Synthesis and styrene copolymerization of novel alkyl ring-substituted *t*-butyl phenylcyanoacrylates

Daniah H. Ibrahim, Tarick Abu-Alrob, Maria Agoytia, John K. Butterfield, Maura K. Devine, Jennifer Y. Dinh, Angelo R. Donis, Kristen A. Folkes, Firyal M. Khan, Caroline J. Shishem, Sara M. Rocus, William S. Schjerven, and Gregory B. Kharas

DePaul University, Chemistry and Biochemistry Department, 1110 West Belden Avenue, Chicago, IL 60614-3214

Abstract

Novel alkyl ring-substituted *t*-butyl phenylcyanoacrylates, RPhCH=C(CN)CO₂C(CH₃)₃ (where R is H, 2-methyl, 3-methyl, 4-methyl, 2-ethyl, 4-ethyl, 4-propyl, 4-*i*-propyl, 4-butyl, 4-*i*-butyl) were prepared and copolymerized with styrene. The acrylates were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and *t*-butyl cyanoacetate, and characterized by CHN analysis, IR, ¹H and ¹³C NMR. All the ethylenes were copolymerized with styrene in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis.

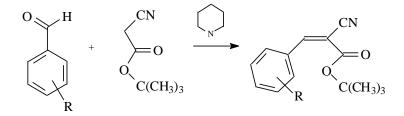
1. Introduction

t-Butyl phenylcyanoacrylate was synthesized by condensation catalyzed by porous silicate quaternary ammonium composite materials [1]. It was involved in studies of synthons for alkylation, alkenylation, and alkynylation reactions of acyl radicals from benzothiazolines [2]. The acrylate was also reported in catalysis studies of bifunctional 2D Cd(II)-based metalorganic framework [3]. Conjugate addition of perfluoroarenes to *t*-butyl 4methylphenylcyanoacrylate was enabled by an alkoxide-hydrosilane system [4]. *t*-Butyl cyanoacrylate polymers have found multiple applications like water-based ink compositions [5], preparation of polymer microspheres [6], and positive working radiation-sensitive composition [7].

Earlier we have reported synthesis and styrene copolymerization of a number of alkyl ringsubstituted methyl [8, 9], ethyl [10, 11], propyl [12], isopropyl [13], butyl [14], isobutyl [15], methoxyethyl [16], and octyl [17] phenylcyanoacrylates.

In continuation of our investigation of novel phenylcyanoacrylate compounds we have prepared *t*-butyl phenylcyanoacrylates, RPhCH=C(CN)CO₂C(CH₃)₃, where R is H, 2-methyl, 3-methyl, 4methyl, 2-ethyl, 4-ethyl, 4-propyl, 4-*i*-propyl, 4-butyl, 4-*i*-butyl, and explored the feasibility of their copolymerization with styrene. To the best of our knowledge, there have been no reports on either synthesis of these compounds, nor their copolymerization with styrene [18].

2. Experimental


2.1. Materials

Benzaldehyde (\geq 99%), 2-methyl (\geq 96.5%), 3-methyl (97%), 4-methyl (97%), 4-ethyl (97%), 4propyl (95%), 4-*i*-propyl (\geq 98%), 4-butyl (90%), 4-*i*-butyl (97%) benzaldehydes, *t*-butyl cyanoacetate (\geq 98.0%), piperidine (99%), styrene (\geq 99%), 1,1'-azobis(cyclohexanecarbonitrile) (98%), (ABCN), and toluene (98%) supplied from Sigma-Aldrich Co., were used as received.

3. Results and discussion

3.1. Synthesis and characterization of t-butyl phenylcyanoacrylates

All *t*-butyl phenylcyanoacrylates (TBPCA) compounds were synthesized by Knoevenagel condensation [19] of appropriate benzaldehydes with *t*-butyl cyanoacetate, catalyzed by base, piperidine (Scheme 1).

Scheme 1. Synthesis of *t*-butyl phenylcyanoacrylates where R is H, 2-methyl, 3-methyl, 4-methyl, 4-ethyl, 4-propyl, 4-*i*-propyl, 4-butyl, 4-*i*-butyl.

