant to rate enhancement for this system 

is whether the oscillation is sufficiently fast, such that 𝑘1
[1]

𝑎A𝛿𝑡[1] ≪ 1 and 𝑘2
[2]

𝛿𝑡[2] ≪ 1. At these 

conditions, the surface coverage is approximately constant because the oscillation frequency is 

much faster than the time required for the surface coverages to change. We term this state the 

“quasi-static surface condition”, at which eq. (8) simplifies to eq. (9): 

〈𝑟〉 ≈
𝑘1

[1]
𝑎A𝛿𝑡[1]𝑘2

[2]
𝛿𝑡[2]

(𝛿𝑡[1] + 𝛿𝑡[2]) (𝑘1
[1]

𝑎A𝛿𝑡[1] + 𝑘2
[2]

𝛿𝑡[2])
=

𝑘1
[1]

𝑎A𝑘2
[2]

(
𝛿𝑡[2]

𝛿𝑡[1])

(1 +
𝛿𝑡[2]

𝛿𝑡[1])(𝑘1
[1]

𝑎A + 𝑘2
[2]

(
𝛿𝑡[2]

𝛿𝑡[1]))

 (9) 

At quasi-static surface conditions, the rate of the reaction in Scheme 1 depends solely on the ratio 

𝛿𝑡[2]/𝛿𝑡[1], with time-averaged rates shown in Figure 2b. 

Scheme 1. Simplest dynamic catalysis reaction network.  

A + ∗ → A∗ 

𝑘1
[1]

= 1 s−1 

𝑘1
[2]

= 0 s−1 

A∗ → B +∗ 

𝑘2
[1]

= 0 s−1 

𝑘2
[2]

= 1000 s−1 

Overall: A ⇒ B  
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Figure 2. (a) Contour plot of the time-averaged rate as a function of 𝛿𝑡[1] and 𝛿𝑡[2] for the reaction 

in Scheme 1 with 𝑎A = 1. (b) Time-averaged rate as a function of 𝛿𝑡[2]/𝛿𝑡[1] at quasi-static surface 

conditions. 

 

Examination of eq. (9) reveals that, in general, the optimal ratio of 𝛿𝑡[2]/𝛿𝑡[1] is 

√𝑘1
[1]

/𝑘2
[2]

, as is evidenced by maximum rate occurring for 𝛿𝑡[2]/𝛿𝑡[1] = 10−1.5 (Fig. 2b). The 

discovery of this simple, consequential mathematical relationship is made possible by the 

analytical solution and demonstrates that (i) synergistic asymmetry in rate constants and oscillation 

waveform is key in determining the optimality of rate enhancement and (ii) the phenomenon of 

catalytic resonance frequency is not a general, or defining, feature of dynamic catalysis. In addition 

to the proffered physical insight, the analytical solution greatly reduces the computational time 

compared to forward integration. In the following, we generalize the presented analytical 

technique by development of an algorithmic procedure for reactions of any number of steps, 

network connectivity, and kinetic oscillation shape to programmatically find the time-averaged 

rates during dynamic catalysis. 
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3.2. A programmatic method for solving for dynamic catalysis limit cycles for linear 

reaction schemes 

In reaction schemes that do not involve the reaction between two species with time-

dependent concentrations, the coupled differential equations that describe the dynamics of 

fractional coverages are written in matrix form as (eq. (10)):  

d

d𝑡
𝜽 = 𝑨(𝑡)𝜽 (10) 

where 𝜽 is a vector of all surface species (including vacant sites) and 𝑨 is a time-dependent matrix 

that is a function of rate constants and chemical activities of reactants and products, which are the 

coefficients that multiply the fractional coverages in each differential equation. Equation (10) 

closely resembles a system of coupled first-order ordinary differential equations, with two 

exceptions: (1) the coefficient matrix 𝑨 is a function of time and (2) at any time, 𝑨 is a singular 

(non-invertible) matrix because the fractional coverages are not linearly independent. To resolve 

the second issue, we must eliminate one of the fractional coverages by substituting 𝜃𝑗∗ = 1 −

∑ 𝜃𝑚∗𝑚∗≠𝑗∗ , which is equivalent to the following procedure: (1) remove the jth row of 𝑨 and 𝜽, (2) 

remove the jth column of 𝑨 and rename it as a column vector 𝒃, and (3) subtract 𝒃 from each 

column of 𝑨. The new matrix, 𝑨′, has one less row and column than 𝑨 and is no longer singular. 

The new form of the coupled differential equations is (eq. (11)): 

d

d𝑡
𝜽′ = 𝑨′(𝑡)𝜽′ + 𝒃(𝑡) (11) 

where 𝜽′ is 𝜽 with the jth row removed. Next, it is necessary to eliminate the time-dependence of 

𝑨′ and 𝒃. This is accomplished by discretizing continuous waves into square waves with n steps. 

At the limit of 𝑛 → ∞, the n-stepped square wave converges to the continuous wave, as illustrated 

in Figure 3. On each of the flat terraces of the n-stepped square wave, the rate constants are not 
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functions of time, and only change at the locations of the step discontinuities. Thus, for an n-

stepped square wave, equation (11) can be rewritten as n equations: 

d

d𝑡
𝜽[𝑗] = 𝑨[𝑗]𝜽[𝑗] + 𝒃[𝑗]  ∀ 𝑡 ∈  [𝑡[𝑗−1], 𝑡[𝑗]] (12) 

 where the superscript [𝑗] refers to the jth step of the n-stepped square wave, and the primes (“ ′ ”) 

have been dropped for clarity. There is one eq. (12) for each step of the square wave, and each 

equation is valid from the end of the previous step (𝑡[𝑗−1]) to the end of the present step (𝑡[𝑗]). The 

utility of formulating dynamic catalytic systems in terms of eq. (12) is that the coefficient matrix  

