
Improving force field accuracy by
training against condensed phase
mixture properties
Simon Boothroyd1,2,†, Owen C. Madin1,†, David L. Mobley3,4, Lee-Ping Wang5, John D.
Chodera6, Michael R. Shirts1

1Department of Chemical & Biological Engineering, University of Colorado Boulder, Boulder, CO,
USA 80309; 2Boothroyd Scientific Consulting Ltd., 71-75 Shelton Street, London, Greater
London, United Kingdom, WC2H 9JQ; 3Department of Pharmaceutical Sciences, University of
California, Irvine, California, USA 92617; 4Department of Chemistry, University of California,
Irvine, CA 92617, United States; 5Department of Chemistry, University of California; 1 Shields
Avenue; Davis, CA, USA 95616; 6Computational & Systems Biology Program, Sloan Kettering
Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA 10065
*For correspondence:
michael.shirts@colorado.edu (MRS)
†These authors contributed equally to this work.

Abstract
Developing a sufficiently accurate classical force field representation of molecules is key to realizing the full
potential of molecular simulation as a route to gaining fundamental insight into a broad spectrum of chem-
ical and biological phenomena. This is only possible, however, if the many complex interactions between
molecules of different species in the system are accurately captured by the model.
Historically, the intermolecular van der Waals (vdW) interactions have primarily been trained against densi-
ties and enthalpies of vaporization of pure (single-component) systems, with occasional usage of hydration
free energies. In this study, we demonstrate how including physical property data of binary mixtures can
better inform these parameters, encoding more information about the underlying physics of the system in
complex chemical mixtures. To demonstrate this, we re-train a select number of the Lennard-Jones param-
eters describing the vdW interactions of the OpenFF 1.0.0 (Parsley) fixed charge force field against training
sets composed of densities and enthalpies of mixing for binary liquid mixtures as well as densities and en-
thalpies of vaporization of pure liquid systems, and assess the performance of each of these combinations.
We show that retraining against the mixture data almost universally improves the force field’s ability to re-
produce both pure and mixture properties, reducing some systematic errors that exist when training vdW
interactions against properties of pure systems only.

1 Introduction
Atomistic molecular simulations are a popular and effective method for examining biomolecular systems
in silico, revealing molecular insights in protein folding, protein-ligand binding, membrane transport, and
many other phenomena. For many of these use cases, quantitative accuracy is required for meaningful
predictions. One critical example is binding free energy calculations for protein-ligand compounds. These
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calculations are an important step in the computational drug discovery process, but are only useful tomedic-
inal chemists if predictions are sufficiently accurate and rapid [1]. Consequently, there has been much in-
terest in producing improved parameter sets for the simple fixed charge functional forms common tomost
modern force fields. One key set of parameters for these force fields are the parameters of the Lennard-
Jones (LJ) interaction terms, which are used in standard organic and biomolecular force fields to capture
the short-range attractive and repulsive non-bonded interactions that drive many important biomolecular
processes.

The simplest method for obtaining LJ parameters is estimation from experimental correlations [2], as
in the original CHARMM [3] and GROMOS [4] force fields. This method has a low computational overhead
but very limited accuracy. Training LJ parameters against experimental properties became the predomi-
nant method in small molecule force fields, facilitated by the increase in computational power required to
simulate those properties. This method has been used by many force fields, including OPLS [5], CGenFF [6],
GAFF [7], and GROMOS [8]. The dominant parameterization paradigm is to train the LJ parameters against
liquid density (�l) and heat of vaporization (ΔHvap) measurements, as in the original OPLS parameterization
by Jorgensen et al. [9]. These two physical property targets are used because they are simple to calculate
from simulation [10], are dependent on the molecular volume and attractive forces, and together constrain
the LJ potential better than they do individually. We note that while this is the dominant choice, alternatives
exist; notably, the GROMOS 53A5/53A6 force fields use enthalpies of hydration and solvation in addition to
�l and ΔHvap [8]. Additionally, ab initio calculations can be used to inform parameterization, for example,
using rare-gas interaction energies and geometries to produce initial parameter estimates subsequently re-
fined with physical property data [11, 12]. More recently, methods to produce LJ parameters entirely from
ab initio data, using atom-in-molecule electron density partitioning [13, 14], or the exchange hole dipole
model [15] have been proposed. Still, parameterization against small molecule �l and ΔHvap is the domi-
nant paradigm [16, 17].

