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Abstract:
We describe the implementation of the Monte Carlo threshold algorithm for molecular crystals as a method to provide
an estimate of the energy barriers separating crystal structures. By sampling the local energy minima accessible from
multiple starting structures, the simulations yield a global picture of the crystal energy landscapes. This provides valuable
information on the depth of the energy minima associated with crystal structures and adds to the information available
from crystal structure prediction methods that are used for anticipating polymorphism. We present results from applying
the threshold algorithm to four polymorphic organic molecular crystals, examine the influence of applying space group
symmetry constraints during the simulations, and discuss the relationship between the structure of the energy landscape
and the intermolecular interactions present in the crystals.

1 Introduction

Computational approaches for exploring the energy land-
scapes of molecular crystals continue to develop rapidly as
applications of crystal structure prediction (CSP) methods
expand beyond the main application of anticipating pharma-
ceutical polymorphs[1, 2, 3] into screening of co-crystals[4]
and solvates[5], and incorporation of CSP into computer-
guided discovery of functional materials[6, 7, 8, 9, 10].

CSP typically relies on an exploration for the local energy
minima on the high-dimensional energy surface as a func-
tion of the structural variables that determine the packing
of a molecule into a crystal [11]. The structures correspond-
ing to each local energy minimum are usually considered as
possible polymorphs, with the assumption that the lowest
energy predicted structures correspond to the most likely
candidates to be observed experimentally. One limitation of
the output of such methods is that, while they provide the
geometry and energy of each potential structure, no infor-
mation is gained about the depth of each energy minimum,
nor possible transition paths and energy barriers between
structures. This is currently a limiting factor in the analysis
of the results of CSP.

One reason for needing a more global picture of the crystal
energy landscape is to distinguish between structures occu-
pying deep and shallow energy minima, ie. are the energy
barriers surrounding the structure large or small? An impor-
tant observation that has been made is that structures corre-
sponding to known polymorphs are often connected to mul-
tiple, shallow energy minima by small energy barriers[12];
traditional CSP methods would suggest each of these min-
ima as possible alternative polymorphs, while a knownledge
of small energy barriers separating such structures would
show that they can merge into fewer distinct structures due
to thermal energy at the temperature of interest. Thus,

not distinguishing between deep and shallow energy minima
contributes to the over-prediction of polymorphism[13].

Another area of particular interest is the identification of
crystal structures that do not correspond to the thermody-
namically most stable structure, but occupy sufficiently deep
energy basins to be isolable and kinetically stable. Knowing
about such structures is important for anticipating poly-
morphism that could occur through crystallization routes
where kinetics can lead the crystal structure away from the
thermodynamically preferred, global energy minimum. One
example of such a process is the desolvation of solvate crys-
tal structures [14, 15], where solvent incorporated into the
crystal structure stabilizes an alternative arrangement of
molecules, so that removal of solvent leaves the structure
in a metastable polymorph. Some recent studies[6, 8, 16]
have identified very high energy polymorphs through des-
olvation of solvates. The importance of these structures is
demonstrated by their very attractive properties, such as
for high capacity for gas storage, selectivity for molecular
separations[6] and high photocatalytic activity[8].

Molecular dynamics approaches have been applied to
study the transitions between polymorphs[17] and, in the
context of CSP, to identify structures that interconvert
at non-zero temperatures[18, 19, 20, 21]. In this study,
we present the implementation of the threshold algorithm,
which is based on Monte Carlo sampling of the energy
landscape[22], to molecular crystals, using an accurate force
field with an atomic multipole description of electrostatics.
The aim of the threshold algorithm is to find the lowest en-
ergy at which transitions are possible between local energy
minima. By combining trajectories from multiple starting
structures, a global picture of the connectivity of minima
can be constructed. The threshold algorithm has previously
been applied to fairly simple inorganic crystal structures, to
investigate the energy landscape of MgF2[23] and to study
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the entropic stabilization of high energy phases of CaF2[24].
Here, we investigate its application to more complex molec-
ular organic crystals, which are characterized by a balance
of several types of intermolecular interactions, and discuss
the insight that this method provides to help understand
their polymorphism.

2 Computational Details

2.1 Choice of Systems

(a) (b)

(c)

(d)

Figure 1: Molecular crystal systems studied in this work. (a)
indigo, (b) tetrolic acid, (c) TTBI and (d) the 1:1 co-crystal
of nicotinamide and benzoic acid (GAZCES).

Four crystal systems (Fig.1), including single-component
crystals and a co-crystal, were chosen for study, each of
which has known polymorphism. All molecules have rea-
sonably rigid molecular structures, so that rigid-molecule
simulations should provide a realistic picture of the crystal
energy landscape.