𝑨[𝑗] and the vector 𝒃[𝑗] are not functions of time, and thus eq. (12) is in the form of a differential 

equation that is easily solved with linear algebra. The general solution to eq. (12) is of the form 

(eq. (13)): 

𝜃𝑚∗
[𝑗](𝑡) = 𝑝𝑚∗

[𝑗]
+ ∑𝑐𝑠

[𝑗]
𝑣𝑠𝑚∗

[𝑗]
exp (𝜆𝑠

[𝑗]
(𝑡 − 𝑡[𝑗−1]))

𝑠=1

  ∀ 𝑡 ∈ [𝑡[𝑗−1], 𝑡[𝑗]] (13) 

where 𝜃𝑚∗
[𝑗]

 is the row of vector 𝜽[𝑗] corresponding to species 𝑚∗, 𝒑[𝑗] is the particular solution 

vector for the jth
 step, 𝑐𝑠

[𝑗]
 is the sth constant of integration in the jth step, and 𝒗𝒔

[𝑗]
 is the sth 

eigenvector of 𝑨[𝑗] with the corresponding eigenvalue 𝜆𝑠
[𝑗]

. Subtraction of  𝑡[𝑗−1] from 𝑡 in the 

exponential of eq. (13) is arbitrary and chosen for convenience such that the exponentials all equal 

unity at 𝑡 = 𝑡[𝑗−1].  The solution presented in eq. (13) assumes no repeat eigenvalues of 𝑨[𝑗] and 

includes the particular solution to 
𝑑

𝑑𝑡
𝜽[𝑗] = 𝟎, found by eq. (14): 

𝒑[𝑗] = −(𝑨[𝑗])
−1

𝒃[𝑗] (14) 

The only remaining unknowns in eq. (13) are the integration constants 𝑐𝑠
[𝑗]

, which are found by 

satisfying the boundary conditions analogously to the two-step reaction in Scheme 1. For a system 
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with n steps in the square wave and m surface species, there are 𝑛 × (𝑚 − 1) boundary conditions 

(e.g. for the reaction in Scheme 2, the number of boundary conditions is 2 ×  (2 –  1)  =  2). 

 

Figure 3. Discretization of a continuous sinusoidal wave into an n-stepped square wave. The 

approximation of the continuous wave improves with increasing n. 

 

 The boundary conditions for a dynamic catalytic system operating at the limit cycle are 

illustrated in Figure 4. The fractional coverages of all surface species must be continuous in time, 

which in vector form is written as (eq. (15)): 

𝜽[𝑗](𝑡 = 𝑡[𝑗]) = 𝜽[𝑗+1](𝑡 = 𝑡[𝑗])  ∀  𝑗 < 𝑛 

𝜽[𝑛](𝑡 = 𝑡[𝑛]) = 𝜽[1](𝑡 = 𝑡[0]) 

(15) 

where n is the total number of steps and 𝑡[0] is the starting time for kinetic state 1 in the limit cycle 

(see Figure 4). For the last step (step 3 in Figure 4), there is no “𝑗 + 1” step after, and thus a 

periodic boundary condition is applied here requiring that the final fractional coverages in step n 

are equal to the initial coverages in step 1. We emphasize that the periodic boundary conditions in 

eq. (15) assume that the solution 𝜽(𝑡) has the same periodicity as the initial coefficient matrix 𝑨(𝑡) 

and discuss the existence of solutions that are aperiodic or that have different periodicities at the 

end of this section.  
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Figure 4. Illustration of the periodic boundary conditions imposed on fractional coverages during 

dynamic catalysis. The kinetic oscillation has a period of three time units, and the figure shows 

two periods. 

  

By substitution of eq. (13) into (15), the boundary conditions can be written in the form of 

algebraic equations that are linear in the unknowns, 𝑐𝑠
[𝑗]

 (eq. (16)): 

∑𝑐𝑠
[𝑗]

𝑣𝑠𝑚∗

[𝑗]
exp (𝜆𝑠

[𝑗]
(𝑡[𝑗] − 𝑡[𝑗−1]))

𝑠=1

− ∑𝑐𝑠
[𝑗+1]

𝑣𝑠𝑚∗

[𝑗+1]

𝑠=1

+ 𝑝𝑚∗
[𝑗]

− 𝑝𝑚∗
[𝑗+1]

= 0  ∀  𝑗 < 𝑛 

∑𝑐𝑠
[𝑛]

𝑣𝑠𝑚∗

[𝑛]
exp (𝜆𝑠

[𝑛]
(𝑡[𝑛] − 𝑡[𝑛−1]))

𝑠=1

− ∑𝑐𝑠
[1]

𝑣𝑠𝑚∗

[1]

𝑠=1

+ 𝑝𝑚∗
[𝑛]

− 𝑝𝑚∗
[1]

= 0 

(16) 

Equation (16) represents a system of linear equations of the form given in eq. (17): 

𝑴𝒄 + 𝒑 = 𝟎 (17) 

where 𝒄 is a vector of all 𝑐𝑠
[𝑗]

, 𝑴 is a matrix of coefficients, and 𝒑 is the vector of 𝑝𝑚∗
[𝑗]

− 𝑝𝑚∗
[𝑗+1]

, 

where each row in 𝑴 and 𝒑 corresponds to a different equation in eq. (16). Solving eq. (17) is 

often the slowest computational step for solving the limit-cycle fractional coverages with n-step 

square waves, and the computational cost of this step is essentially independent of oscillation 

frequency. With the constants of integration solved for, we can now describe the entire time-
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dependence of each species during the limit cycle. The time-averaged rates are found by analytical 

integration of the rate as a function of time (eq. (18)): 

〈𝑟〉 =
∫ 𝑟(𝑡) d𝑡

𝜆

0

𝜆
 (18) 

