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Abstract 

The development of accurate and explicable machine learning models to predict the properties of 

topologically complex systems is a challenge in material science. Porous organic cages, a class of 

polycyclic molecular materials, have potential application in molecular separations, catalysis and 

encapsulation. For most applications of porous organic cages, having a permanent internal cavity in 

the absence of solvent, a property termed “shape persistency” is critical. Here, we report the 

development of Graph Neural Networks (GNNs) to predict the shape persistence of organic cages. 

Graph neural networks are a class of neural networks where the data, in our case that of organic cages, 

are represented by graphs. The performance of the GNN models was measured against a previously 

reported computational database of organic cages formed through a range of [4+6] reactions with a 

variety of reaction chemistries. The reported GNNs have an improved prediction accuracy and 

transferability compared to random forest predictions. Apart from the improvement in predictive 

power, we explored the explicability of the GNNs by computing the integrated gradient of the GNN 

input. The contribution of monomers and molecular fragments to the shape persistence of the organic 

cages could be quantitatively evaluated with integrated gradient. With the added explicability of the 

GNNs, it is possible not only to accurately predict the property of organic materials, but also to 

interpret the predictions of the deep learning models and provide structural insights to the discovery 

of future materials.  
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1. Introduction 

Porous organic cages are a class of molecules with an internal cavity that is made accessible 

to guest molecules via at least two molecular windows[1,2]. The cavity of porous organic 

cages offers potential applications including encapsulation[3], molecular separation[4–7], and 

catalysis[8]. Organic cages are distinguished from other porous materials such as zeolites and 

metal-organic frameworks (MOFs) due to the absence of an extended network of bonds in the 

solid state. In addition, organic cage molecules are usually soluble in organic solvents, 

allowing for solution processing into thin films or membranes both in the crystalline and 

amorphous solid state[9]. The lack of three-dimensional chemical bonding can allow the solid-

state structures to undergo large rearrangements, which has been used in the creation of 

molecular crystals with “on/off” porosity with polymorph switching[10]. However, such 

flexibility also means that organic cages are more likely to collapse and lose porosity as a 

result of desolvation[11], which is known as a lack of “shape persistence”. The shape 

persistence of organic cages is difficult to predict without employing computational 

modelling[11,12]. High-throughput computational screening has been used in combination 

with robotic synthesis for the discovery of novel organic cages[12]. The cost of computational 

screening of organic cages is significantly cheaper than for experimental measurements, 

however modelling larger systems is still time consuming, especially for organic cages that 

often have several hundred atoms. 

Machine learning (ML) has many potential uses within material discovery, including to reduce 

the cost of property calculation compared to carrying out computational simulations 

(especially via quantum mechanical methods), to focus experimental synthesis and 

measurement effort on the most promising materials reducing wasted laboratory effort[13,14], 

as well as to help facilitate the exploration of larger chemical space[15–17]. Apart from the 

widely reported ML models for molecular discovery, especially drug discovery, the 

applications of ML to porous materials such as MOFs have gained significant interest[18]. 

Various structural and geometrical descriptors for MOFs have been developed for the 

prediction of their gas sorption[19], and open-source databases recording the structures with 

experimental and/or computational properties have been published and the diversity of the 

chemical space examined[20]. The development and application of ML to modelling the 

properties of organic cages, on the other hand, is less reported.  
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We have previously developed a computational database of >60,000 organic cages formed 

through a range of reaction chemistries via a [4 + 6] reaction of four tritopic and six ditopic 

building blocks and studied their behaviour using molecular dynamics calculations.[21] We 

then modelled the computed shape persistence of these cages using random forest models and 

found them to be very effective when applied to systems with the same reaction chemistry, 

for example a random forest model trained on cages formed from imine chemistry was 

effective at predicting shape persistency in other imine cages[21]. However, the random forest 

model did not translate well between cages formed from different reaction mechanisms: an 

imine-trained random forest model was not as effective at predicting the shape persistence of 

a cage formed by alkyne metathesis chemistry. This was not surprising given that 

experimentally, extremely small changes to the synthesis, for example adding a single CH2 

group to one cage precursor, could completely invert the shape persistency behaviour.[11] 