The preparation procedure was essentially the same for all the monomers. In a typical synthesis, equimolar amounts of *t*-butyl cyanoacetate and an appropriate benzaldehyde were mixed in equimolar ratio in a 20 mL vial. A few drops of piperidine were added with stirring. The product of the reaction was isolated by filtration and purified by crystallization from 2-propanol. The condensation reaction proceeded smoothly, yielding products, which were purified by conventional techniques. The compounds were characterized by IR, ¹H and ¹³C NMR spectroscopies. No stereochemical analysis of the novel alkyl ring-substituted TBPCA was performed since no stereoisomers (*E* or/and *Z*) of known configuration were available.

3.1.1. t-Butyl phenylcyanoacrylate

Yield 72%; ¹H NMR δ 8.2 (s, 1H, CH=), 7.8-7.2 (m, 5H, Ph), 1.6 (s, 9H, CH₃); ¹³C NMR δ 161 (C=O), 154 (HC=), 134-128 (Ph), 116 (CN), 105 (C=), 85 (OC), 28 (CH₃); IR (cm⁻¹): 2924 (m, C-H), 2245 (m, CN), 1726 (s, C=O), 1263 (s, C-O-CH₃), 778 (s, C-H out of plane). Anal. Calcd. for C₁₄H₁₅NO₂: C, 73.34; H, 6.59; N, 6.11; Found: C, 70.65; H, 6.69; N, 6.49.

3.1.2. t-Butyl 2-methylphenylcyanoacrylate.

Yield 86%; ¹H NMR δ 8.5(s, 1H, CH=), 8.2-7.1 (m, 4H, Ph), 2.4 (s, 3H, PhCH₃), 1.4 (s, 9H, CH₃); ¹³C NMR δ 161 (C=O), 152 (HC=), 140-127 (Ph), 116 (CN), 106 (C=), 84 (OC), 28 (CH₃), 20 (PhCH₃); IR (cm⁻¹): 2926 (m, C-H), 2226 (m, CN), 1725 (s, C=O), 1593 (m, C=C), 1263 (s, C-O-CH₃), 813 (s, C-H out of plane). Anal. Calcd. for C₁₅H₁₇NO₂: C, 74.05; H, 7.04; N, 5.76; Found: C, 72.57; H, 7.29; N, 5.89.

3.1.3. t-Butyl 3-methylphenylcyanoacrylate.

Yield 89%; ¹H NMR δ 8.1 (s, 1H, CH=), 7.9-7.0 (m, 4H, Ph), 2.4 (PhCH₃), 1.4 (s, 9H, CH₃); ¹³C NMR δ 162 (C=O), 153 (HC=), 138-124 (Ph), 116 (CN), 104 (C=), 28 (CH₃), 21 (PhCH₃); IR (cm⁻¹): 2928 (m, C-H), 2224 (m, CN), 1729 (s, C=O), 1612 (m, C=C), 1234 (s, C-O-CH₃), 888, 762 (s, C-H out of plane). Anal. Calcd. for C₁₅H₁₇NO₂: C, 74.05; H, 7.04; N, 5.76; Found: C, 72.33; H, 7.41; N, 5.93.

3.1.4. t-Butyl 4-methylphenylcyanoacrylate.

Yield 91%; ¹H NMR δ 8.2 (s, 1H, CH=), 7.9, 7.3 (d, 4H, Ph), 2.4 (PhCH₃), 1.5 (s, 9H, CH₃); ¹³C NMR δ 162 (C=O), 154 (HC=), 144, 131, 130, 129 (Ph), 116 (CN), 103 (C=), 84 (OC), 28 (CH₃), 21 (PhCH₃); IR (cm⁻¹): 2929 (m, C-H), 2223 (m, CN), 1729 (s, C=O), 1614 (m, C=C), 1222 (s, C-O-CH₃), 826 (s, C-H out of plane). Anal. Calcd. for C₁₅H₁₇NO₂: C, 74.05; H, 7.04; N, 5.76; Found: C, 72.55; H, 7.39; N, 5.93.

3.1.5. *t*-Butyl 2-ethylphenylcyanoacrylate.