Ardagh et al. (14) investigated the kinetics of the reaction in Scheme 2 with dynamic 

kinetics where the binding energy of surface species B* is oscillated, and this binding energy 

correlates linearly with the (i) transition state energy for the A* to B* reaction and (ii) the binding 

energy of A* via Brønsted-Evans-Polanyi relations. The relationship between the binding energies 

is given by (eq. (19)): 

BEA = (BEB − (1 − 𝛾)𝛿 − Δ𝐻ovr)/𝛾 (19) 

where Δ𝐻ovr is the heat of the overall reaction, and BEA and BEB are the enthalpy change of 

sorption of species A and B, respectively (e.g. BEA = 𝐻A + 𝐻∗ − 𝐻A∗). The definition in eq. (19) 

is such that at BEA = 𝛿, the surface reaction becomes isothermic (𝐻A∗ = 𝐻B∗), and the change in 

binding energy of A and B are related by 𝛾ΔBEA = ΔBEB. In this work, we reproduce a previously 

published example where 𝛾 = 0.5, 𝛿 = 1.4 eV, Δ𝐻ovr = 0 eV, and the binding energy BEB is 

oscillated from 0.1 to 1.03 eV. The activation energy of the surface reaction is (eq. (20)): 

𝐸a,sr = 𝛼Δ𝐻sr + 𝛽 (20) 

where Δ𝐻sr is the enthalpy change of the surface reaction (A* to B*), and in this example 𝛼 = 0.6 

and 𝛽 = 102 kJ/mol. Following the methodology described above, we reproduce the simulation 

reported by Ardagh et al. (14) for a square wave (n = 2) oscillation in Figure 5a, with excellent 

agreement between most data points. The discrepancy for frequencies 10-2-10-4 Hz may be because 

Ardagh et al. (14) simulated a continuous stirred tank reactor where the chemical activities of the 
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reactants and products are not fixed in time and the yields may vary slightly from simulation to 

simulation. Here, no assumption on a reactor configuration is made and rates are reported for fixed 

activities of reactants and products. A final difference between the simulation here and the 

simulation from Ardagh et al. (14) is that we capped the value of 𝑘−1 to 1025 s-1, whereas the value 

from the simulation by Ardagh et al. (14) reached 1029 s-1. We capped this value because poor 

scaling of matrices 𝑨[𝑗] or 𝑴 can cause them to be singular within the numerical precision of 

Matlab. We also note that the rate constant 𝑘−1 >> 1013 s-1 is nonphysical and occurs because the 

desorption of A* was given a negative activation energy at some conditions. This has no impact 

on the theoretical insights of the simulations, and we expect allowing the BEP trends to continue 

to artificial, or non-physical, regimes is preferred to capping rate constants if one aims to develop 

theoretical insights regarding the general consequences of BEP relationships in dynamic catalysis. 

Observed dynamic catalysis behavior, even for artificial rate constants, may be edifying and 

relevant for some different, more physically realistic choice of 𝛽, 𝛿, and reference state. We do not 

believe that adjusting 𝑘−1 had a significant impact on the comparison of our results to Ardagh et 

al. (14). 

Figure 5b shows the computational time per dynamic steady-state calculation as a function 

of the number of steps in the square wave. For the n = 2 square wave, each limit cycle takes on 

average 0.14 ms to calculate, regardless of the oscillation frequency. This is more than 8 orders of 

magnitude faster than the high frequency calculations reported by Ardagh et al. (14) using 

numerical forward integration. Figure 5 also shows the average rate at dynamic steady-state when 

oscillating binding energies as a sinusoidal wave approximated by an n-stepped square wave with 

varying frequencies. For n = 20 steps, the CPU time is ~1 ms per dynamic steady-state calculation 

and the average rate as a function of frequency already closely resembles the n = 1,000 steps 
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solution, with a difference of 20% at the maximum rate. On a logarithmic scale, n = 100 and n = 

1,000 steps are not visually discernible but have a maximum deviation of 1.2%. The n = 200 

solution has a maximum deviation from n = 1,000 of 0.3%, which we regard as an accurate 

approximation of the continuous sinusoidal wave. Approximating the sine wave with n = 200 steps 

only has a median CPU time of ~30 ms per dynamic steady-state calculation, regardless of the 

oscillation frequency, and compares well even with solutions calculated for  n = 10,000 at 106 Hz, 

as is shown in Figure 6a. The general shapes of the two solutions are the same, but the n = 10,000 

solution is smooth while the n = 200 solution exhibits visible features where the steps occur, as 

highlighted in Figure 6b. In general, we conclude that the n = 200 is an excellent approximation 

of the exact dynamic solution. 

 

Figure 5. (a) Time-averaged rate as a function of frequency for a sine wave approximated by a 

stepped-square wave with n = 2-1,000 steps. The black squares are the time-averaged rates 

reported by Ardagh et al. (14) for a square wave with n = 2. (b) The median computational time as 

a function of square wave steps for the time-averaged rate at dynamic steady state for frequencies 

ranging from 10-10 to 1010 Hz. A continuous sine wave is well approximated by n = 200 steps with 

a median computation time of 30 ms. 
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Figure 6. (a) The limit cycle for the sine wave oscillations approximated by n = 200 (solid lines) 

and n = 10,000 (dashed lines) n-stepped square waves. The two solutions nearly overlay. (b) A 

closer look at the two solutions from t = 0.1λ to 0.2λ shows the bumps that appear in the n = 200 

solution while the n = 10,000 solution is smooth. 