The prediction result of the random forest models could not be attributed to specific monomers 

of the cage or fragments of the monomers, because the feature importance analysis did not 

show a strong preference to any specific molecular features[21]. In addition, the Morgan 

molecular fingerprint, a vector indicating the presence of specific substructures within a 

molecule, was adapted as the input feature to the random forest model. Recently developed 

graph neural networks (GNNs), which encode molecular information into neural graph 

fingerprints with machine-learned continuous numeric vector representation have exhibited 

improved predictive performance on various tasks including chemical reactivity[22], 

compound protein interaction[23] and partial charge assignment[24], because of the flexibility 

of such fingerprints, especially when a larger dataset is available[25]. 

An additional benefit of prediction via GNNs is that it is possible to identify key building 

blocks or molecular fragments contributing to the models’ predictions through calculating 

attribution scores of the input features. Sundararajan et al. developed the integrated gradients 

to compute the contribution of input features for ML tasks and highlighted a case study of 

explaining molecular binding mechanisms using integrated gradients[26]. McCloskey et al. 

calculated the attribution score of fragments of molecules with a hypothesized binding 

mechanism and proposed a sanity check to determine whether a hypothesized mechanism can 

be learned[27]. The explicability of ML models for predictive tasks in material and molecular 

discovery has gained increasing research interest, since explainable models can not only 

provide insight for the monomers and fragments that contribute exclusively to the prediction 
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to help future discovery, but also suggest possible pitfalls of the models where predictions are 

accurate, but the underlying chemical mechanism has not been learnt. 

In this study, we developed GNN models to predict the shape persistence of organic cages 

formed via different [4+6] reaction chemistries: imine condensation, amide condensation, and 

alkene/alkyne metathesis. Graph representations of the organic cages were developed and 

neural fingerprints for cages were trained using the GNN architecture. The shape persistence 

of the organic cages was accurately predicted using the GNN model, with significant 

improvement of generalisability towards unseen monomers compared to prior work with 

random forest models. In addition, to obtain explicability of the prediction of the GNNs, the 

integrated gradient was implemented and computed for precursors of the organic cages and 

fragments of the precursors. It was therefore possible to quantify the contribution of precursors 

as well as fragments to the shape persistence of organic cages and provide insight for the 

design of future precursors for organic cages. 

 

2. Methods 

2.1 Dataset 

The dataset for organic cages used here was reported in our previous work[21]. In brief, the 

synthetically viable library of di- and tri- precursors were generated based on synthetic 

experience, and 118 di-topic and 51 tri-topic precursor cores were included, each with 

locations of functional groups marked. In this work, the precursors with the greater number 

of reactive functional groups are referred to as the “building block”, and the precursors with 

fewer functional groups are referred as the “linker”. Each precursor backbone was expanded 

with different functional groups to include organic cages synthesized with different reaction 

chemistry. The functional groups included were aldehydes, alkynes, amines, carboxylic acids, 

alkenes, which are combined using imine or amide condensation, alkyne or alkene metathesis, 

and disulfide formation reactions. The topologies of organic cages were defined previously 

by Santolini et al.[28]. Here, we used only the Tri4Di6 cages assembled from the four tritopic 

precursors and six ditopic precursors in a [4+6] reaction (example cage in Tri4Di6 topology is 

shown in Figure 1), and the previously reported random forest models were used as a 

benchmark for our work. For each pair of functional groups capable of undergoing a reaction, 

every possible pair of precursors was used to generate a cage. For each reaction, 6018 distinct 
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precursor pairs were generated, resulting in a total of 36,108 cages. A summary of the 

precursor pairing for the Tri4Di6 cages is shown in Table 1. 

 

Figure 1: The Tri4Di6 tetrahedral topology of the organic cages considered in this study. The tritopic 

precursor (“building block”) is shown in blue and the ditopic precursor in orange (“linker”). The 

resulting cavity and one of the four windows are highlighted in purple (right).  