Yield 81%; ¹H NMR δ 8.5 (s, 1H, CH=), 8.2-7.0 (m, 4H, Ph), 2.8 (PhC<u>H</u>₂CH₃), 1.4 (s, 9H, CH₃), 1.3 (t, 3H, PhCH₂C<u>H</u>₃); ¹³C NMR δ 161 (C=O), 153 (HC=), 147-125 (Ph), 116 (CN), 106 (C=), 83 (OC), 28 (CH₃), 27 (Ph<u>C</u>H₂), 16 (PhCH₂C<u>H</u>₃); IR (cm⁻¹): 2928 (m, C-H), 2227 (m, CN), 1726 (s, C=O), 1606 (C=C), 1232 (s, C-O-CH₃), 817 (s, C-H out of plane). Anal. Calcd. for C₁₆H₁₉NO₂: C, 74.68; H, 7.44; N, 5.44; Found: C, 73.39; H, 7.64; N, 5.47.

3.1.6. t-Butyl 4-ethylphenylcyanoacrylate.

Yield 77%; ¹H NMR $\delta \delta 8.1$ (s, 1H, CH=), 7.9, 7.3 (m, 4H, Ph), 2.8 (PhC<u>H</u>₂CH₃), 1.6 (s, 9H, CH₃), 1.4 (t, 3H, PhCH₂C<u>H</u>₃); ¹³C NMR $\delta 162$ (C=O), 154 (HC=), 150-128 (Ph), 116 (CN), 103 (C=), 84 (OC), 29 (PhCH₂), 28 (CH₃), 15 (PhCH₂C<u>H</u>₃); IR (cm⁻¹): 2928 (m, C-H), 2226 (m, CN), 1716 (s, C=O), 1606 (C=C), 1235 (s, C-O-CH₃), 823 (s, C-H out of plane). Anal. Calcd. for C₁₆H₁₉NO₂: C, 74.68; H, 7.44; N, 5.44; Found: C, 72.43; H, 7.37; N, 5.63.

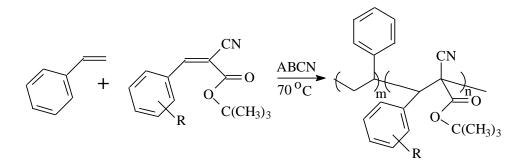
3.1.7. Octyl 4-propylphenylcyanoacrylate.

Yield 84%; ¹H NMR δ 8.1 (s, 1H, CH=), 8.0-7.1 (m, 4H, Ph), 2.6 (t, 2H, CH₃CH₂CH₂Ph), 1.8 (m, 2H, CH₃CH₂CH₂Ph), 1.6 (s, 9H, CH₃), 0.9 (t, 3H, CH₃CH₂CH₂Ph); ¹³C NMR δ 162 (C=O), 154 (HC=), 148-127 (Ph), 116 (CN), 103 (C=), 84 (OC), 38 (CH₃CH₂CH₂Ph), 27 (CH₃), 24 (CH₃CH₂CH₂Ph), 13.8 (Ph-CH₂CH₂CH₃); IR (cm⁻¹): 2943 (m, C-H), 2226 (m, CN), 1724 (s, C=O), 1583 (C=C), 1264 (s, C-O-CH₃), 844 (s, C-H out of plane). Anal. Calcd. for C₁₇H₂₁NO₂: C, 75.25; H, 7.80; N, 5.16; Found: C, 72.52; H, 7.64; N, 5.46.

3.1.8. t-Butyl 4-i-propylphenylcyanoacrylate.

Yield 76%; ¹H NMR δ 8.1 (s, 1H, CH=), 8.0-7.2 (m, 4H, Ph), 3.1 (m, 1H, CHPh), 1.4 (s, 9H, CH₃), 1.3 (d, 6H, (C<u>H</u>₃)₂CH); ¹³C NMR δ 162 (C=O), 154 (HC=), 132-126 (Ph), 116 (CN), 103 (C=), 84 (OC), 34 (PhCH), 27 (CH₃), 23 (CH(<u>C</u>H₃)₂); IR (cm⁻¹): 2912 (m, C-H), 2224 (m, CN), 1719 (s, C=O), 1623 (C=C), 1254 (s, C-O-CH₃), 823 (s, C-H out of plane). Anal. Calcd. for C₁₇H₂₁NO₂: C, 75.25; H, 7.80; N, 5.16; Found: C, 71.33; H, 7.11; N, 5.25.

3.1.9. t-Butyl 4-butylphenylcyanoacrylate.


