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ABSTRACT: Substituted vinylene carbonates were directly prepared from aromatic aldehydes following a one-pot Benzoin conden-

sation / transcarbonation sequence under solvent-free conditions. The combination of a N-phenyl substituted triazolium salt NHC 

precursor and 4-dimethylaminopyridine (DMAP) was found essential to reach high yield and selectivity. The reaction scope was 

investigated with a range of aromatic aldehydes and the corresponding vinylene carbonates were obtained with 32-86% isolated yields 

(14 examples).  

Organic carbonates are environmentally-friendly and sustain-

able species that are the subject of intense research efforts. For 

instance, they can be used as electrolyte additives in lithium bat-

teries,1 as organic solvents2 and for the production of polycar-

bonates3 and polyurethanes.4 The chemistry of organic cyclic 

carbonates has been developed extensively, due to the fact that 

they can be prepared through cycloaddition of epoxides with 

CO2,5 thus giving saturated species. On the opposite, the chem-

istry of unsaturated cyclic carbonates, i.e. vinylene carbonates, 

is considerably underdeveloped. 

Unsubstituted vinylene carbonate (1,3-dioxol-2-one) is the 

parent member of the vinylene carbonate family. For instance, 

it can be used as an electrolyte additive in lithium batteries6 or 

as a monomer to prepare poly(vinylenecarbonate),7 a precursor 

of poly(hydroxymethylene) that could be used in 3D printing.8 

In organic chemistry, it is mainly used as a dienophile in Diels-

Alder reactions.9 Recently, the chemistry of vinylene carbonate 

has blossomed notably in annulation reactions10 where it serves 

as acetylene,11 acetaldehyde,12 acetyl,13 or ethynol14 surrogates. 

Substituted vinylene carbonates are also useful compounds 

that provide complementary applications. For example, 4,5-di-

methyl-1,3-dioxol-2-one is the key precursor of a cleavable 

group that is used in prodrugs such as olmesartan medoxomil 15 

and azilsartan medoxomil.16 Recently, it was also demonstrated 

that functionalized dioxolone derivatives can be used to prepare 

excellent polymeric additives to make high-energy-density lith-

ium-ion batteries.17  

Only a few approaches to substituted vinylene carbonates 

have been reported in the literature. The silver-catalyzed cy-

cloaddition of propargylic alcohols with CO2 gives exo-vi-

nylene carbonate intermediates (Scheme 1, a).18 However, only 

a few of these species can be isomerized to vinylene car-

bonates,19 thus limiting the scope of application. A wider range 

of vinylene carbonates can be obtained from benzoins and 

acyloins by reaction with carbonyl sources such as phosgene,20 

triphosgene21 and carbonyl diimidazole (CDI) (Scheme 1, b).22 

However, these carbonyl sources are either too toxic or expen-

sive to envision further utilization on the large scale. 

Scheme 1. Synthetic strategies to substituted vinylene car-

bonates. 
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Moreover, our group has recently demonstrated that less toxic 

(but less reactive) diphenyl carbonate (DPC) can also be used 

as a carbonyl source, provided activation through organocatal-

ysis.23 This method is probably the most general in term of 

scope, however, it still requires the preliminary preparation of 

benzoins and acyloins. In this context, we report here the direct 

synthesis of vinylene carbonates from aldehydes. The reaction 

occurs through an unprecedented Benzoin condensation/trans-

carbonation sequence catalyzed by a mixture of a triazolium salt 

and 4-dimethylaminopyridine (DMAP).  

Initial optimization reactions were performed using benzalde-

hyde 1 and diphenyl carbonate 2 as model substrates. The scree-

ning of catalysts was carried out in order to find a suitable spe-

cies able to catalyze both transformations and was performed in 

the presence of K2CO3 in neat conditions (Table 1). Considering 

that imidazolium salts were found effective to promote the for-

mation of vinylene carbonates in our previous work,23 optimi-

zation reactions were first carried out with these species. In 

sharp contrast, the use of NHC precursors A-F gave poor yields 

for either benzoin 3 or the desired vinylene carbonate 4 (entries 

1-6). Benzothiazolium salts G-H and thiazolium salt I also gave 

poor yield of 4, but slightly promote the formation of 3 with up 

to 10% yield (entries 7-9). Among triazolium salts, NHC pre-

cursor J did not catalyze the reaction (entry 10). On the con-

trary, the use of K led to formation of 4 with 9% yield along 

with 40% of intermediate 3 (entry 11). Vinylene carbonate 4 

was also obtained with 10% yield with L but this catalyst proves 

to be more selective as only 2% of 3 was formed (entry 12). 