 

Table 1 Reaction and precursor information for the Tri4Di6 cages in this study. 

Group name Building block Linker Reaction 
No. 

cages 

aldehyde3amine2 aldehyde 3 amine 2 imine condensation 6018 

amine3aldehyde2 amine 3 aldehyde 2 imine condensation 6018 

alkene3alkene2 alkene 3 alkene 2 alkene metathesis 6018 

alkyne3alkyne2 alkyne 3 alkyne 2 alkyne metathesis 6018 

carboxylicacid3amine2 carboxylic acid 3 amine 2 amide condensation 6018 

amine3carboxylicacid2 amine 3 
carboxylic 

acid 2 
amide condensation 6018 

The number following a functional group name indicates the number of functional groups present in the 

precursor (i.e., a “2” means that it is di-topic). 

2.2 Dataset labelling 

The same computational labels of shape persistency for the [4+6] organic cages published 

previously[21] were used in this work, where the shape persistency of the cages were calculated from 

the geometrically optimized structures. Specifically, the geometry of the organic cages formed using 

the precursors were previously optimized using molecular dynamics (MD) simulations. The cavity 
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size, window diameter and number of windows of the MD optimized cages were calculated using 

pywindow[29], and the cages were labelled as either “collapsed”, “not collapsed” (i.e., shape 

persistent), or “undetermined” using the above parameters. If the cages did not contain the expected 

4 windows for a tetrahedral topology, the cage was labelled as collapsed. For cages with the expected 

number of windows detected by pywindow, the following empirical criterion was applied: 

                                           𝛼 =  
4×𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑤𝑖𝑛𝑑𝑜𝑤 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑤𝑖𝑛𝑑𝑜𝑤 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 × 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑜.𝑜𝑓 𝑤𝑖𝑛𝑑𝑜𝑤𝑠
                          (1) 

If 𝛼 < 0.035 and the cavity size was greater than 1 Å, the cage was labelled as “not collapsed”, else 

it was labelled “undetermined”. Only the “collapsed” and “not collapsed” cages were used to train 

the ML models in this study. A summary of cage collapse labels for different chemical reactions in 

this study are provided in Table S1. The cavity size for each cage was calculated by translating the 

centroid of the cage onto the origin. An example cavity with the corresponding window can be seen 

on the right of Figure 1. 

 

2.3 Representation of cages 

Building blocks and linkers of the organic cages were encoded using the graph neural network (GNN), 

where representation of each atom in the molecule was obtained by aggregating the information of 

the atom and its neighbours. The design of the GNN layer for encoding the building blocks and linkers 

is shown in Figure 2. Each non-hydrogen atom 𝑋 in the molecule was represented using a numeric 

vector in the form of 𝑋𝑖 =  (𝑉𝑎𝑡𝑜𝑚, 𝑉𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 , 𝑉2𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟). 𝑉𝑎𝑡𝑜𝑚 contains information including 

atomic symbol, number of neighbour non-hydrogen atoms, implicit and explicit valence, and whether 

the atom is aromatic. 𝑉𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟  is the weighted sum of the atomic vector of the atom and its 

neighbours, while 𝑉2𝑛𝑑 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 contains the weighted sum of the atomic vector and its neighbours 

up to the second order. The representation of the building block or linker molecule was obtained be 

summing up all the atomic vectors 𝑋𝑖 in the molecule. 
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Figure 2 GNN encoding of the molecular features of the building blocks and linkers of organic cages 

in this study. 

 

Similar to our previous work[21], the neural fingerprints for the organic cages in this study were 

obtained by concatenating the molecular vectors of the building blocks and linkers. Such neural 

fingerprints were then processed by a multi-layer neural network followed by a prediction layer (see  

Figure 3). The architecture of the prediction layer is determined by the predictive task in this study, 

for the classification tasks such as predicting the organic cage shape persistence, the output layer has 

two neurons, each of which was interpreted the organic cage being “collapsed” or “not collapsed”, 

the output of the two neurons are noted as 𝑧𝑖(𝑖 = 1,2), 𝑧𝑖would be processed using the softmax 

function: 

                                                     𝜎(𝑧𝑖) =  
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗2

𝑗=1

                                                         (2) 

The neuron with the larger softmax output 𝜎(𝑧𝑖) would be treated as the “predicted” label. 