 

Scheme 2. Linear three-step reaction network 

A + ∗ ⇄ A∗ 𝑘1, 𝑘−1 

  A∗  ⇄ B∗ 𝑘2, 𝑘−2 

B∗ ⇄ B +∗ 𝑘3, 𝑘−3 

Overall: A ⇒ B  

 

The presented computationally-efficient method for finding the limit cycles in dynamic 

catalysis vastly expands the explorable parameter space and thereby facilitates rapid discovery of 

kinetic regimes and the kinetic/energetic parameters that determine their optimality and 

delineation. For example, there are four parameters that describe a simple square wave: the binding 

energy of B in each kinetic state, BEB
[𝑗]

, and the time spent at each kinetic state, 𝛿𝑡[𝑗]. Employing 

the developed formalism, we facilely explore the effect of asymmetric square waveforms 

(i.e. 𝛿𝑡[1] ≠ 𝛿𝑡[2]) in Figure 7a at the binding energies reported in Figure 5a. Figure 7a 

demonstrates that, by introducing asymmetry, the time-averaged rate is increased by a factor of 
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two, and that the line 𝛿𝑡[1] = 𝛿𝑡[2] corresponding to symmetric oscillations is an edge on a larger 

“resonance region.” Further improvement to rate could be made by brute force testing each 

parameter of the square wave, but we instead continue to leverage the descriptive potence and 

computational efficiency proffered of algorithmic methods by treating the discovery of maximum 

time-averaged rate as an optimization problem. 

The objective function to maximize the time-averaged rate is written as eq. (21), where 〈𝑟〉 

is a function of the vector containing the times and binding energies for each kinetic state: 

max  〈𝑟〉(𝒙)  where 𝒙 = [𝛿𝑡[1], 𝛿𝑡[2], BEB
[1]

, BEB
[2]

]
T

 (21) 

This optimization problem is solvable by the method of gradient ascent, which computes the 

gradient of the time-averaged rate at the current guess, 𝛁〈𝑟〉|𝒙𝑛
, and calculates the next guess, 

𝒙𝑛+1, until a convergence criteria is satisfied (eq. (22)):  

𝒙𝑛+1 = 𝒙𝑛 + 𝜀𝛁〈𝑟〉|𝒙𝑛
 (22) 

where 𝜀 is a small parameter that controls the step size. We instead utilized Matlab optimization 

function fminunc which uses the BFGS quasi-Newton method with a cubic line search procedure 

to find the optimal square wave for the three-step reaction for 0.1 < BEB < 1.03 eV. This method 

converges to a local maximum in 0.1 s for the initial guess 𝛿𝑡[1] = 𝛿𝑡[2] = 0.5 × 10−3 s, BEB
[1]

=

0.1 eV, BEB
[2]

= 0.8 eV. The optimal square wave is depicted in Figure 8a, where the optimal wave 

stays at a BEB of 0.1 eV for 10−4𝜆, and at 0.9 eV for 0.9999𝜆, where 𝑓 = 1/𝜆 = 6.1 MHz, and 

gives 〈𝑟〉 = 382 s−1, a ~14× improvement on the maximum for a symmetric square wave with 

BEB
[1]

= 0.1 eV and BEB
[1]

= 1.03 eV (Figure 5). Repeating the same optimization but with a 20-
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step square wave gives the same solution, suggesting that this asymmetric two-stepped square 

wave is near the global optimum for these kinetics and constraints. 

The fractional coverages of each species during the algorithmically optimized limit cycle 

is shown in Figure 8b, and the instantaneous rates are shown in Figure 8c. In the optimal square 

wave, the binding energy of B is decreased momentarily to rapidly remove all A* and B*, 

emptying the surface. The next state of the square wave has a high binding energy of B to 

accumulate A* on the surface and convert the A* to B*. During this phase, the rate of B formation 

is negative as B adsorbs on the catalyst surface from the fluid phase. The negative rate of B 

formation in the second state is compensated by asymmetry in the square wave which maximizes 

the time-averaged reaction rate by ensuring time is not needlessly spent during either the 

accumulation or recovery of surface-bound intermediates—which, for this particular system, 

corresponds to 104× more time spent in the accumulation phase. The critical importance of such 

asymmetry is explicated by the contour plot in Figure 7b which, along with Figure 7a, illustrates 

the parameters which define the resonance region. In both figures, the resonance region is bounded 

to the right by the ratio 𝛿𝑡[2]/𝛿𝑡[1] = 1 and to the left by another ratio, 𝛿𝑡[2]/𝛿𝑡[1], which depends 

on the kinetics of the system. The bottom and top of the resonance region are bound by two of the 

eigenvalues of the system, in this case, the eigenvalues from kinetic state 2, 𝜆1
[2]

 and 𝜆2
[2]

. These 

eigenvalues bound the characteristic resonance frequencies of the system and exemplify the 

physical and mathematical detail conferred by formulating the analysis of dynamic catalysis in 

terms of the well-established relationship between linear algebra and ordinary differential 

equations ubiquitous in the description of catalytic reactions.  
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Figure 7. (a) Effect of asymmetric times in a square wave where 𝛿𝑡[1] is the amount of time spent 

at the condition BEB = 0.1 eV and 𝛿𝑡[2] is the amount of time at the condition BEB = 1.03 eV. 

Maximum rate is ~ 52 s-1. Inset: Rate as a function of frequency for a symmetric oscillation, which 

is a diagonal slice of the contour plot. (b) Rate as a function of 𝛿𝑡[1] and 𝛿𝑡[2] with BEB
[1]

= 0.1 eV 

and BEB
[2]

= 0.9 eV. Maximum rate at these conditions is ~ 382 s-1. The upper and lower bounds 

on the resonance region are determined by the eigenvalues 𝜆1
[2]

 and 𝜆2
[2]

 (solid white lines), the 

right bound (white dashed line) corresponds to symmetric oscillation, 𝛿𝑡[2] = 𝛿𝑡[1], and the left 

bound is another line that depends on the kinetics, but corresponds to a constant 𝛿𝑡[2]/𝛿𝑡[1] ratio. 
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Figure 8. (a) The optimal square wave for the conversion of A to B for the reaction in Scheme 2 

as determined by the method of gradient ascent. (b) The fractional coverages of each species during 

the limit cycle. (c) The rate of B formation during the limit cycle. Inset: A closer inspection of the 

rate from 0.9 to 1.5λ. The rate is negative during most of the limit cycle as the high binding energies 

of B encourage sorption from the fluid phase. 