Training against ΔHvap in particular is problematic in some aspects. Using fixed charge force fields, pre-
dictions of ΔHvap require performing simulations in both liquid phase and gas phase, which means that
the same parameters must capture two different polarization states [18, 19] to reproduce experimental
measurements of ΔHvap. There has been significant discussion on how to account for this polarization cost,
which also arises in the calculation of hydration and solvation free energies [19–21]. Methods suggested
include calculating an explicit polarization cost [19] or using semi-polarized charges [13, 22], but the issue
has not been definitively resolved. Additionally, some compounds, such as acids, can form clusters in the
gas phase [23, 24], which are not generally represented in gas phase simulations used to predict ΔHvap.Anothermajor issue is the availability ofmodern experimentalΔHvap data. TheNIST ThermoMLArchive [25]
is the one of the largest open databases for physical property measurements, and contains roughly 500 to-
tal ΔHvap data points, where a “data point” in this context is defined as an experimental measurement for
a specific compound at a given temperature T , pressure p, and mole fraction x. In contrast, the ThermoML
Archive contains over 60,000 measurements of pure densities. The ThermoML Archive is certainly not the
only location of ΔHvap data (it lacks data prior to the year 2003, and many measurements of ΔHvap date tothemid-20th century), but it is challenging to obtain uncertainty estimates [26], rigorous provenance [27], or
fully computer-readable forms for older measurements. It is difficult to systematically vet the experimen-
tal procedures and outputs for large scale, automated, parameter optimizations without access to large
amounts of well-formatted and curated data, which is difficult to find for ΔHvap.For a fixed charge small molecule force field geared towards biomolecular systems in heterogeneous
condensed phase, properties of mixtures such as the densities (�l(x)) and enthalpies of mixing (ΔHmix(x)) ofbinary mixtures are an attractive alternative to the properties of pure systems for several reasons:

1. Properties of mixtures, especially in the cases of mixtures that deviate strongly from ideality, can be
sensitive to interactions between functional groups that are not generally present in the pure sub-
stances used to train LJ parameters [28, 29]. This is especially important for capturing solute-solvent
interactions.

2. Although computing some properties of mixtures may require multiple simulations, most such prop-
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erties (including those studied here) do not require simulations in different phases, minimizing error
caused by polarization differences. There may be some difference in polarization of molecules be-
tween more polar and less polar liquids, but this difference is significantly less than the difference
between two phases, especially since liquid mixtures are, by definition, miscible and the components
must therefore have not completely dissimilar dielectric constants.

3. The nature of mixture data allows users to more easily include a diverse spectrum of interactions
in their training sets. For example, mixtures of drug-like molecules with pharmaceutically relevant
solvents or amino acid analogues can in principle be readily included in training sets to allow the LJ
parameters of solvents, ligands, and bio-polymers to be self-consistently trained.

4. Including mixture data adds the ability to vary training set data by composition; data points can be
selected at (T , P , x) rather than just (T , P ), probing the balance between pure andmixture interactions.

5. Many data points for mixture properties are available in modern sources such as the ThermoML
Archive. In particular, binary ΔHmix(x) measurements are much more abundant in the ThermoML
archive compared to pure ΔHvap. For the moieties and conditions of interest in our study, there
are 382 binary mixtures with ΔHmix(x)measurements (generally available at multiple concentrations),
compared to 24 single-component ΔHvap measurements that fit the same criteria. For density mea-
surements, both mixture and pure component data points are relatively abundant, with 4000 data
points for pure substances and 900 binary mixtures matching our criteria.