Indigo and tetrolic acid are both small, hydrogen bonding
molecules, each with two known polymorphs. Both indigo
polymorphs have the same space group symmetry and the
same network of hydrogen bonds. In contrast, the poly-
morphs of tetrolic acid occupy different space groups and
differ in hydrogen bonding. We also study the co-crystal
formed between nicotinamide and benzoic acid, which is re-
ferred by the Cambridge Structural Database[25] reference
code of its known crystal structure[26], GAZCES. The co-
crystal system has both experimental structures in the same
space group, P21/c, but with changes in the arrangement of
hydrogen bonds. Triptycene trisbenzimidazolone (TTBI),
has a more complex energy landscape and four experimen-

tally observed polymorphs distributed over a wide energy
range.

These differences allow us to test how changes in the net-
work of strong intermolecular interactions are reflected in
the energy landscape. The systems with known structures
in the same or in different space groups are used to assess
sampling with and without symmetry constraints.

2.2 Threshold Algorithm and Disconnec-
tivity Graph

The threshold algorithm was developed as a method for
finding the energy barrier between structures without
the requirement of energy gradient and Hessian matrix
calculations[27, 22]. Initiated from a local minimum on the
energy landscape, a Monte Carlo trial is generated by ran-
dom local perturbations with the restriction that the single
point (i.e. unminimized) energy of the perturbed structure
is below a defined threshold energy, called the lid energy. All
attempted moves that remain below the current lid energy
are accepted and all moves that increase the energy above
the lid energy are rejected. Thus, the trajectory can only
explore a local pocket on the lattice energy surface and can
never reach regions with energy higher than the lid. If the
energy barrier between the current structure and another
is higher than the lid, the transition between the two en-
ergy basins in which these structures are located cannot be
sampled.

After a period of simulation, the lid energy is shifted to
higher energy to increase the configurational space that is
available to the trajectory, allowing transitions to new struc-
tures separated by energy barriers lower than the new energy
lid. Therefore, when a trajectory visits the energy basin of
a new local minimum, the energy barrier between the new
and initial minima can be estimated as the current energy
lid. An assumption here is that the step size of allowed
perturbations is small enough that attempted moves cannot
jump through energy barriers. The sampling under each en-
ergy lid needs, in principal, to be ergodic, although this is
hindered by the required small step size.

From a sequence of pockets sampled with increasing
lid energies, a tree structure, often called a disconnec-
tivity graph, can be constructed to represent the energy
landscape[28, 29, 30]. The disconnectivity graph condenses
the continuous, high dimensional potential energy surface
into the set of discrete local minima and information on the
energy barriers that separate them. To construct the dis-
connectivity graph, the energy landscape is analyzed at a
set of energies along the vertical axis. The nodes at a given
energy, Ei, represent superbasins on the energy surface: the
set of local minima that are connected by pathways below
Ei. Moving up in energy, nodes are connected as higher en-
ergy pathways connect groups of superbasins, while moving
down on the graph leads to disconnections until the end of
each branch, corresponding to single local energy minima.
The horizontal axis has no direct physical meaning and is
introduced for visualization, so that structures connected by

2



lower energy barriers are grouped together. Vertices along
the branches between nodes and minima are also for visu-
alization only. A schematic of a one-dimensional potential
energy surface and its associated disconnectivity graph is
shown in Fig.2.

Figure 2: An example of tree-like representation G(Φ) of the
energy landscape Φ.

In most simulations presented in this work, the lid en-
ergy was increased in increments of 5 kJ mol−1, which is
chosen as a balance between precision in the calculated en-
ergy barriers and the need to explore a wide energy range.
For each threshold simulation, the lid energy was increased
from the minimized energy of the initial structure. Sampling
was started from multiple initial structures, usually corre-
sponding to the energy minimized versions of observed poly-
morphs, which leads to different energy grids from different
start points. When plotting the disconnectivity, we used a
new energy grid starting from the lowest energy among all
the initial structures, with the increment of 5 kJ mol−1, to
merge trajectories into one graph. Any lid energy from a
single threshold algorithm was rounded up to the closest lid
energy in the new grid.

The types of move allowed in the threshold simulations
were molecular translations, rotations, perturbations of unit
cell lengths and angles, as well as unit cell volume changes.
Cutoffs on each move type (see ESI, Table S1) were cho-
sen to give similar energy changes for different move types.
Probabilities for each move type were set according to the
proportion of the total number of degrees of freedom for
each move type, in the same way as in our implementa-
tion of basin hopping for CSP.[31] The sampling at each lid
energy and total lengths of simulations differs between sys-
tems, depending on the number of degrees of freedom and
energy window that needed to be covered. In the current
work, a fixed number of steps was performed at each lid en-
ergy. An adaptive schedule was investigated (see ESI) but
due to the difficulty of choosing the convergence criteria, it
did not improve the completeness of sampling.

We have studied rigid molecules in this work, so molecular
geometries were constrained to their optimized geometries
from density functional theory (DFT) calculations. Lat-
tice energy calculations were performed with the DMACRYS
software[32], using an empirically parametrized exp-6 inter-
molecular repulsion-dispersion potential with electrostatics
described by atomic multipoles calculated from the DFT
electron distribution (see ESI).