Consequently, this catalyst was selected for further optimiza-

tion. 

Table 1. Screening of NHC precursorsa 

 
Entry NHC precursor Yieldb of 3 (%) Yieldb of 4 (%) 

1 A 1 0 

2 B 0 0 

3 C 0 1 

4 D 0 1 

5 E 4 6 

6 F 0 0 

7 G 7 1 

8 H 3 0 

9 I 10 5 

10 J 0 0 

11 K 40 9 

12 L 2 10 

a Reaction conditions: benzaldehyde 1 (2 mmol), diphenyl car-

bonate (DPC) 2 (1.1 mmol), NHC precursor (5 mol%), K2CO3 (5 

mol%), 90 °C, 16 h. b Yields were determined by GC/FID with he-

xadecane as an internal standard. 

Several bases (5 mol%) were next screened (Table 2). Using 

carbonates, the yield of 4 progressively increased from 0% with 

Li2CO3 to 38% with Cs2CO3, while the amount of intermediate 

3 remained low (entries 1-5). These results could be explained 

by the better solubility of cesium carbonate in the neat reaction 

mixture. Organic bases such as triethylamine (TEA), triazabi-

cyclodecene (TBD) and 1,8-diazabicyclo [5.4.0] undec-7-ene 

(DBU) gave low yield (< 10%) for the desired product (entries 

6-8). However, 4-dimethylaminopyridine (DMAP) gave an en-

couraging 57% yield (entry 9). Increasing its loading to 10 

mol% allows reaching 99% yield of 4, without any traces of 

benzoin intermediate (entry 10). This excellent result could be 

explained by the fact that DMAP acts as a base in the Benzoin 

condensation while also playing the role of a nucleophilic cata-

lyst in the transcarbonation steps. By comparison, NHC precur-

sor K gave 29% of 3 and 7 % of 4, thus confirming the inferi-

ority of this catalyst compared to L (entry 10, results in brack-

ets). The catalyst loading of L was next decreased to 2 and 1 

mol%. In these conditions, the desired vinylene carbonate was 

formed with only 85 and 57% yield (entries 11-12). However, 

the yield of 4 can also reached 99% when increasing the reac-

tion time to 24 and 64 h, respectively (entries 11-12, results in 

brackets). 

Table 2. Base optimizationa 

 
Entry Base, loading 

(mol%) 

Yieldb of 3 

(%) 

Yieldb of 4 

(%) 

1 Li2CO3 (5) 1 0 

2 Na2CO3 (5) 3 5 

3 K2CO3 (5) 2 10 

4 Rb2CO3 (5) 1 19 

5 Cs2CO3 (5) 2 38 

6 TEA (5) 2 5 

7 TBD (5) 1 10 

8 DBU (5) 2 6 

9 DMAP (5) 0 57 

10 DMAP (10) 0 (29)c 99 (7)c 

11d DMAP (10) 0 85 (99)f 

12e DMAP (10) 0 57 (99)g 

a Reaction conditions: benzaldehyde 1 (2 mmol), diphenyl car-

bonate (DPC) 2 (1.1 mmol), NHC precursor L (5 mol%), base (5 

mol%), 90 °C, 16 h. b Yields were determined by GC/FID with he-

xadecane as an internal standard. c results in brackets obtained with 

K (5 mol%), d 2 mol% of L, e 1 mol% of L, f 24 h, g 64 h. 