Yield 72%; ¹H NMR δ8.1 (s, 1H, CH=), 7.9-7.2 (m, 4H, Ph), 2.7 (t, 2H, C₃H₇C<u>H</u>₂Ph), 1.7-1.6 (m, 2H, C₂H₅C<u>H</u>₂CH₂Ph), 1.4 (s, 9H, CH₃), 0.9 (t, 3H, C<u>H</u>₃(CH₂)₃Ph); ¹³C NMR δ163 (C=O), 154 (HC=), 135-129 (Ph), 116 (CN), 102 (C=), 83 (OC), 36 (<u>C</u>H₂Ph), 33 (<u>C</u>H₂CH₂Ph), 27 (CH₃)₃, 22 (<u>C</u>H₂C₂H₄Ph), 13.9 (Ph-C₃H₆<u>C</u>H₃); IR (cm⁻¹): 3038 (m, C-H), 2223 (m, CN), 1725 (s, C=O), 1593 (C=C), 1266 (s, C-O-CH₃), 882 (s, C-H out of plane). Anal. Calcd. for C₁₈H₂₃NO₂: C, 75.76; H, 8.12; N, 4.91; Found: C, 77.79; H, 8.39; N, 3.61.

3.1.10. t-Butyl 4-i-butylphenylcyanoacrylate.

Yield 94%; ¹H NMR δ 8.1 (s, 1H, CH=), 8.0-7.2 (m, 4H, Ph), 2.6 (d, 2H, PhCH₂), 1.8 (m, 1H, PhCH₂CH), 1.4 (s, 9H, OC), 0.9 (d, 6H, CHC<u>H</u>₃); ¹³C NMR δ 162 (C=O), 155 (HC=), 149-128 (Ph), 117 (CN), 103 (C=), 84 (OC), 43 (PhCH₂), 30 (PhCH₂CH), 27 (CH₃), 22 (CH₃)₂CH); IR (cm⁻¹): 2924 (m, C-H), 2224 (m, CN), 1724 (s, C=O), 1593 (C=C), 1292 (s, C-O-CH₃), 847 (s, C-H out of plane). Anal. Calcd. for C₁₈H₂₃NO₂: C, 75.76; H, 8.12; N, 4.91; Found: C, 74.65; H, 8.18; N, 3.86.

3.2. Synthesis and characterization of styrene – TBPCA copolymers

Copolymers of the ST and the TBPCA compounds, P(ST-co-TBPCA) were prepared in 25-mL glass screw cap vials at ST/TBPCA = 3 (mol) the monomer feed using 0.12 mol/L of ABCN at an overall monomer concentration 2.44 mol/L in 10 mL of toluene. The copolymerization was conducted at 70°C. After a predetermined time, the mixture was cooled to room temperature, and precipitated dropwise in methanol. The composition of the copolymers was determined based on the nitrogen content (cyano group in TBPCA). The novel synthesized TBPCA compounds copolymerized readily with ST under free-radical conditions (Scheme 2) forming white flaky precipitates when their solutions were poured into methanol. The conversion of the copolymers was kept between 10 and 20% to minimize compositional drift (Table 1).

Scheme 2. Copolymerization of ST and the ring-substituted *t*-butyl phenylcyanoacrylates, where R is H, 2-methyl, 3-methyl, 4-methyl, 4-ethyl, 4-propyl, 4-*i*-propyl, 4-butyl, 4-*i*-butyl.

			ST in	TBPCA
	Yield ^a	Ν	copol.	in
R	(wt%)	(wt%)	(mol%)	copol.
				(mol%)
Н	14.2	2.86	71.5	28.5
2-Methyl	13.1	2.71	72.5	27.5
3-Methyl	12.1	2.8	71.2	28.8
4-Methyl	15.6	2.55	74.6	25.4
2-Ethyl	12.3	2.66	88.4	11.6
4-Ethyl	11.4	2.79	87.8	12.2
4-Propyl	15.8	2.53	88.9	11.1
4-Isopropyl	16.4	2.61	88.5	11.5
4-Butyl	13.2	2.38	74.5	25.5
4-i-Butyl	13.6	2.64	70.2	29.8

Table 1. Copolymerization of styrene and *t*-butyl phenylcyanoacrylates.