To put more emphasis on the connections between low en-
ergy structures, the disconnectivity graph is not presented

for the whole energy range. The highest energy barrier be-
tween initial structures is taken as the upper limit and any
local minima connected at lid energies higher than this up-
per limit are not presented on the disconnectivity graph.
The disconnectivity graphs over the entire sampled energy
range are presented in the ESI.

For comparison to the energy landscape generated from
the threshold algorithm, CSP was performed for each
molecule using quasi-random sampling (see ESI for details).

2.3 Identification of connections between
trajectories

The threshold algorithm does not involve local optimization
of structures in principle. However, we require a method
to identify whether a perturbation has led to a new energy
basin. For this, perturbed structures are locally energy min-
imized if the perturbation is accepted (ie. the unminimized
energy was under the current lid energy). The minimized
structures are compared to each other to identify where
trajectories meet. Energy minimization is performed for
every accepted perturbed structure because lattice energy
landscapes are known to often contain many local minima
around observed structures,[12] so every perturbation was
assumed to potentially lead to a new local energy basin.

Two minima are considered to be connected at a given lid
energy if the trajectories that start at or visit these minima
are found to sample a common local minimum. Thus, the
identification of identical structures (corresponding to the
same local minimum) is an essential process to obtain the
disconnectivity graph. We use a two-step strategy: 1) a fast
initial screen for duplicates is performed by comparison of
simulated X-ray diffraction patterns, followed by 2) check-
ing of duplicates using the COMPACK algorithm,[33] which
compares interatomic distances and angles within a cluster
of 30 molecules taken from the compared crystal structures
(see full details in the ESI).

2.4 Structural descriptors and data featur-
ing

Two descriptors of structural similarity – atom-centered
symmetry functions (ACSFs)[34] and the smooth overlap
of atomic positions (SOAP)[35] – were used to investigate
geometric clustering of crystal structures and their cluster-
ing into superbasins based on threshold simulations. Both
approaches provide a measure of structural similarity based
on comparison of local atomic environments.

ACSFs capture structural information from a series of ra-
dial and angular functions, which depend on neighbouring
atom positions out to a cutoff radius Rc. We use ACSFs
grouped by element, ie. the functions are evaluated sepa-
rately for all pairs (for radial functions) and triples (angular
functions) of elements. The spacing and width of ACSFs is
chosen as in the ANI-1 neural network force field.[36]

In the SOAP kernel, the local region of each atom is de-
scribed individually is represented by a sum of Gaussians
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centered on all atoms within the local environment. The
approach applied here to calculate the similarity between
two structures based on similarity of their atomic environ-
ments is the regularized-entropy match (REMatch) kernel.

Full details of ACSF and SOAP are provided in the ESI.
Principal component analysis (PCA)[37] and the cluster-

ing method HDBSCAN*[38] are used to analyse the distri-
bution of crystal structures in descriptor space, for compar-
ison with the clustering into energy basins determined by
the threshold simulations.

3 Results and Discussion

3.1 Sampling within a space group
We start with two examples where polymorphs exist with
the same space group symmetry, so that a transformation
between their corresponding local energy minima should be
possible with space group symmetry constrained, i.e. Monte
Carlo moves are only allowed which maintain the original
symmetry. This is performed by perturbing the asymmetric
unit of the crystal structure and applying symmetry-related
perturbations to all other molecules in the unit cell. Con-
straints are also applied to unit cell parameters, where these
are required to maintain space group symmetry.

The connections between structures found in this way ex-
clude pathways that break symmetry, which might be lower
in energy. However, the symmetry constraints simplify the
simulation and we examine the picture of the landscape that
we obtain with these constraints.

3.1.1 Indigo

Indigo (Fig. 1a) is known to form two polymorphs,[39, 40]
named A and B, both containing layers of hydrogen bonded
molecules. The structure of these layers is almost unchanged
between polymorphs A and B, but their structures differ in
the arrangement of these layers (see overlay, Fig. 3). Thus,
the lowest energy pathway between polymorphs should not
disrupt the hydrogen bonding and is expected to involve a
relatively low energy barrier.

Figure 3: Overlay of the packing of polymorphs A (blue)
and B (orange) of indigo. Intermolecular hydrogen bonds
are shown as blue dashed lines. Non-hydrogen bonding hy-
drogen atoms are hidden.