  

Thus far, we have described the methods for finding the solution that has the same 

wavelength as the oscillation (𝜆), but the question remains as to whether this solution is unique. 

Proofs regarding the criteria for the existence and uniqueness of solutions to first-order differential 

equations with periodic boundary conditions are present in the literature (15, 16), but we present 

here a logical argument for the existence and uniqueness of the solution to the periodic boundary 

value problem of the coupled first-order differential equations that arise in dynamic catalysis. 
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Equation (12) is a linear coupled ordinary differential equation and has a unique solution for the 

initial value problem 𝜽(𝑡 = 𝑡0) = 𝜽𝟎 by the Picard–Lindelöf theorem (17, 18). Thus, if any 

function is discretized into an infinite-stepped square wave, there exists one unique solution to 

each step of the square wave for a given initial value. Now, there must be only one initial value 

that satisfies the periodic boundary problem criteria 𝜽(𝑡 = 0) = 𝜽(𝑡 = 𝜆) since eqs. (16) and (17) 

represent a specified system of linear algebraic equations which has only one solution. Because 

each initial value problem gives a unique solution, and there exists only one initial value vector 

that satisfies the periodic boundary condition, we conclude that there exists one unique solution to 

this system of differential equations. 

If instead we searched for a solution with a periodicity 𝑛𝜆, then the periodic boundary 

condition becomes 𝜽(𝑡 = 0) = 𝜽(𝑡 = 𝑛𝜆), for which following the same argument as above, there 

must exist only one unique solution. Further, we know that the solution 𝜽(𝑡) with periodicity 𝜆 

also satisfies the boundary conditions for any periodicity 𝑛𝜆, and thus the only periodic solution 

for linear systems will be those that have the same periodicity as the kinetic oscillation. Proving 

that aperiodic solutions to this system of equations do not exist is beyond the scope of this work, 

but this would require the existence of an initial condition 𝜽(𝑡 = 𝑡0) = 𝜽𝟎 such that 

lim
𝑛→∞

𝜽(𝑡 = 𝑛𝜆) ≠ 𝜽(𝑡 = (𝑛 + 1)𝜆), which does not seem possible for this linear system of 

equations. 

 The method described above can be employed to find the limit cycles for any dynamic 

kinetic system where no reactions occur between species that change in time. However, in non-

differential reactors, the activities of fluid-phase species may be transient, and many important 

reactions involve the reaction between two surface species, and thus require an alternative method 

to find the dynamic steady states. Further, as the arguments of the existence of unique periodic 
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solutions above required the system of differential equations to be linear, nonlinear differential 

equations may allow for the possibility of multiple dynamic steady-state solutions, as discussed 

hereinafter. 

3.3. Finding limit cycle solutions for non-linear reaction systems 

 The dynamic steady-state with periodicity 𝜆 is the solution to systems of differential 

equations where the periodic boundary condition is satisfied (eq. (23)): 

𝜽(𝑡0) = 𝜽(𝑡0 + 𝜆)  (23) 

We define a function, F, that integrates the differential equations over one wavelength, 𝜆,  to give 

the output 𝜽(𝑡0 + 𝜆) for the initial condition, 𝜽(𝑡0), such that (eq. (24)): 

𝜽(𝑡0 + 𝜆) = 𝐹(𝜽(𝑡0))  (24) 

After substitution of eq. (24) into eq. (23), our periodic boundary condition becomes (eq. (25)): 

𝜽 = 𝐹(𝜽)  (25) 

Thus, to satisfy the periodic boundary condition, we need to find the fractional coverages vector, 

𝜽, that outputs the same vector 𝜽 after forward integration of one wavelength (function F). One 

method for finding this vector is simply by forward integration until a dynamic steady-state is 

reached, where we guess a vector 𝜽𝑘, and define 𝜽𝑘+1 = 𝐹(𝜽𝑘) where 𝜽𝑘+1 is the next guess, and 

iterate until 𝜽𝑘+1 ≈ 𝜽𝑘 is sufficiently satisfied. The efficiency of this algorithm decreases with 

increasing frequency, for which the method requires forward integration of an indeterminately 

large number of wavelengths before the periodic boundary condition criteria are satisfied. An 

alternative approach is using the multivariate Newton-Raphson method, which uses the Jacobian, 

𝐽, to determine the next initial guess. This method involves first defining a function that we wish 

to minimize. For a periodic boundary condition this can be defined as minimizing the sum of the 
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square differences between the input and the output of function 𝐹 for each surface species i (eq. 

(26)): 

min∑𝑔𝑖(𝜽
𝑘)

𝑖

= ∑(𝜃𝑖
𝑘 − 𝐹𝑖(𝜽

𝑘))
2

𝑖

 (26) 

The Jacobian for the vector function 𝒈(𝜽𝑘) is given as (eq. (27)):  

𝑱 =

[
 
 
 
 
 
𝜕𝑔1

𝜕𝜃1
𝑘 …

𝜕𝑔1

𝜕𝜃𝑛
𝑘

⋮ ⋱ ⋮
𝜕𝑔𝑛

𝜕𝜃1
𝑘 …

𝜕𝑔𝑛

𝜕𝜃𝑛
𝑘]
 
 
 
 
 

 (27) 

and describes how the function that is being minimized changes with respect to each fractional 

coverage.  The next guess in the Newton-Raphson method is therefore given by: 

𝜽𝑘+1 = 𝜽𝑘 − 𝑱−1𝒈(𝜽𝑘) 
(28) 

such that information provided by the Jacobian guides and accelerates the iterative search for the 

dynamic steady-state coverages. The process is iterated until an arbitrary criterion ∑ 𝑔𝑖(𝜽
𝑘)𝑖 < 𝜀 

is satisfied. This is one of many methods for finding the local minimum of a function, and other 

methods may have faster convergence to the local minimum; the primary development of the 

presented methodology is to reformulate the periodic boundary condition as an optimization 

problem (eq. (26)), for which many algorithms can be employed to efficiently find the dynamic 

steady state at high oscillation frequencies. 