8 
 

 

Figure 3 Architecture of the GNN in this study: Monomers (building blocks and linkers) of the organic 

cages were encoded to numeric vectors using a graph neural network (see Figure 2), the vectors were 

then concatenated and processed by a multi layer neural network to output a shape persistence 

prediction. The prediction by the two neurons in the output layers was processed using the softmax 

function to obtain the final classification. 

 

2.4 Training and evaluating the GNN models 

In this study, we focused primarily on the classification GNN model, where the building block and 

linker of the organic cages were represented using GNN encoding, and the encoded vectors for the 

building block and linker molecules were concatenated so as to form a feature vector of the organic 

cage. The feature vector is then processed through a multi-layer neural network to predict the shape 

persistence of the organic cages. To examine the predictive power as well as the generalizability of 

the GNN models, two types of prediction tasks were employed. For the All-vs-One task, cross-

reaction prediction was performed: the “collapsed” and “not collapsed” data in all but one rows in 

Table 1 were used as the training set, and data in the remaining row were used as the test set. All rows 

in Table 1 were used iteratively for the All-vs-One task. For the All-vs-All task, on the other hand, 
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the data for “collapsed” and “not collapsed” cages in Table 1 were randomly split to the training (80%) 

and test (20%) set. Performance of the All-vs-One model is an indicator of how transferrable the 

GNN model is towards cages generated via different reaction chemistries. 

The performance of the GNN model on the classification task of “collapsed” and “not collapsed” 

cages was evaluated using the accuracy, precision and recall scores on the test sets, defined as follows: 

                                    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑒𝑡
                                              (3) 

                                     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                             (4) 

                                        𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                              (5) 

In this study, the “collapsed” organic cages were regarded as “positive” in our predictions. “True 

positive” represents the data where cages were “collapsed” from both the GNN model prediction and 

as labelled in the database; “False positive” represents the data where cages were “collapsed” 

according to the GNN model prediction but “not collapsed” as labelled in the database; “True negative” 

represents the data where cages were “not collapsed” from both the GNN prediction and as labelled 

in the database; “False negative” represents the cages that were “not collapsed” according to the GNN 

prediction but were “collapsed” as labelled in the database. 

2.5 Explicability of the GNN models 

The explicability of the GNN model predictions was analysed by calculating the attribution score of 

the input features, which is the atomic input vectors to the GNN in this study. By calculating the 

attribution score, we aim to analyse which building block or linker molecules contribute more to the 

collapse of an organic cage, and which fragments in these molecules contribute more to the building 

block or linker being a “collapsed” component of the cage. An example of per-atom contribution to 

the prediction is shown in Figure 4, where the fragments with a positive attribution score (likely to 

contribute to pore collapse) are shown in red, and fragments with a negative attribution score (not 

likely to contribute to pore collapse) are shown in blue. 

 

Figure 4 Example visualization of per-atom contribution to the model prediction. Fragments with 

positive contributions (likely to contribute to pore collapse) are shown in red, while fragments with 

negative contributions (not likely to contribute to pore collapse) are shown in blue. 
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The attribution scores in this study were calculated and represented using integrated gradients. The 

formal definition for attribution scores, as well as the axiomatic justification of the integrated 

gradients satisfying certain properties is provided by  Sundararajan et al.[26]. To explain briefly here, 

let function 𝐹: 𝑅𝑛 → [0, 1] represent a deep neural network. Given an input feature 𝑥  and some 

baseline feature 𝑥′, the integrated gradient of 𝑥 along the 𝑖𝑡ℎ dimension of 𝑥 was defined as follows: 

                                           𝑎𝑖 = (𝑥𝑖 − 𝑥𝑖
′) × ∫

𝜕𝐹(𝑥′+𝑡×(𝑥−𝑥′))

𝜕𝑥𝑖
𝑑𝑡

1

𝑡=0
                                    (6) 

where 
𝜕𝐹(𝑥)

𝜕𝑥𝑖
 is the gradient of 𝐹  along the 𝑖𝑡ℎ  dimension of 𝑥 . In this study, the input 𝑥  was the 

numeric vector for the organic cages, which is the concatenation of the feature vectors of building 

block and linker molecules, and 𝐹 is the probability of the organic cage being “collapsed” as predicted 

by the GNN. This definition of integrated gradient is justified by the axiomatic result that it satisfies 

several desirable properties of an attribution method[26].  