Both polymorphs have space group symmetry P21/c with
half a molecule in the asymmetric unit of the unit cell
(both molecules lying on centres of inversion) and thus two
molecules in the unit cell. To allow free molecular transla-
tions, unconstrained by the position of crystallographic in-
version centres, the most symmetric representation used for
simulation of these structures was P21 with whole molecules
in the asymmetric unit. Crystal structure prediction in P21
finds polymorphs A and B as the two lowest energy crystal
structures (see Fig. S4), with B having a calculated lat-
tice energy 4.0 kJ mol−1 below A. For comparison, the two
polymorphs are reported to be nearly equi-energetic when
evaluated using periodic DFT with a plane wave basis set
and many-body dispersion correction.[41]

Monte Carlo simulations were started from the CSP struc-
tures matching both polymorphs, which were continued for
10 lid energies, incremented by 5.0 kJ mol−1 with 1,000
attempted steps under each lid (covering a total 50.0 kJ/-
mol energy window). From threshold simulations in space
group P21, the first connection between polymorphs A and
B is found when the lid is 26.0 kJ mol−1 above A (30.0
kJ mol−1 above B) (Fig. 4a). Below this energy, no other
structures are connected to B, one slightly higher energy
structure is connected to A and two additional structures
connect to A and B at the same lid energy. All three of
the additional crystal structures within the basin connected
to A and B maintain the same hydrogen bond motif, but
with greater differences in molecular orientation around the
hydrogen bonds than between polymorphs A and B. No fur-
ther structures are connected to the basin containing these
five local energy minima (A, B and the three higher en-
ergy structures) until the lid energy is raised a further 15 kJ
mol−1. Globally, the results give a picture of an energy land-
scape that is funneled towards a small set of structures, all
featuring the same favoured hydrogen bonding motif, with
the two known polymorphs as the lowest energy local min-
ima within this energy superbasin.

To investigate the effect of performing the threshold
Monte Carlo simulation with different symmetry con-
straints, simulations were also performed with larger unit
cells, containing four molecules in space group P21/c. Both
known polymorphs can also be described with this symme-
try. The resulting disconnectivity graph is shown in Fig. 4b.
The overall picture of a single funnel towards polymorphs A
and B is maintained, but a notably lower energy transition is
found between the known polymorphs, when the lid is 11.0
kJ mol−1 above A, 15.0 kJ mol−1 above B. As a result,
the connection between A and B occurs at a lower energy
than their connection to any other local minimum on the
landscape. While both indigo simulations yield useful in-
formation on the structure of the crystal energy landscape,
the results confirm our expectation that the symmetry con-
straints applied during sampling can have an important in-
fluence on the details of the connectivity graph.

The 5 kJ mol−1 increments in threshold energy limit the
precision with which the energy barrier between the two
polymorphs can be estimated. Knowing that the transi-
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(a)

(b)

Figure 4: Disconnectivity graph from threshold simulations
for indigo space group (a) P21 and (b) P21/c. Blue points
are minimised structures. Orange points represent the initial
structures.

tion occurs when the threshold is 15 kJ mol−1 or less above
polymorph B, we re-sampled the landscape in space group
P21/c (four molecules in the unit cell), with smaller thresh-
old increments of 1 kJ mol−1 and 1,000 steps under each
lid energy (a five-fold increase in sampling per unit increase
in the lid energy). Again, simulations were started from
both polymorphs, for 15 increases in the lid energy. With
this increased sampling, the energy barrier is now located
when the threshold is 10 kJ mol−1 above polymorph B, 6
kJ mol−1 above A, and no other local energy minima are
visited up to the highest energy threshold.

The negligible change with smaller lid energy steps and
increased sampling gives us confidence that we have sampled
the landscape sufficiently and the results illustrate a strategy

that can be used to explore energy landscapes: an initial
simulation with large energy threshold increments to capture
the global structure of the energy landscape, followed by
targeted re-sampling using smaller steps to refine the results
in important regions of the energy landscape.

3.1.2 1:1 nicotinamide:benzoic acid co-crystal

As a second example, we studied the 1:1 nicoti-
namide:benzoic acid (GAZCES) co-crystal as a system with
more degrees of freedom (due to two molecules in the asym-
metric unit), but where the known polymorphs again have
the same space group symmetry. Nicotinamide:benzoic acid
is a highly polymorphic co-crystal; four polymorphs have
been observed under mechanochemical co-crystallization
conditions, but only polymorphs I and II have had their
structures determined.[26] Both characterized polymorphs
are in space group P21/c.

Unlike indigo, the polymorphs of this co-crystal differ in
their hydrogen bonding (Fig. 5): polymorph I has nicoti-
namide doubly hydrogen bonded dimers connected by hy-
drogen bonds to benzoic acid molecules, while polymorph II
contains an extended hydrogen-bonded nicotinamide chain
with benzoic acid hydrogen bonding to the nicotinamide
pyridyl nitrogen atoms at the edges of these chains.

Figure 5: Hydrogen bonding in polymorphs a) I and b) II of
the nicotinamide:benzoic acid co-crystal. Carbon atoms are
grey, oxygen red, nitrogen blue and hydrogen white. Hydro-
gen bonds are shown as dashed blue lines.

Threshold simulations were started from the structures
from the CSP landscape (Fig. S6) corresponding to I and
II. I and II have very similar calculated lattice energies (I
has a calculated lattice energy 0.6 kJ mol−1 below II) and
are located in the low energy region of the landscape. Due
to the greater complexity of the landscape, 3,000 steps were
performed at each value of the lid energy, which was in-
creased in 5.0 kJ mol−1 steps up to 150.0 kJ mol−1 above
the initial structures, i.e. 30 increases in the threshold en-
ergy and a total of 90,000 attempted perturbations from
each starting structure.