 We demonstrate the computational speed of the Newton-Raphson method for finding the 

dynamic steady state by considering the reaction network in Scheme 3. This reaction network is 

nonlinear because step 3 involves the reaction between two species that are changing in time, A∗ 

and B∗, and thus the differential equations are themselves nonlinear. In this example, we consider 
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the oscillation of rate constants as simple square waves between two states 𝑗 = 1 and 𝑗 = 2, with 

rate constants for each state given in Table 1. The difference between the two kinetic states lies in 

the affinity of the catalyst to adsorb A and B, where kinetic state 1 adsorbs B and ejects A∗ off the 

surface, while kinetic state 2 does the opposite.  

The convergence of the Newton-Raphson and forward integration methods to the limit 

cycles are compared in Figure 9 for a frequency f = 102 Hz. The Newton-Raphson method 

converges to the fractional coverage of A* at the periodic boundary of the limit cycle, 𝜃A∗,0, in 11 

iteration steps and 1.45 seconds. Forward integration requires more than 100,000 iterations to 

reach the same value and takes over 2,000 seconds. The computation times of the two methods are 

compared across decades of oscillation frequency in Figure 9b. At low frequencies, forward 

integrations will converge to limit cycles in as little as one oscillation, and thus can be faster than 

the Newton-Raphson method, which requires the numerical calculation of the Jacobian and may 

take smaller steps in the low frequency regime. At increasing frequencies, the Newton-Raphson 

method becomes faster because each integration is over a shorter length of time, while the forward 

integration method generally becomes slower because more oscillations are required before 

converging to the limit cycle. The decrease in computation time for the forward integration method 

at 102 Hz is a consequence of changing chemical dynamics, which decreases the total time required 

before converging to a limit cycle.  



27 

 

Scheme 3. Non-linear reaction network  

A + ∗ ⇄ A∗ 𝑘1, 𝑘−1 

  B + ∗ ⇄ B∗ 𝑘2, 𝑘−2 

A∗ + B∗ ⇄ C∗ + ∗ 𝑘3, 𝑘−3 

C∗ ⇄ C + ∗ 𝑘4, 𝑘−4 

Overall: A + B ⇒ C  

 

Table 1. The hypothetical rate constants for two kinetic states for the reaction sequence in 

Scheme 3. 

 𝑗 = 1 𝑗 = 2  𝑗 = 1 𝑗 = 2 

𝑘1
[𝑗]

 10−5 105 𝑘−1
[𝑗]

 10−5 101 

𝑘2
[𝑗]

 105 10−5 𝑘−2
[𝑗]

 101 10−5 

𝑘3
[𝑗]

 101 101 𝑘−3
[𝑗]

 10−1 10−1 

𝑘4
[𝑗]

 103 103 𝑘−4
[𝑗]

 10−1 10−1 

 

 

 

Figure 9. (a) Comparison of the convergence of the Newton-Raphson method to forward 

integration using relative and absolute tolerances of 10-12 for the built-in Matlab ® solver ode23s. 
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(b) Computation time comparison for Newton-Raphson and forward integration as a function of 

the frequency. Limit cycle solutions were calculated from an initial guess of 𝜃∗ = 1. 

  

For nonlinear reaction systems, such as the network shown in Scheme 3 or for ammonia 

synthesis (13, 19), it is unclear whether one or multiple solutions exist for the periodic boundary 

value problem. Using a mixture of the Newton-Raphson method and forward integration, the 

fractional coverage of A* at the periodic boundary, 𝜃A∗,0, was found as a function of the square-

wave oscillation frequency, as shown in Figure 10. At the limits of low and high frequencies, there 

was only one limit-cycle solution. However, at intermediate frequencies of 10-1 to 102 Hz, three 

limit-cycle solutions were found, one of which was unstable and diverges with any slight 

perturbation. These unstable limit cycles require the Newton-Raphson solver, because unstable 

solutions are located at saddle points that locally minimize the criterion in eq. (26), but can 

fundamentally never be reached by forward integration. The fractional coverage of A* in the stable 

(solid) and unstable (dashed) limit cycles are shown in Figure 11; at all conditions, the fractional 

coverages of 𝜃∗ and 𝜃C∗ are near zero, and thus the fractional coverage 𝜃B∗(𝑡) ≈ 1 − 𝜃A∗(𝑡). 

 
Figure 10. (a) The fractional coverage of A* for limit cycle solutions at the start of a square-wave 

oscillation (the beginning of kinetic state j = 1) for the reaction sequence and kinetics in Scheme 

3 and Table 1, respectively. The solid lines are stable solutions and the dashed line is the unstable 

solution. (b) An approximation made by linearizing the differential equations about varying 

surface coverages. Linearization points are shown in parantheses for 𝜃A∗ and 𝜃B∗. The linearization 
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points for 𝜃∗ and 𝜃C∗ were both zero. The middle curve used a different linearization point for each 

kinetic state. 

 

 

 
Figure 11. The limit cycles for the fractional coverage of A* at frequencies of (a) 0.1 Hz, (b) 1 Hz, 

(c) 10 Hz, and (d) 100 Hz for reaction network in Scheme 3 with square wave oscillation kinetics 

between states j = 1 and j = 2 in Table 1. Solid lines are stable limit cycles. Dashed lines are 

unstable limit cycles. Only limit cycles that satisfy the periodic boundary condition 𝜽(𝑡 = 0) =
𝜽(𝑡 = 𝜆) were considered. 