Nitrogen elemental analysis showed that between 11.1 and 29.8 mol% of TBPCA is present in the copolymers prepared at ST/TBPCA = 3 (mol), which is indicative of relatively high reactivity of the TBPCA monomers towards ST radical which is typical of alkyl ring-substituted TBPCA [8-17]. Since TBPCA monomers do not homopolymerize, the most likely structure of the copolymers would be isolated TBPCA monomer units alternating with short ST sequences (Scheme 2).

The copolymers prepared in the present work are all soluble in ethyl acetate, THF, DMF and CHCl₃ and insoluble in methanol, ethyl ether, and petroleum ether.

4 Conclusions

Novel trisubstituted ethylenes, alkyl ring-substituted *t*-butyl phenylcyanoacrylates, RPhCH=C(CN)CO₂C(CH₃)₃ (where R is H, 2-methyl, 3-methyl, 4-methyl, 4-ethyl, 4-propyl, 4-ipropyl, 4-butyl, 4-i-butyl) were prepared and copolymerized with styrene.

Acknowledgments

The authors are grateful to acknowledge that the project was partly supported by Chicago Society of Coating Technology (CSCT).

References

- [1] Organic-silicate hybrid catalysts based on various defined structures for Knoevenagel condensation. Kubota, Yoshihiro; Nishizaki, Yusuke; Ikeya, Hisanori; Saeki, Masami; Hida, Tetsunari; Kawazu, Sachiko; Yoshida, Michitaka; Fujii, Hidekazu; Sugi, Yoshihiro. Microporous and Mesoporous Materials (2004), 70(1-3), 135-149.
- [2] Radicals from Benzothiazolines: Synthons for Alkylation, Alkenylation, and Alkynylation
 Reactions. Li, Lei; Guo, Shan; Wang, Qi; Zhu, Jin. Organic Letters (2019), 21(14), 5462-5466.
- Bifunctional 2D Cd(II)-Based Metal-Organic Framework as Efficient Heterogeneous Catalyst for the Formation of C-C Bond Hu, Lei; Hao, Gui-Xia; Luo, Hai-Dong; Ke, Chun-Xian; Shi, Guang; Lin, Jia; Lin, Xiao-Ming; Qazi, Umair Yaqub; Cai, Yue-Peng. Crystal Growth & Design (2018), 18(5), 2883-2889
- [4] Conjugate Addition of Perfluoroarenes to α,β-Unsaturated Carbonyls Enabled by an
 Alkoxide-Hydrosilane System: Implication of a Radical Pathway. Xie, Weilong; Park, Sung-

Woo; Jung, Hoimin; Kim, Dongwook; Baik, Mu-Hyun; Chang, Sukbok. JACS (2018), 140(30), 9659-9668.

- [5] Water-based ink composition containing antibacterial/antifungal agent for writing tool.Haga, Hisato. PCT Int. Appl. (2020), WO 2020071427 A1 20200409.
- [6] Preparation of polymer microspheres based on cyanoacrylate monomer. Li, Xiaofeng; Dai, Hongjun; Zhang, Xiaoli; Xu, Jian. Faming Zhuanli Shenqing (2009), CN 101585892 A 20091125. Database: CAPLUS.
- [7] Positive working radiation-sensitive composition. Tamura, Kazutaka. PCT Int. Appl. (2000), WO 2000016160 A1 20000323. Database: CAPLUS.
- [8] Novel Copolymers of Trisubstituted Ethylenes with Styrene: 1. Alkyl and Alkoxy Phenyl Substituted Methyl 2-Cyano-3-phenyl-2-propenoates. G.B. Kharas, Eaker, J.M., Dian, B.C., Elenteny, M.E., Kamenetsky, M., Provenza, L.M., Quinting, G.R., Macromolecular Reports, A32, 13-23 (1995).
- [9] Novel Copolymers of Styrene and Alkyl Ring-substituted Methyl 2-cyano-3-phenyl-2-propenoates. G.B. Kharas, M.R. Cisneros, M.E. Buchmann, A.M. Gallegos, M.J. Hurzeler, J.W. Karras, M.R. Larios, and K.Watson. J. Macromol. Sci., 43 (6) 865-870 (2006).
- [10] Novel copolymers of Alkyl and Alkoxy Ring-substituted 2-Cyano-3-phenyl-2-propenoates and Styrene. G.B. Kharas, C.A. Diener, H.A. Barbarawi, N.D. Beavers, M. Borovilos, J. Carney, A.A. Fox, K.M. McClelland, J. Yedlinski, and K. Watson. J. Macromol. Sci., A41 (8), 889-896 (2004).
- [11] Novel Copolymers of Styrene. 4. Alkyl Ring-substituted Ethyl 2-Cyano-3-phenyl-2propenoates. G.B. Kharas, E.S. Molina, E.E. Pierce, S.A.B. Cocjin, C. Cruz, K.M. Fair, S.S.