The threshold simulations reveal a dual-funneled energy
landscape with deep basins centred on polymorphs I and II
(Fig. 6). Polymorph I is the lowest energy structure in its
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Figure 6: Disconnectivity graph from threshold simulations
for the 1:1 nicotinamide:benzoic acid co-crystal in space
group P21/c.

funnel (left of Fig. 6), while one lower energy structure is
located in the funnel containing II (right of Fig. 6). Several
lower energy structures are located by CSP in space group
P21/c, but not sampled during the threshold simulations;
these structures might lie outside of the two funnels, where
little sampling has been performed. A complete picture of
the energy landscape would require threshold sampling from
some of the unobserved polymorphs as well as I and II.

The lowest energy connection between the funnels is ap-
proximately 120 kJ mol−1 above I and II. Thus, the thresh-
old simulation is able to locate a pathway connecting these
two very different crystal structures and the rearrangement
in hydrogen bonding required to transform between them
results in a high energy barrier. A lower energy connection
between I and II might be found if space group symmetry
constraints were removed from the Monte Carlo sampling,
but it is unlikely that the global structure of the landscape
would be changed. The funneled landscape gives an impres-
sion that polymorph selection will be strongly influenced by
crystallization conditions, which could lead crystal growth
into one funnel or the other, and that, once grown, intercon-
version of the polymorphs is unlikely without a large ener-
getic input. Indeed, both I and II are reported to be stable
for months once isolated.[26]

3.2 Sampling between space groups in a P1
cell

Simulations of the indigo and co-crystal examples were sim-
plified by their polymorphs having the same space group
symmetry. However, in practice, transformations between
structures have no symmetry constraints. Therefore, we
expect to obtain a better estimation of the actual energy
barrier between structures by sampling with as many con-

straints as can practically be removed from the simulation.
We also want to be able to analyse energy landscapes in-
volving crystal structures with different symmetries. Here,
we look at two examples involving known crystal structures
with different space group symmetry. To remove the sym-
metry constraints, we use P1 unit cells. In the following
examples, we construct P1 unit cells containing sufficient
molecules to be able to represent all the known polymorph
crystal structures, i.e., the lowest common multiple of Z (the
number of formula units in the unit cell) for all known struc-
tures. Thus, the simulations presented below are not fully
unconstrained - translational symmetry is imposed by the
unit cell - but the models have sufficient flexibility to de-
scribe the polymorphs of interest. The approach could be
extended to be able to visit more possible packing symme-
tries by expanding the unit cell to contain more molecules.

3.2.1 tetrolic acid

Figure 7: Hydrogen bonding in the two known polymorphs
of tetrolic acid. Carbon atoms are grey, oxygen red and
hydrogen white. Hydrogen bonds are shown as dashed blue
lines.

Tetrolic acid has two known polymorphic forms: a triclinic
structure in space group P1 and a monoclinic structure in
space group P21,[42] referred to as α and β, respectively.
The two structures have different hydrogen bond motifs: the
carboxylic acid groups form cyclic, doubly-hydrogen bonded
dimers in α and infinite hydrogen bond chains in β (Fig. 7).
Both crystal structures have two molecules in the unit cell,
so simulations were performed using P1 unit cells containing
two molecules. The number of degrees of freedom to sample
this system was the same as the nicotinamide:benzoic acid
co-crystal, so we applied the same number of Monte Carlo
steps (3,000) at each lid energy, which was raised in 5 kJ
mol−1 increments, starting simulations from the structures
of α and β.

Threshold simulations reveal a similar energy landscape
structure as found for the GAZCES co-crystal, with sepa-
rate funnels containing structures α and β (Fig. 8). Because
the simulations were run without space group constraints, a
pathway could be found between the polymorphs. This con-
nection was located when the lid energy was 40 kJ mol−1
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Figure 8: Disconnectivity graph from threshold simulations
for tetrolic acid with two molecules in a P1 unit cell. Col-
ors of edges represent the hydrogen bond motif of connected
minimized structures where black edges are structures iden-
tified as having neither of the motifs. Hydrogen bond mo-
tifs were identified with Mercury[43], identifying hydrogen
bonds as H...O contacts with a separation less than the sum
of van der Waals radii - +0.1Å and an O-H...O angle greater
than 125°.

above α, which has the slightly (1.4 kJ mol−1) lower cal-
culated lattice energy of the two known polymorphs. The
relatively high energy barrier is unsurprising, considering
the breaking of hydrogen bonds required to transform be-
tween α and β, along with substantial reorientation of the
molecules.