  

 In Figure 10, the limiting behaviors at high and low frequencies are connected smoothly 

by the unstable states, while the stable states diverge sharply at the onset of instability. The unstable 

states have the property that 𝜃B∗(𝑡) ≈ 1 − 𝜃A∗(𝑡) ≈ 𝜃A∗(𝑡 − 1/2𝜆), and thus the fractional 

coverages 𝜃A∗ and 𝜃B∗ oscillate symmetrically about ~0.5. This behavior is stable at the limit of 

low and high frequencies but becomes unstable at intermediate frequencies. At low frequencies, 
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the oscillation frequency is sufficiently small that the catalyst surface essentially reaches static 

steady-state in each oscillation, reaching the bounds of 𝜃A∗ ≈ 0 and 𝜃A∗ ≈ 1  (Figure 11a). As the 

frequency increases, the fractional coverages no longer proceed via a sequence of steady states, 

and the stable solutions diverge at the expense of an unstable limit cycle. At sufficiently large 

frequencies, the stable solutions separate from the bounds at 𝜃A∗ ≈ 0 and 𝜃A∗ ≈ 1 and ultimately 

converge at the quasi-static surface coverage 𝜃A∗(𝑡) ≈ 0.5.. 

 The Newton-Raphson method for finding the limit cycle of nonlinear periodic differential 

equations can be much faster than forward integration (Figure 9), but is significantly slower than 

the linear algebra method employed for linear reaction schemes. One method for accelerating the 

integration of nonlinear differential equations is by Taylor linearization, where the differential 

equations are linearized by the formula (eq. (29)): 

d𝑥

d𝑡
= 𝐹(𝑥, 𝑦) ≈ 𝐹(𝑥0, 𝑦0) +

𝜕𝐹

𝜕𝑥
|
𝑥0,𝑦0

(𝑥 − 𝑥0) +
𝜕𝐹

𝜕𝑦
|
𝑥0,𝑦0

(𝑦 − 𝑦0) 
(29) 

where, for example, 𝐹 is a function of two variables 𝑥 and 𝑦 and is linearized about some point 

(𝑥0, 𝑦0).  Linearizing the differential equation for each reaction intermediate in this way, we obtain 

a set of linear equations that are analytically solved following eqs. (10)-(17). Doing so decreases 

the computation time by several orders of magnitude, but will only give one solution, despite the 

actual differential equations having two stable and one unstable limit cycle. Furthermore, the 

solution is sensitive to the choice in linearization point, as shown by approximate 𝜃A∗,0 obtained 

by linearizing the differential equations for the nonlinear reaction in Scheme 3 with kinetics in 

Table 1. Choices in linearization points were informed by the true solutions depicted in Figure 11. 

The linearization approximates the true solutions, but further work is necessary to understand the 

conditions at which multiple steady states may arise and how to choose reasonable linearization 

points a priori. 
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The existence of multiple limit cycles may be problematic in practical application. First, 

for the reaction in Scheme 2, the stable solutions give surfaces that are much less evenly distributed 

between A∗ and B∗, and thus will have lower rates than the unstable solution. Second, any 

perturbations in the system may result in jumping from one limit cycle to another, causing 

unpredictable changes in reaction rate, heat generation, optimal feed composition, and outlet 

composition—leading to many system controls issues (20). In practice, regimes of multiple steady 

states are typically best avoided. In general, for nonlinear reaction systems, we cannot determine 

the number of possible limit cycles during dynamic catalysis, nor is it clear at what frequencies 

these multiple limit cycles will arise, though they are likely related to the time scales for kinetic 

processes (e.g., quasi-equilibrium of reaction or quasi-steady-state of species). This problem has 

many similarities to Hilbert’s sixteenth problem, as yet unsolved, which concerns the number of 

limit cycles that exist for a coupled system of two variables with time-independent polynomial 

differential equations (21). We can also make no justifiable comment on when solutions with 

different periodicities or aperiodic, chaotic solutions generally exist under dynamic catalysis 

conditions; however, we contend that, at the limit of low and high frequencies, there will always 

be one unique limit cycle solution if the reaction network gives only one static steady-state 

solution, as we discuss next. 

At the low frequency limit, if the reaction network allows for only one steady-state solution 

under static kinetics, as determined by chemical reaction network theory (22), then there exists 

only one limit cycle during dynamic kinetics. This conclusion is arrived at by recognizing that for 

sufficiently low frequencies, sufficient time is spent in each kinetic state such that, for most of the 

time spent in each state, rates and surface coverages are time-invariant. Thus, at the low frequency 

limit, the fractional coverages of the surface can be approximated as 𝜃𝑗∗(𝑡) ≈ 𝜃𝑗∗,SS(𝑡), where 
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𝜃𝑗∗,SS(𝑡) is the steady-state fractional coverage for species 𝑗∗ for the kinetics at time 𝑡. In this sense, 

the reaction simply proceeds via a series of static steady states. Therefore, if the reaction network 

allows for only one steady-state solution during static catalysis, then at each time 𝑡 there is only 

one 𝜃𝑗∗,SS(𝑡)—ensuring that there is only one limit cycle during dynamic catalysis. 

The unique limit cycle in the high frequency limit is defined, not by a series of steady states 

at each condition, but a single quasi-static steady state maintained continuously and repeating each 

oscillation. In a quasi-static steady state, the oscillation frequency is sufficiently large such that 

the fractional coverages of species are essentially constant (𝜃𝑗∗(𝑡) ≈ 𝜃𝑗∗). Therefore, the time-

averaged rate for each elementary step 𝑟𝑖 is a product of the elementary step rate constant, 𝑘𝑖(𝑡), 

multiplied by a function of time-invariant fractional coverages 𝐹(𝜃𝑗∗(𝑡)), which is a product of 

the fractional coverages of species involved in elementary step i in accordance with mass-action 

constitutive equations (eq. (30)): 

〈𝑟𝑖〉 =
∫ 𝑘𝑖(𝑡)𝐹 (𝜃𝑗∗(𝑡))  d𝑡

1/𝑓 

0

∫ d𝑡
1/𝑓 

0

 
lim
𝑓→∞

≈  𝐹(𝜃𝑗∗)
∫ 𝑘𝑖(𝑡) d𝑡

1/𝑓 

0

∫ d𝑡
1/𝑓 

0

= 〈𝑘𝑖〉 𝐹(𝜃𝑗∗) (30) 

Thus, the equations for the time-averaged rates of each elementary step are identical to the 

equations for static catalysis, with the exception that the rate constants are now time-averaged. The 

systems of equations that describe the reaction kinetics for a given reaction network under static 

kinetics and quasi-static surface coverages during dynamic kinetics are structurally identical. 