The integrated gradient attribution was defined relative to a baseline, and the selection of the baseline 

is essential to causal analysis of ML models[30]. A robust baseline input should give uninformative 

predictions; for example, for a classification task, the ML model should give the probability of 

approximately 0.5 for the baseline input. Here, we used the input of zero vectors as the baseline 

molecule and augmented the training set using the baseline cages to achieve uninformative 

predictions for the baseline cages. The detailed implementation is provided in Section S2. Once the 

integrated gradients for all input atoms of the organic cage were calculated, the contribution of the 

building block and linker of the cage was calculated by summing up the integrated gradients for the 

atoms corresponding to the building block and linker, respectively. The attribution of fragments in 

the building block and linker molecules were visualized using the atomic integrated gradients in the 

molecules. 

The GNN model, as well as the computation of integrated gradients were implemented in Python 

3.7.5 combined with PyTorch 1.1.0; the source code is provided at github.com/qyuan7/Cage_GNN. 

 

3. Results and discussion 

3.1 Predictive performance of the GNN for organic cage shape persistence 

A comparison of the predictive performance of the previously reported random forest model (used 

here as a benchmark) and the GNN model on the All-vs-All task is shown in Table 2, where the data 

https://github.com/qyuan7/Cage_GNN
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for all cages in this study were randomly split to training and test sets. It can be seen that the GNN 

model and the random forest benchmark have comparable performance for the All-vs-All task, with 

the GNN model slightly outperforming the random forest model based upon the accuracy and 

precision metrics. The reason for the almost equally good performance of the GNN and random forest 

models on the All-vs-All task could originate from the dataset in this study. The building block and 

linker molecules in this study were built by changing the functional groups on a fixed set of precursor 

cores, and each row of organic cages in Table 1 was generated from only 118 unique di-topic 

precursors and 51 unique tri-topic precursors. For the All-vs-All task, the dataset of all the organic 

cages in Table 1 was randomly split between the training and test sets, and the same precursor would 

possibly be present in both the training and test sets. In addition, for both the GNN and random forest 

models, the organic cages were represented by concatenating the molecular vectors of the precursors. 

It is therefore possible for both models to learn the “possibility” of a certain precursor belonging to a 

collapsed cage from the training set and to then make predictions on the test set. In this sense, both 

the GNN and the random forest learned the probability distribution of certain precursors being 

collapsed, and it is not clear how much contribution to shape persistency of the precursors and organic 

cages were learnt from the All-vs-All task. Therefore, the advantage of the neural fingerprints learnt 

from the GNN model of being more flexible is minimized in the All-vs-All task. 

Table 2 Shape persistence prediction of the GNN and random forest models on the All-vs-All task. 

The models with better performance for each metric are highlighted in bold. 

 GNN Random forest 

Accuracy 0.89 0.88 

Precision 0.90 0.89 

Recall 0.90 0.91 

 

The All-vs-One task, where data for cages in all but one row in Table 1 was used as the training set 

and the remaining row is used as the test set, is more challenging compared to the All-vs-All task, as 

most of the precursors in the test set were not included in the training set (except for the amine2 

linkers and amine3 building blocks, which were used by two rows in Table 1). The All-vs-One task 

provides better evaluation of the transferability of the ML models towards different families of 

precursors with different functional groups, which carries more application significance for the design 

of future organic cages. The accuracy scores for the GNN and random forest models are shown in 