In this study, we aim to rigorously assess whether it is more beneficial to train the intermolecular LJ
parameters of a force field on solely pure substance data, binary mixture data, or a combination of both,
with an emphasis here on density-related properties (�l, �l(x)) and enthalpic properties (ΔHvap, ΔHmix(x)). Acombination of density and enthalpic data should be generally sufficient to constrain the LJ � and " param-
eters, with density properties providing the most information about � and enthalpic properties providing
information on " via the cohesive forces between molecules, though there is of course some partial cross-
correlation between parameters [30].

Starting with theOpenFF 1.0.0 (Parsley) force field [31], we use this data to train 12 Lennard-Jones param-
eters (� and " for 6 LJ types) against data for alcohols, esters, ethers, ketones, acids, and alkanes, with prop-
ertymeasurements chosen from four training sets containing different combinations of physical properties.
To test the performance of the refitted force fields, we benchmark the results of this optimization against
a larger test set of physical property measurements for the same moieties, consisting of �l (x), ΔHmix (x), �l,and ΔHvap measurements.
2 Methods
2.1 Optimization strategy
The studies proposed are constructed with the following workflow, as shown in Figure 1.

1. Sourcing a training set of molecules and selecting particular data points for each system of interest.
2. Optimizing only the selected LJ parameters against the training set using ForceBalance [32] in combi-

nation with the OpenFF Evaluator framework [33], starting from the OpenFF 1.0.0 (Parsley) [34] force
field parameters.

3. Assessing the performance of the trained force field against the test set, using the OpenFF Evaluator
framework.

The goal of the study was to assess whether training the LJ parameters against properties ofmixtures, as
well as combinations of pure/mixture properties, is more beneficial than training to properties of pure sys-
tems. Other force field parameters, namely the valence and electrostatic parameters, were not optimized.
2.1.1 Organic Mixture Studies
We selected four combinations of physical property data types (densities of pure compounds and binary
mixtures, heats of vaporization of pure compounds, and enthalpies ofmixing of binarymixtures) to optimize
against (shown in Table 1).
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Figure 1. LJ optimizationworkflowused in this study. A training dataset consisting of physical propertymeasurementsfor organic molecules is selected from the NIST ThermoML database. Starting with the OpenFF 1.0.0 (Parsley) force field,the physical properties in the training dataset are estimated using the force field and the OpenFF Evaluator softwarepackage.LJ parameters are then adjusted by minimizing the difference between the simulation results and experimentaltraining data via a regularized least-squares procedure as implemented in the ForceBalance package [32]
Properties Included

Training Data set Pure properties Mixture properties
�l ΔHvap �l(x) ΔHmix(x)“pure only” Yes Yes No No

“mixture only” No No Yes Yes
“mixtures + pure density” Yes No Yes Yes

“pure and mixture” Yes Yes Yes Yes
Table 1. Four training sets containing different combinations of pure and mixture data were considered in this
study. These training sets are composed of measurements of pure-component liquid density (�l), pure-component en-thalpy of vaporization (ΔHvap), binary mixture densities (�l(x)), and binary enthalpies of mixing (ΔHmix(x)). These mea-surements cover a set of alcohols, esters, ethers, ketones, acids and alkanes, which is further described in Figs. 2 and 3.The 4 training sets in this study are labeled based on which of these measurements are included, and are described inSection 2.1.1.

1. (�l, ΔHvap) (“pure only”): Includes only density �l, and enthalpy of vaporization ΔHvap, data points.
This is the type of training set which has most commonly been used [5–7] for training the non-bonded
interaction force field parameters, and is therefore included as a historical baseline.

2. (ΔHmix(x), �l(x)) (“mixture only”): Includes only density �l (x) and enthalpy of mixing ΔHmix (x) datapoints measured for binary systems. This data set allows us to explore whether mixture data alone is
sufficient to constrain the non-bonded force field parameters during training, and if force field trained
without pure compound data points will be able to accurately reproduce pure compound data.