Several organic carbonates were next tested as a carbonyl 

source (Scheme 2). Using either dimethyl carbonate (DMC) or 

diethyl carbonate (DEC) as a carbonyl source, the desired prod-

uct was not formed but benzoin intermediate 3 was obtained 

with 48% and 98% yield, respectively. These results indicate 

that DMC and DEC are only acting as solvents and are unable 
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to act as carbonyl sources under these conditions. Ethylene car-

bonate (EC) and propylene carbonate (PC) were also tested as 

they directly arise from the cycloaddition of ethylene oxide or 

propylene oxide with CO2. Similarly, no vinylene carbonate 

was formed. Moreover, these species are also poor solvents for 

the transformation as benzoin was only obtained with 7% yield. 

Catechol carbonate gave 4 with only 14% yield. In sharp con-

trast, the use of diphenyl carbonate gave the desired product 4 

with 99% yield. The better reactivity of DPC could be explained 

by the fact that the phenolate ion is by far a better leaving group 

than other alkoxides. 

Scheme 2. Carbonates as carbonyl sources.a 

 
a Reaction conditions: benzaldehyde 1 (2 mmol), carbonate (1.1 

mmol), NHC precursor L (5 mol%), DMAP (10 mol%), neat, 90 

°C, 16 h. b Yields were determined by GC/FID with hexadecane as 

an internal standard. 

The reaction scope was investigated with aromatic aldehydes 

under optimized conditions (Scheme 3). First, benzaldehyde 

gave 4 with a good isolated yield of 86 %. Benzaldehydes bear-

ing halogens at the para position gave contrasting results. 

Bromo- and chloro- derivatives worked well with 70-78% yield 

for 5-6 while the fluoro derivative gave 7 with only 36% yield.  

Scheme 3. Scope of aromatic aldehydes.a 

 

a Reaction conditions: aromatic aldehyde (2 mmol), diphenyl 

carbonate 2 (DPC) (1.1 mmol), NHC precursor L (5 mol%), DMAP 

(10 mol%), 90 °C, 16 h. n.p: no product. 

These results are explained by the fact that the Benzoin conden-

sation does not proceed well with aldehydes bearing strong 

electron-withdrawing substituents. This was also confirmed 

with the use of para-nitro and para-trifluorobenzaldehydes that 

did not convert at all under these conditions. Para- and meta-

tolualdehydes gave the desired vinylene carbonates 8-9 with 

good yields (70-78%) while ortho-tolualdehyde did not furnish 

10, due to the fact that the Benzoin condensation is also sensi-

tive to steric hinderance. This is also demonstrated with naph-

thaldehydes. No reaction occurred with -naphthaldehyde 

while -naphthaldehyde gave 11 with 57% yield. Aldehydes 

bearing electron-donating groups such as 3- or 4-anisaldehyde, 

4-benzyloxy benzaldehyde and 4-(methylthio)benzaldehyde 

gave 12-15 with moderate yields (42-56%). The reaction also 

proceeds with 4-phenyl-, 4-isopropyl- and 4-ethynylbenzalde-

hydes and the corresponding vinylene carbonates 16-18 were 

isolated with 32-67% yield. The reaction was also attempted 

with aldehydes bearing free hydroxyl groups such as vanillin 

and 3-hydroxybenzaldehyde. In these cases, no conversion was 

observed indicating that the presence of acidic protons is dele-

terious for the reaction. Finally, aliphatic aldehydes were also 

tested but only aldolization products were observed under these 

conditions. 

The synthetic utility of substituted vinylene carbonates pre-

pared through the developed methodology was next probed 

(Scheme 4). First, Suzuki-Miyaura cross-coupling of 5 (R=Br) 

with phenylboronic acid gave 16 with 72% yield. Oxidation of 

15 (R = SMe) with H2O2 in the presence of acetic acid gave the 

corresponding bis-sulfoxide 19 as a 81:19 mixture of diastere-

omers in 90% yield. Other transformations were also investi-

gated with vinylene carbonate 4 (R=H). Wittig reaction with 

methylenetriphenylphosphane afforded butenolide 20 with 62% 

yield. Photocyclization in the presence of iodine gave 9,10-di-

hydrophenanthrene carbonate 21 with 53% yield. Finally, hy-

drogenation under 1 atm of hydrogen in the presence of palla-

dium hydroxide gave 22 in 91% yield. These results show that 

vinylene carbonates offer a unique platform for further transfor-

mations. 