To confirm that the structure of the landscape is deter-
mined largely by the hydrogen bond interactions, the local
minima within each funnel were classified by their hydro-
gen bond motifs (Fig. 8). Indeed, all structures connected
to α or β by barriers lower than 25 kJ mol−1 maintain the
same hydrogen bonding as the starting structure, i.e. dimers
within the α funnel and chains within the β funnel. At
thresholds 30 and 35 kJ mol−1 above α, we start to see
changes in hydrogen bond motifs: two structures with hy-
drogen bond chains within the α funnel and several crystal
structures within both funnels that are not classified as ei-
ther chains or dimers. Finally, at 40 kJ mol−1 above α, the
two funnels are connected.

We now compare the results of the threshold sampling to
the output from CSP on tetrolic acid, in this case restrict-
ing CSP to the space groups of the two known polymorphs
(P1 and P21). The resulting structures are shown in Figure
9 in the representation often used in CSP studies: plotting
the energy vs density of all predicted structures. Structures
sampled during threshold searches are also shown and la-
belled by whether they belong to the funnels around α, β or
are disconnected from those superbasins at a lid energy 40

Figure 9: Lattice energy vs density plot of the landscape of
predicted crystal structures of tetrolic acid. Local minima
located after optimisation of structures from the threshold
sampling are classified as belonging to either main basin
(α and β) or not within one of these basins (black cir-
cles, labelled ’Out’). Crystal structure prediction results
from quasi-random sampling (QR) are shown for compari-
son, with searches performed in space groups P1 and P21.

kJ mol−1 above α. A first observation is that crystal struc-
tures in the α and β funnels occupy overlapping regions
of energy-density space, so that the traditional CSP repre-
sentation does not convey the important information about
which structures belong to connected regions of the high-
dimensional energy landscape. The disconnectivity graph
conveys this information more clearly.

We also find that some structures are found in the thresh-
old search, but not CSP, and vice versa. The threshold
search is able to locate structures that are not accessible in
the CSP because of lower symmetry constraints: some struc-
tures do not belong to either space group included in CSP.
On the other hand, structures found by CSP, but not the
threshold search indicate that the threshold sampling has
not fully explored the energy landscape. However, we note
that overlap between QR and threshold structures is very
good in the important low energy region of the landscape.

3.2.2 TTBI

The final molecule investigated is TTBI (Fig. 1c), which
has four known polymorphs[44, 6] that occupy high energy
regions of the crystal structure landscape. The positions of
the observed structures are indicated on the crystal energy
landscape (Fig. 10), showing that the observed structures
fall outside the usual energetic range of polymorphism.[45]
The proposed explanation for the observation that these
very high energy structures can be isolated as stable mate-
rials is that they occupy deep, isolated regions of the energy
landscape, which is hinted at by the ’spikes’ of structures
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Figure 10: Lattice energy vs density plot of the landscape
of predicted crystal structures of TTBI from CSP (quasi-
random sampling), with predictions performed in P1 with
four molecules in the unit cell. The experimentally observed
structures are labelled α, β, γ and δ. The global energy
minimum is labelled ε

that fall below the bulk of structures on the energy-density
landscape;[6] α, β and γ are low energy structures within
these spikes. We apply the threshold algorithm to add in-
formation to the CSP landscape and improve our under-
standing of the observed polymorphism of TTBI.

Of the five important TTBI structures (the four observed
polymorphs and the global energy minimum, which we la-
bel ε), four (all but α) have space group symmetries that
could be sampled in either space group P1 or P21/c with
one independent molecule (Z ′ = 1). The results of threshold
simulations performed in P1 and P21/c, starting trajecto-
ries from β, γ, δ and ε, are shown in Figure 11a and b. All
searches used 5 kJ mol−1 increments in the lid energy and
1,000 steps were attempted at each lid energy.

The threshold simulations in P1 and P21/c yield discon-
nectivity graphs with similar structures and high energy bar-
riers between the initial structures (lid energies at which
transitions are found are summarised in Table 1). The con-
nectivity structure shows a deep energy basin centered on
ε with very few higher energy connected local minima until
the energy lid is increased to very high energies. In the P1
simulation, β, δ and ε are all connected at the same lid en-
ergy, +155 kJ mol−1 above ε (+110 kJ mol−1 above δ and
67 kJ mol−1 above β). The results are very similar in P21/c.
As with the indigo polymorphs, there is a slight lowering of
the lid energies at which several of the transitions occur in
this larger unit cell: the connection between β and δ is low-
ered by 10 kJ mol−1 compared to the P1 results, while their
connection to ε is lowered by only 5 kJ mol−1.

The basin containing the low density γ polymorph is sep-
arated by an even larger energy barrier from β, δ and ε.
This energy barrier connecting the γ trajectory to the other

Table 1: Lid energies at which transitions are located be-
tween γ, β, δ and ε in threshold sampling in space groups
P1 (upper right entries) and P21/c (lower left entries). En-
ergies in italics along the diagonal are the calculated lattice
energies of the four structures. All energies are in kJ mol−1.