3. (ΔHmix(x), �l(x), �l) (“mixtures + pure density”): A combination of �l (x), ΔHmix (x), and �l data points.This extension of the “mixture only” training set is included to explore whether including the density
of pure systems helps to constrain the optimization, or whether �l(x) alone is sufficient.

4. (ΔHmix(x), �l(x), �l, ΔHvap) (“pure and mixture”): A combination of the “pure only” and the “mixture
only” training sets. This data set tests whether including pure ΔHvap alongside ΔHmix(x) improves the
predictions of the cohesive energies between molecules, or whether ΔHmix(x) alone is sufficient.

Themeasurements in the training set are formolecules composed of carbon, hydrogen and oxygen only
(including alcohols, esters, ethers, ketones, acids and alkanes). These compounds cover awide range of fluid
phase polarizabilities, with relative permittivities ranging from 1.9 (hexane [35]) to 35.7 (methanol [36]).
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2.2 Data set selection
All training sets considered here are composed of only alcohols, esters, ethers, ketones, acids and alka-
nes that have ample density and enthalpic data available, and contain only data points measured at near-
ambient conditions (288.15–323.15K, 0.95–1.05 atm). This set of moieties, containing only carbons, hydro-
gens and oxygens, was chosen to limit the scope of the study, allowing us to focus specifically on the effects
of training against mixture data for the molecules chosen. The included molecules exercise a total of 9 LJ
types, of which 6 are optimized (Table 2). The three parameters that are not exercised are all hydrogen
parameters; an explanation of why they are not optimized is given in Section 2.4.1.

We enforce the criteria that all measurements in the data set contain only the molecules in Fig.2. This
criteria controls for the identity of molecules used in the optimization; whether the measurements used in
fitting are from pure substance or binary mixtures, they come from the same set of molecules. We note
that some values for �l (x) are obtained through the conversion of Vexcess (x) and �l where �l (x) is not directlyavailable.
2.2.1 Pure substance property training set
The “pure only” training set is composed of one �l and one ΔHvap measurement for each of the selected
molecules (Figure 2). These molecules were manually chosen to include a selection of esters, ethers, ke-
tones, alcohols and alkanes which included both long and short chain, branched and unbranched, cyclic
and acyclic characteristics where data was available. The �l measurements were sourced from the NIST
ThermoML [25] archive. The ΔHvap measurements were sourced directly from the literature, as very limited
data for the moieties of interest is available in the ThermoML Archive. Many data points were curated from
theMajer et al. review [26], where care was taken to select data points which were deemed as reliable by the
authors, and for which at least three independent measurements had been made and were in reasonable
agreement. In total, 28 molecules were chosen for a total of 56 data points (28 �l data points [37–61] and28 ΔHvap data points) [24, 62–72]. For ΔHvap of acids, measurements were sourced which correspond to an
infinitely dilute gas (as computed in [24]), which corresponds to the gas we simulate. This is done because
carboxylic acids tend to associate in the gas phase.
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Figure 2. The 28 molecules were included in the “pure only” training set. The pure data used in our training setscontains one �l and one ΔHvap measurement per molecule, measured at close to ambient conditions (P=1 atm, T=298K),yielding a training set of 28 molecules with 56 data points total.