Flaksman, M.J. Liggins, A.D. Meglei, M.E. Pantos, and G.C. Pisano. J.Macromol. Sci. A50(2) 144-148 (2013).

- [12] Novel Copolymers of Styrene. 1. Alkyl Ring-Substituted Propyl 2-Cyano-3-Phenyl-2-Propenoates. G.B. Kharas, A.M. Claro, Y. Gao, J.S. Bhanot, P. Bosek, Z. Carwile, T.R. Corwin, C.J. Gideon, P.R. Fitzpatrick, I.M. Flores, and J.M. Rickter. J. Macromol. Sci. A53(10) 595-599 (2016).
- [13] Synthesis and styrene copolymerization of novel trisubstituted ethylenes: 1. Alkyl ring-substituted isopropyl 2-cyano-3-phenyl-2-propenoates. R.L. Pride, C.J. Anderson, M.S. Aelion, O.S. Barry, M. Berry, E. Blankemeyer, M.M. Bolton, A. Bravo, I. Chae, C.M. Franco, M. Galindo, W.S. Schjerven, G.B. Kharas. J. Macromol. Sci. 55 (4) 355-361(2018).
- [14] Novel Copolymers of Styrene. 1. Alkyl Ring-Substituted Butyl 2-Cyano-3-Phenyl-2-Propenoates. G.B. Kharas, T. Spann, R. Dawood, I.J. Deleon, M.A. Estes, J.M. Gilbert, B.A. Goshu, E.D. Harris, T.D. Kyoseva, D. Lam, S. Malik, and P. Mochel. J. Macromol. Sci. A52(7) 499-503 (2015).
- [15] Synthesis and styrene copolymerization of novel ring-substituted isobutyl phenylcyanoacrylates. Abuelroos, Samer A., Francis, Divya V., Fricano, Adriana M., Gaona, Mariana, Huene, Jason T., Nagani, Jawairia A., Pecoraro, Cristina M., Rivero, Dayessi L., Stone, Sydney A., Udine, Marissa R., Rocus, Sara M., Schjerven, William S., and Kharas, Gregory. ChemRxiv Preprint (11.11.2020). <u>https://doi.org/10.26434/chemrxiv.11336852.v4</u>
- [16] Synthesis and styrene copolymerization of novel trisubstituted ethylenes: 1. Alkyl ring-substituted 2-methoxyethyl phenylcyanoacrylates. Maddy E. Ablan, Samer A. Abuelroos, Ryan C. Arthur, Sonya Balaji, Kimberly L. Burns, Ivana A. Chychula, Kayla L. Corcoran, Yangfei Deng, Yelena Gritsaeva, Ana K. Hernandez, Sara M. Rocus, William S. Schjerven,

Gregory Kharas. ChemRxiv Preprint (11.23.2020).

https://doi.org/10.26434/chemrxiv.13262660.v1

- [17] Synthesis and styrene copolymerization of novel trisubstituted ethylenes: 1. Alkyl ring-substituted octyl phenylcyanoacrylates. Martin S. Wasilewski, Jude Al Abosy, Ahmad Albareedi, Alexis Albrecht, Cheyenne L. Angus, Shrustiben B. Brahmbhatt, Kyra J. Buenaventura, Kristi A. Debruzzi, Asha E. Farah, Sara M. Rocus, William S. Schjerven, Gregory B. Kharas. ChemRxiv. Preprint. (11.03.2021).
 <u>https://doi.org/10.26434/chemrxiv.13262660.v12</u>
- [18] SciFinder; Chemical Abstracts Service: Columbus, OH; <u>https://scifinder.cas.org</u> (Accessed February 14, 2021).
- [19] Smith, M. B.; March, J. Addition to Carbon-Hetero Multiple Bonds, In March's Advanced Organic Chemistry, J. Wiley & Sons: New York, Ch.16, 1225, 2001.