ε δ β γ
ε -259.2 -104.2 -104.2 -89.2
δ -109.2 -214.5 -104.2 -89.2
β -109.2 -114.2 -192.1 -89.2
γ -59.2 -59.2 -59.2 -169.7

three structures shows the largest difference between results
in the two space groups. The lid energy at which γ connects
to the others is -89.2 and -59.2 kJ mol−1 in P1 and P21/c,
respectively, representing a barrier of 80 or 110 kJ mol−1
for the transformation of γ into the global energy minimum
ε or one of the other known polymorphs. Despite the large
quantitative difference found when sampling with different
symmetry constraints, the same qualitative picture emerges:
globally, γ is separated from the main pocket formed by ε, β
and δ, occupying its own funnel on the connectivity graph.
This finding agrees with the surprisingly good reported ther-
mal stability of the γ polymorph, despite its exceptionally
low density.[6]

The α polymorph of TTBI crystallizes in space group
P42/m with four molecules in the unit cell[44] and can-
not be represented in the unit cells included in the P1 and
P21/c simulations. To include α, we performed a further set
of simulations in a P1 unit cell containing four symmetry-
independent molecules, starting trajectories from all five
structures (α, β, γ, δ, ε) and attempting 5,000 steps per lid
energy. Due to the wide range of initial energies, the num-
ber of lids varied between trajectories, with the longest sim-
ulation started from ε involving 250,000 total Monte Carlo
steps.

The resulting disconnectivity graph from the P1 thresh-
old simulation is shown is figure 11c, where the branches
corresponding to each local energy minimum are colored by
the density of the corresponding crystal structure. Apart
from now including α, a difference with respect to the P1
and P21/c results is that the lower symmetry allows more
distinct local minima to be identified within the superbasins
corresponding to the known polymorphs; this is particularly
noticeable around δ, where 17 structures are connected to
δ at lower energy barriers than the connection of the δ su-
perbasin to those of ε, α and β. To more clearly visualise
the relationships between the five polymorphs, a simplified
disconnectivity graph is shown in figure 11d, in which all
structures other than the five starting structures are hidden.
The lid energies at which transitions are found between the
five structures are summarised in Table 2.

As with the results from the higher symmetry simulations,
we find the barrier separating the γ polymorph from other
observed forms to be the highest; the connection between γ
and the other polymorphs is found at the same lid energy
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(a) (b)

(c) (d)

Figure 11: Disconnectivity graphs from threshold simulations for TTBI sampled in space groups: (a) P1 (two molecules
per unit cell), (b) P21/c (four molecules per unit cell) and (c) P1 with four independent molecules per unit cell. (d) A
simplified graph from the simulation in P1 with all local minima apart from the five landmark structures (α, β, δ, γ and
ε) hidden. The branches in (c) are coloured to show the crystal density of each structure.

in the P1 simulation as the simulation with P1 symmetry
constraints in the smaller unit cell. This fulfills our expec-
tation that sampling in P1 should find a transition path
with an energy barrier at or lower than that found in space
group-constrained trajectories.

The pair of polymorphs related by the lowest energy bar-
rier is α and β, where the lid energy at which their tra-
jectories meet is just under 50 kJ mol−1 above the calcu-
lated energy of α. The result agrees with molecular dy-
namics studies[6] in which the structures of all other ob-
served TTBI polymorphs showed only fluctuations about
their known crystal structures at 300K, apart from α, which
partially transformed to β in a short, 500 ps, simulation.
These structures also occupy the same ’spike’ on the energy-
density representation of the crystal structure landscape.
We note that the disconnectivity graph tends to group struc-
tures of similar density; the lowest energy barriers tend to

be found between structures that are close in density.

3.3 Energy Landscape Featuring

The disconnectivity graph that is generated from the thresh-
old simulations could be viewed as a form of clustering of
local energy minima, grouping those that are related by the
lowest energy barriers. The results for tetrolic acid demon-
strate that there is a link between the basin structure on
the crystal energy landscape and geometric features of the
crystal structures - in this case, hydrogen bonding motif.
The results for TTBI also suggest that crystal density differ-
ences explain some of the grouping of local energy minima
into the superbasins on the energy landscape. Therefore,
we asked the question whether structural descriptors com-
monly used in machine learning applications could provide
a more general geometrical descriptor of structural similar-
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Table 2: Lid energies at which transitions are located be-
tween γ, α, β, δ and ε in threshold sampling in space group
P1 with four independent molecules in the unit cell (upper
right entries). The entries in the lower left are the lowest
energy lid at which transitions are found in the simulations
in P21/c and P1. Energies in italics along the diagonal are
the calculated lattice energies of the four structures. All
energies are in kJ mol−1.

ε δ β α γ
ε -259.2 -94.2 -114.2 -114.2 -89.2
δ -109.2 -214.5 -94.2 -94.2 -89.2
β -109.2 -114.2 -192.1 -134.2 -89.2
α - - - -183.1 -89.2
γ -89.2 -89.2 -89.2 - -169.7

ity that correlates with the clustering of local minima based
on heights of energy barriers. If so, this could improve our
physical understanding of the information gained by apply-
ing geometrical descriptors to CSP landscapes, which has
started to gain attention for identifying families of related
structures, with the goal of discovering structure-property
relationships.[46, 47, 48] Furthermore, a successful geomet-
rical clustering could replace the computationally expensive
local energy minimization procedure to identify the basin to
which each point on the Monte Carlo trajectory belongs.