Table 3, and the corresponding precision and recall scores are provided in Table S2. 
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For the All-vs-One task, the GNN model consistently outperformed the random forest model and by 

a larger margin compared to the All-vs-All task. The biggest improvement in the predictive 

performance of the GNN model compared to the random forest benchmark was for the 

alkene3alkene2 cages (alkene metathesis of a tri-alkene and di-alkene) and the alkyne3alkyne2 cages 

(alkyne metathesis of a tri-alkyne and di-alkyne). As shown in Table 1, the building blocks for 

alkene3alkene2 and alkyne3alkyne2 cages were not used for the other cages, and the benchmark 

random forest model failed to give reasonably accurate predictions on the shape persistence of the 

alkene3alkene2 and alkyne3alkyne2 cages, thus the transferability for the benchmark random forest 

model is poor to building blocks that were not used in the training sets. The GNN model, on the other 

hand, was equally accurate for the predictions of the alkene3alkene2 and alkyne3alkyne2 cages 

compared to the other groups of cages. The consistent improvement in predictive power of the GNN 

model compared to the random forest model indicates that the GNN model has better transferability 

to novel precursors for cages and different reaction types. In addition, the improved performance of 

the GNN model for the alkene3alkene2 and alkyne2alkyne2 cages suggests that the GNN model has 

learnt some structural features of the precursors that led to collapse from the training process, 

providing the model with some “chemical intuition”, which can be investigated further by trying to 

explain and interpret the predictions of the GNN model using the integrated gradients. 

Table 3 Shape persistence prediction of the GNN and random forest models on the All-vs-One taska. 

Model with better performance for each task is highlighted in bold. 

Building block Linker 
Test accuracy 

(Random forest) 

Test accuracy 

(GNN) 

aldehyde 3 amine 2 0.61 0.72 

amine 3 aldehyde 2 0.72 0.73 

alkene 3 alkene 2 0.63 0.81 

alkyne 3 alkyne 2 0.41 0.77 

carboxylic acid 3 amine 2 0.71 0.76 

amine 3 carboxylic acid 2 0.73 0.79 

The results are for when a model was tested on a single data set within a row, i.e. with cages formed by a single 

reaction chemistry type. The data sets in the other rows were used as the training set. For example, for the test 

of aldehyde3amine2 cages (row 1), all the precursor pairs in the other rows were used as the training set 

(amine3aldehyde2, alkene3alkene2, etc), only the aldehyde3amine2 cages were used as the test set. 

 

3.2 Explicability of the GNN predictions 
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To interpret the predictions of the GNN models for the All-vs-One task, we computed the integrated 

gradients of input vectors to the GNN, which were further summed up to get the integrated gradients 

of cage precursors and fragments in the test sets. Before analysing the results, we have validated our 

calculations by checking the completeness of the integrated gradient in this study: the attributions of 

the input features (cage atoms) should add up to the difference between the output of 𝐹 at the input 𝑥 

and the baseline 𝑥’ for equation (4)[26]. The probability of the organic cages and the corresponding 

baseline cages being “collapsed” were computed from the GNN models, the completeness of the 

attribution model requires that the difference between the two probability values Δ𝑃 should be equal 

to the integrated gradient of the input features for the organic cage Σ𝑖𝑔 . The distribution of the 

difference between the Δ𝑃 and Σ𝑖𝑔 values for all the cages in the test sets of the All-vs-One task is 

shown in Figure 5 (a). The distribution is centred around 0, with a mean value of 0.008 and standard 

deviation of 0.013, indicating that the integrated gradient computed in this study meets the 

requirement of completeness for an attribution model. 