Scheme 4. Synthetic applications of vinylene carbonates.a 

 
a See Supporting Information for experimental details. 

From a mechanism point of view, the reaction consists of 

three steps: i) formation of benzoin intermediate: ii) formation 

of a mixed carbonate intermediate through trans-carbonation 

iii) formation of the desired vinylene carbonate by a second 
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trans-carbonation. So, some control reactions were performed 

to understand the role of the base and catalyst for each step. 

First, control experiments were performed from benzaldehyde 

(Scheme 5, Control experiments 1). The reaction was carried 

out with L alone and with DMAP alone and no conversion was 

observed in both cases. In contrast, the combination of tria-

zolium L and DMAP led to full conversion of benzaldehyde and 

vinylene carbonate 4a was obtained with an excellent 99% GC 

yield. These results show that DMAP acts as a base to generate 

the active species from L, which catalyzes the Benzoin conden-

sation.  

Scheme 5. Control experiments.a 

 

Considering that benzoins were formed as intermediates in 

this reaction, another series of control experiments was per-

formed using benzoin as a starting material (Scheme 5, Control 

experiments 2). First, the reaction was performed with L alone 

and no conversion of benzoin was observed. On the contrary, 

when DMAP was used alone, a full conversion was reached and 

vinylene carbonate 4a was obtained with 99% GC yield. Simi-

larly, in the presence of both L and DMAP, 4a was also ob-

tained with 99% GC yield. This result suggests that the free car-

bene generated from L and DMAP could also catalyze the trans-

carbonation steps. This was also demonstrated when using cat-

alyst L in the presence of Cs2CO3 as a non-nucleophilic base 

(see Table 1, entry 5). Moreover, we demonstrated that the for-

mation of vinylene carbonates from benzoins can be catalyzed 

by NHCs.23 

So, a reaction mechanism was proposed based on previous 

works24 and the results of control experiments (Scheme 6). 

First, the triazolium salt L would be deprotonated by DMAP to 

give NHC I. Due to huge difference of pKa values of DMAP 

(pKa=9.6, 20°C in water)25 and triazolium salt L (pKa=17.6, 

25°C in water),26 the direct deprotonation is unlikely but recent 

works have proposed other pathways, notably through an elec-

trophilic aromatic substitution mechanism.27 The nucleophilic 

addition of the NHC on the first aldehyde gives compound II, 

then Breslow intermediate28 III after 1,2 proton transfer. Nucle-

ophilic addition of III on a second aldehyde gives intermediate 

IV, which is converted to intermediate V by 1,4 proton transfer. 

Finally, benzoin VI is obtained after released of the free car-

bene. In the second step, diphenyl carbonate would be activated 

by a nucleophilic catalyst (either DMAP or NHC) to give inter-

mediate VII. Trans-carbonation of VII with benzoin would af-

ford VIII and release a first molecule of phenol. The mixed car-

bonate intermediate IX would be produced and the nucleophilic 

catalyst would be released. In the last step, in presence of the 

nucleophilic catalyst, IX would afford intermediate X that gives 

enolate intermediate XI and release a second molecule of phe-

nol. Finally, the enolate XI would add onto the activated car-

bonyl group to form vinylene carbonate 4 through cyclization. 

In this mechanism, the last step is probably very fast as the 

mixed carbonate intermediate has never been detected under 

our reaction conditions. 

In conclusion, we have developed an efficient catalytic method 

for the direct formation of vinylene carbonates from aromatic 

aldehydes. Good yields and selectivities were obtained using an 

original combination of triazolium salt L and DMAP, in which 

DMAP acts both as a base and a nucleophilic catalyst. The re-

action scope was investigated with aromatic aldehydes and the 

corresponding vinylene carbonates were obtained with 32-86% 

isolated yields (14 examples). Post-functionalization and deri-

vatization reactions were also reported, showing that vinylene 

carbonates are attractive platform molecules. 

Scheme 6. Mechanism proposal.a 

 

 

  



5 

Supporting Information 

Supporting information containing experimental procedures, char-

acterization data and 1H and 13C NMR spectra is given in a separate 
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