We have taken the GAZCES co-crystal energy landscape
in space group P21/c as an example. This system was cho-
sen for investigation due to the clear structure of the en-
ergy landscape and because of the sufficiently large num-
ber of structures in each basin from threshold simulations.
For analysis, the total energy landscape was divided into
three regions: two funnels, each containing an initial struc-
ture (polymorph I or II) and the structures outside the two
basins. Two common descriptors for crystal systems - SOAP
and atom-centered symmetry functions (ACSFs) - were ap-
plied with common data featuring methods.

We first investigated dimensionality reduction using PCA
of the ACSFs and the SOAP kernel. In both cases, the de-
scriptors were flattened over all atoms and, for symmetry
functions, radial and angular functions were merged into
one vector. With either descriptor, the eigenvalues corre-
sponding to the first two principle components had twice
the magnitude of the third. We plot the structures onto
these first two principal components in Figure 12a (see ESI
for the corresponding plot for ACSFs, Fig. S14). In neither
case is there clear differentiation of structures corresponding
to basins I and II, as identified by the threshold algorithm;
the structures from both basins, and those outside of the two
basins, overlap in this projection onto the first two principal
components.

In case the overlap of basin I and basin II structures seen
in the PCA visualization is due to the dimensional reduc-
tion, we also tested density-based clustering in the origi-
nal, high dimensional descriptor space. The HDBSCAN*
algorithm[38] was applied to the same dataset (the GAZCES

(a)

(b)

Figure 12: (a) The first two principle components of
the SOAP REMatch kernel for structures for co-crystal
GAZCES in space group P21/c, coloured according to the
basin identified from threshold simulations. Structures la-
belled in black fall outside of the two main basins (see Fig.
6) (b) Distribution of pairwise dissimilarities between and
within energy basins I and II.

co-crystal set of local energy minima in P21/c). However,
trying different minimum cluster sizes and, for ACSFs, dif-
ferent measures of the pairwise distance between structures
(see ESI), no clustering could be obtained that aligns with
the grouping of structures from the threshold simulation re-
sults. Full details are given in the ESI. To understand these
results, we examined the distributions of distances between
structures within each basin and between basins. The dis-
tribution of distances between structures was found to be
similar within and between energy basins (Figs. 12b, S16,
S17, S18), indicating that geometrical similarity based on
these atom-centered geometrical descriptors is not necessar-
ily a good indicator of structures that are ’closer’, in terms
of energetic accessibility, on the energy landscape.
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4 Conclusions
We have implemented the threshold algorithm to study the
energy landscapes of molecular crystal structures with a
force field energy model using atomic multipole electrostat-
ics. The method has been applied to four molecular or-
ganic crystal systems to examine the energy barriers be-
tween known polymorphs and the global structure of their
crystal energy landscapes, which we visualize using discon-
nectivity graphs.

The structures of the energy landscapes vary between the
systems studied here, from a single funnel for the crystal
structures of indigo, where hydrogen bonding is conserved
between polymorphs, to multiple energy funnels when poly-
morphs differ in the arrangement of their strong intermolec-
ular interactions. Thus, the threshold simulation results re-
inforce our chemical intuition and provide a quantification
of the differences in energy barriers between different poly-
morphic systems.

Although the structures of the energy landscapes for the
molecules studied here can be rationalized in terms of inter-
molecular interactions, we find that the grouping of crystal
structures in energy basins is not reproduced by clustering
or dimensionality reduction based on commonly-used struc-
tural descriptors. Thus, the results are complementary to
unsupervised machine learning approaches that have been
applied to the analysis of crystal structure landscapes.

The influence of space group constraints on energy barri-
ers has been examined; for the systems studied here, the
qualitative global picture of the energy landscape is not
strongly influenced by imposing symmetry constraints, but
the magnitude of energy barriers is affected. Therefore,
space group-constrained simulations can be used to gain
initial insight into crystal energy landscapes, but more com-
putationally demanding, unconstrained simulations are the
best route for more quantitative results.

Our implementation of the threshold algorithm is cur-
rently limited to rigid molecules and, thus, only requires
evaluation of intermolecular interactions. The extension to
flexible molecules would be needed to apply the method
to systems where changes in molecular conformation be-
tween polymorphs are important. The extension should
be straightforward and would require perturbations that in-
volve intramolecular distorsion, and an energy model that
includes the inter- and intramolecular energy contributions.

We believe that the method presented here is a power-
ful tool which, combined with crystal structure prediction
methods, can provide a global picture of the energy land-
scapes of molecular crystals, and improving our understand-
ing of polymorphism.
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