 

Figure 5 Validation of the integrated gradient calculations in this study: (a) distribution of the 

difference between the ΔP and 𝛴𝑖𝑔 values for all the cages in the test sets of the All-vs-One task; (b) 

distribution of the predicted softmax score of baseline cages. 
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In this study, the integrated gradient of the cage input feature 𝑥  for an atom is defined relative to the 

baseline input 𝑥′ in equation (4), thus it is important that the GNN model 𝐹 should give uninformative 

predictions to the baseline input. For the classification task in this study, the baseline input should 

render a probability close to 0.5, indicating the baseline cage composed of vector of zeros should 

have neutralized probability of being “collapsed”. When calculating the integrated gradients, we used 

the data augmentation technique on the training set, as described in Section S2 of the supporting 

information and the work by  McCloskey et al.[27]. The distribution of the predicted softmax scores 

for the “collapse” neuron in the output layer (which can be interpreted as the probability of the cage 

being collapsed) on the baseline cages used in training the GNN model for calculating the integrated 

gradient is shown in Figure 5 (b). The softmax score of the baseline cages centres around 0.5 with a 

mean value of 0.501 and standard deviation of 0.008. This result indicates that the GNN model gives 

neutral predictions to the baseline cages, and for a cage with softmax score larger than 0.5 for the 

“collapse” neuron in the output layer that is classified to be “collapsed”, the majority of the attribution 

to the increased softmax score can be ascribed to the molecular features of the building block and 

linker molecules of the cage. 

3.3 Explicability of the GNN models – Precursors with the highest integrated gradients 

With the validation of the integrated gradient calculations completed, it was possible to calculate the 

attributions of the cage building blocks and linkers and identify the precursors with a high integrated 

gradient contribution for the “collapsed” predictions. If some precursors have high integrated gradient 

scores in “collapsed” cages, it is possible that such precursors can be regarded as the “collapse-

directing precursors” that should be avoided in the design of novel organic cages. However, if the 

precursors’ integrated gradient attribution scores had no strong correlation with the shape persistence, 

then the structural features of the “collapsed” precursors were not learnt.  

We calculated the integrated gradients of the precursors in the test sets for the All-vs-One tasks and 

ranked the building blocks and linkers according to their integrated gradient attribution scores. The 

top 5 building blocks BB1-5 for the cages generated from the aldehyde3amine2 (imine reaction of 

trialdehydes and diamine) cages with the largest integrated gradient are shown in Figure 6. The 

percentage of aldehyde3amine2 cages containing the building blocks that were “collapsed” in the All-

vs-One test set are also shown. It can be seen that almost all the building blocks in Figure 6 have a 

probability of larger than 90% of being “collapsed”, indicating that cages with these building blocks 

have a great chance of being “collapsed” and that these building blocks should be avoided in the 

design of future organic cages for the sake of shape persistence. The top 5 linker molecules L1-5 for 
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the aldehyde3amine2 cages with the largest integrated gradient attribution to “collapsed” cages are 

shown in Figure 7, with the percentage of “collapsed” aldehyde3amine2 cages containing the linker 

molecules shown. Apart from L1, the cages in the test set containing these linkers have a high 

probability of being “collapsed”. The integrated gradients of the building block and linker molecules 

can thus serve as an indicator for the organic cages being “collapsed” – using building block/linker 

molecules with high integrated gradient attributions means there is a high probability of collapsed 

cages. It might be tempting to assume that precursors with smallest gradient attributions would 

indicate “uncollapsed” cages. The “bottom 5” building blocks and linkers of the aldehyde3amine2 

cages are shown in Figures S11 and S12. Cages with such building blocks and linkers still have a 

considerable possibility of being “collapsed”, thus the integrated gradient has only limited effect of 

identifying “stable” precursors, and we therefore focus on the “collapsible” precursors in this study.  

 

 

Figure 6 The top 5 building blocks with the largest overall integrated gradient attributions for the 

aldehyde3amine2 cages. Atoms with integrated gradients greater than 0.01 are highlighted in red. 
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Percentages of cages containing each building block identified as “collapsed” in the test set and the 

highlighted backbones in the whole database are shown. The building blocks can be regarded as 

“collapsible” precursors which tend to form cages with high probability of collapse. The highlighted 

fragments in the building blocks are those contributing most to the integrated gradient of the 

corresponding building block. 