Therefore, the number of steady-state solutions for a reaction network during static kinetics must 

be the equal to the number of limit cycles during dynamic catalysis at the high frequency limit, 

and the differential equations for fractional coverages are entirely analogous to a static steady-state 

system (eq. (31)): 
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d𝜃∗

d𝑡
≈ 〈𝑘−1〉𝜃A∗ − 〈𝑘1〉𝑎A𝜃∗ + 〈𝑘−2〉𝜃B∗ − 〈𝑘2〉𝑎B𝜃∗ + 〈𝑘3〉𝜃A∗𝜃B∗ − 〈𝑘−3〉𝜃C∗𝜃∗

+ 〈𝑘4〉𝜃C∗ − 〈𝑘−4〉𝑎C𝜃∗ 

d𝜃A∗

d𝑡
≈ −〈𝑘−1〉𝜃A∗ + 〈𝑘1〉𝑎A𝜃∗ − 〈𝑘3〉𝜃A∗𝜃B∗ + 〈𝑘−3〉𝜃C∗𝜃∗ 

d𝜃B∗

d𝑡
≈ −〈𝑘−2〉𝜃B∗ + 〈𝑘2〉𝑎B𝜃∗ − 〈𝑘3〉𝜃A∗𝜃B∗ + 〈𝑘−3〉𝜃C∗𝜃∗ 

d𝜃C∗

d𝑡
≈ 〈𝑘3〉𝜃A∗𝜃B∗ − 〈𝑘−3〉𝜃C∗𝜃∗ − 〈𝑘4〉𝜃C∗ + 〈𝑘−4〉𝑎C𝜃∗ 

(31) 

The quasi-static surface assumption is an excellent approximation at sufficiently high frequencies, 

as shown in Figure 12a. At lower frequencies, the quasi-static surface assumption is not rigorously 

valid over the entire transient, yet can still converge to approximately the same limit cycle, as 

shown in Figure 12b. This is because for the first oscillation in Figure 12b, the quasi-static surface 

approximation is not valid as A* quickly covers the surface. During subsequent oscillations, the 

quasi-static surface approximation becomes valid, which is why they ultimately converge to the 

same steady state condition. 

 

Figure 12. A comparison of the quasi-static surface assumption solution and the transient during 

dynamic catalysis at symmetric square wave oscillation frequencies of (a) 107 Hz and (b) 102 Hz. 

The initial coverage for each simulation was 𝜃∗ = 0.5, 𝜃A∗ = 0.19, 𝜃B∗ = 0.21, 𝜃C∗ = 0.1. The 

kinetics and reaction network are reported in Scheme 3 and Table 1. 
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The quasi-static surface assumption reveals that apparent rate constants of elementary steps 

can be favorably altered by time-averaging the rate constants of two different kinetic states when 

the kinetic oscillation frequency is sufficiently large. This confirms that, while resonance certainly 

can be a factor for enhancing the rate (Figure 7), it is not a necessary pre-condition for enhanced 

rate, selectivity, or conversion during dynamic catalysis. Instead, as recognized by Astumian and 

coworkers (7, 8, 23) the fundamental prerequisite for rate enhancement by dynamic catalysis is 

kinetic asymmetry between the energetic states through which the catalyst is cycled. Rate 

enhancement by time-averaging of rate constants at quasi-static surface conditions and by 

resonance represent two different mechanisms by which dynamic catalysis can enhance rates, 

selectivities, and conversions. Understanding under which conditions one mechanism is favored 

is a topic that warrants further research. 

4. Conclusion 

 We establish methods significantly faster than numerical forward integration for finding 

the limit cycles and time-averaged rates for dynamic catalytic systems. These methods calculate 

the limit cycles for kinetic oscillations of any shape with computation times that are essentially 

independent of oscillation frequency and enable facile discovery of the optimal kinetic waveform 

that maximizes the time-averaged reaction rate using optimization methods. The approach for 

linear systems, where no time-dependent species react with each other, uses linear algebra to 

analytically solve for the limit cycles. For nonlinear systems, the coupled ODEs and corresponding 

periodic boundary conditions are recast as criteria in an optimization problem solved by a Newton-

Raphson approach. For linear systems, it is shown that there exists only one periodic limit cycle, 

but for nonlinear systems, multiple limit cycles exist. Generally, if the reaction network allows for 
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only one steady-state solution under static kinetic conditions, only one limit cycle exists under 

dynamic conditions in the limit of low oscillation frequency, for which the reaction proceeds via 

a series of steady states, and in the limit of high oscillation frequency, for which the reaction is 

maintained at a single quasi-static state. For intermediate oscillation frequencies, no such 

simplifying conditions exist, and multiple nonlinear solutions are expected.  

 Under sufficiently fast kinetic oscillations, the activities of species are “quasi-static” in 

comparison to the frequency of kinetic oscillations, and thus the reaction network behaves 

identically to a static reaction network with rate constants that are equal to the time-averaged rate 

constants of the kinetic waveforms. These conditions are rapidly simulated by forward integration 

regardless of whether the reaction network is linear. Analysis of reaction networks under quasi-

static conditions reveal that resonance is not always a necessary condition to observe enhanced 

kinetics during dynamic catalysis; rather, the principal requirement for rate enhancement is 

asymmetry of the kinetic states sampled by the oscillation waveform.  
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