 

 

Figure 7 The top 5 linkers with the largest integrated gradient attributions for the aldehyde3amine2 

cages. Atoms with integrated gradients greater than 0.01 are highlighted in red. Percentages of cages 

containing each building block identified as “collapsed” in the test set are shown. The linkers can be 

regarded as “collapsible” precursors which tend to form cages with high probability of collapse. The 

highlighted fragments in the linkers are those contributing most to the integrated gradient of the 

corresponding building block. 

 

The top building blocks and linkers for the other groups of organic cages with the largest integrated 

gradient together with the probability of a cage being “collapsed” with such precursors are provided 

in Section S4 of the supporting information. For the carboxylicacid3amine2 cages (amide 

condensation of a tricarboxylic acid and diamine), the integrated gradient attributions of the top 

building blocks had poor correlation to the cage shape persistence, which could be because the 

carboxylic acid functional group was used less in the database (Table 1), and the GNN model 

therefore had poorer transferability to the cages with the tricarboxylic acid building blocks. Further 

improvement of the GNN model for the cages formed via amide condensation reaction would require 

a larger dataset labelled as per the current dataset. The relationship of cage shape persistency and the 

average integrated gradient attribution scores for the building block/linker molecules in the All-vs-

One task is shown in Figures S11 and S12. Qualitative agreement of cage collapse and high integrated 
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gradient scores can be found for cages formed via imine condensation, alkene metathesis and alkyne 

metathesis, which could provide initial insight into the shape persistence of organic cages formed via 

such reaction chemistries (see Figures S13 and S14). 

If specific precursor fragments could be identified as “collapsible” from the above analysis, then such 

a fragment could be usefully avoided in the design of novel precursors. Atoms in the cage components 

with integrated gradient attribution score greater than 0.01 are highlighted in red in Figure 6 andFigure 

7. The majority of the integrated gradient attribution is located in the central core of the building 

blocks; and such fragments could contribute to the poor shape persistence of the corresponding cages. 

It is thus possible to identify molecular fragments/center cores that have high attribution to the 

collapse of organic cages and to therefore avoid/alter such fragments when selecting precursors for 

cage synthesis. In order to validate whether the identified central cores correlate with the shape 

persistence of all the organic cages in this study, we performed a sub-structure match of the cores 

across all the cages in this study and calculated the probability of a cage with precursors containing 

the backbones being “collapsed”, which is also shown in Figure 6. 

Meanwhile, the linkers in Figure 7 (apart from the outlier L1) contain more saturated carbon chains 

and hence more internal degrees of freedom. Furthermore, the amine part of the imine bond (resulting 

from the condensation to give cages in the aldehyde3amine2 set) contains one more flexible 

methylene unit compared to the aldehyde contribution. As a result, the fragments with high integrated 

gradients for linkers L2-5 span over both the linker backbone and the functional group, making it 

difficult to attribute the GNN prediction to any particular motif within those molecules, and therefore 

substructure matching of the linker molecules was not performed. 

4. Conclusions 

We have developed graph neural network (GNN) models to predict the shape persistence of organic 

cages computationally generated via a range of reactions. The GNN model has better performance 

compared to our previously published random forest models[21], especially for cross-reaction 

prediction tasks. Apart from the improved predictive performance, we evaluated the explicability of 

the GNN models by computing the precursor-wise and atom-wise integrated gradients. We have 

shown that integrated gradients can be used to learn structural features of the precursors that 

contribute to the collapse of organic cages, which could help exclude precursors that are more likely 

to result in collapsed cages. For the generally more rigid building blocks, the core backbones appear 

to be of greatest importance for collapse prediction, while for the smaller and more flexible linker 
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molecules, the collapsibility appears to originate from saturated aliphatic chains and the 

corresponding increased degrees of freedom, as would be expected. 

The computational study of supramolecular systems such as organic cages is time consuming using 

physical simulations, and the development of ML techniques has the potential to provide data-driven 

solutions that might accelerate the evaluation of supramolecular systems. However, in many cases 

the ML models are regarded as powerful black-boxes, providing limited insight to further the 

materials discovery process further. In this study, we aimed to develop an explainable GNN model 

both to ensure the transferability of our model and to provide guidance of further material discovery.  
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