2.2.2 Mixture training set
The binary mixtures selected for themixture training set (Figure 3) are composed of themolecules included
in the pure training set, and were manually chosen to include a diverse set of interactions. These property
measurements were sourced directly from the NIST ThermoML [25] archive using the OpenFF Evaluator’s
built-in data selection tools. For each binary mixture, three �l (x) and three ΔHmix (x) data points were in-cluded, one each at 25%, 50%, and 75% composition, or as close to these values as possible given data
availability. These compositions were chosen so as to ensure that the set included both components in ex-
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cess to the other as well as in close to equal amounts. Compositions between 25–75% should capture most
of the relevant information, as deviations from ideality for many mixtures are maximized near an equal
mixture. Mixtures with compositions close to pure (e.g. > 0.9) were excluded, as when the concentration of
one component becomes small, our simulation boxes (1000 total molecules) would have a very low number
of molecules of that component. In total, measurements made for 33 binary mixtures were selected for a
total of 198 measurements. This is significantly more than the 56 total data points in the pure data set, but
it is drawn from a number of mixtures similar to the number of compounds in the pure training set. We
note that we discovered one ΔHmix(x) data point (described in supporting information, Section 4) used in
the mixture training set that was transcribed into ThermoML incorrectly after training was complete.

O

O
O

O O

O

O
OH OH OH OH OH

OH OH OH OH
O

O
OO

O

O O

O
O

O

OO

O

O

O O

O
O

OH
O

O

O

O

O

O

OH

O

OH
OH OH

O
O

OH

O

O

O

O OH

O
O

O

O

OHO
O

O

O

OHO
O

O

O

OH
O

O
OH

O

O

Figure 3. The 33 pairs of molecules (shown as boxed pairs) which were chosen for the mixture training sets.The mixture data used in our training sets contains one �l (x) and one ΔHmix (x) measurement per mixture for threedifferent compositions if multiple compositions were available (close to 25%, 50% and 75%)measured at close to ambientconditions (P=1 atm, T=298 K), yielding a training set of 33 binary mixtures with 187 data points total.

2.2.3 Test set
The test set was chosen to include measurements of �l (x), ΔHmix (x), �l, and ΔHvap data points as in the
training set. Unlike the training set, we do not require that all pure substance and binary mixture measure-
ments in the test set must be sourced from the same set of molecules. Instead, given the limited amount
of diverse ΔHmix (x) and ΔHvap data for the selected moieties, focus was given to selecting as diverse a test
set as possible which maximally exercised the re-trained parameters. Data points from pure substances
included in the training set were excluded from the test set, as well as mixture data points from mixtures
included in the test set. The test set did include binary mixtures for which one of the two components was
present in the training set; for example, a mixture of ethanol and pentanol would be permissible in the
test set even if data points for ethanol/propanol and butanol/pentanol were both included in the training
set. This expands the test set to types of mixtures that were not included in the training set; for example,
mixtures containing either an alcohol or ketone are in the training set, but alcohol/ketonemixtures are only
included in the test set. The set was also selected to contain substances as distinct as possible from the
training set, and from other molecules in the test set. Mixtures including carboxylic acids were not included
in the test set due to low data availability.

In order to select a maximally diverse test set from the pool of molecules available in the ThermoML
Archive, a distance metric based on molecular fingerprints was defined to determine how distinct any two
substances are. Then, binary mixtures were selected by a greedy optimization that maximized this distance
metric. For a more detailed description of this process, see the Supporting Information Section 1.

The substances included for pure substance (�l and ΔHvap) measurements were then chosen to match

6 of 21



the components of the test set mixture properties where available; these were supplemented with mea-
surements for similar molecules that exercise the same LJ parameters. This resulted in a test set consisting
of 236 ΔHmix (x) and 385 �l (x) data points, which was supplemented with a hand-selected test set of 29
ΔHvap and 29 �l pure component measurements.
2.3 Physical property simulations
All estimates of the physical property values were performed using the OpenFF Evaluator [33] package ver-
sion 0.1.0 [73] using the default estimation workflow schemas, which are outlined in detail in the OpenFF
Evaluator documentation [74]. Where possible, simulations are reused to calculate physical properties. For
example, mixture densities and mixture enthalpies with a common concentration, temperature, and pres-
sure can be calculated from the same set of simulations.
2.3.1 Pure Liquid Simulations
Pure liquid properties were calculated by simulation in the NPT ensemble, at the temperature and pressure
from the corresponding physical property reference. These were performed with the default OpenFF Eval-
uator simulation workflow, in which a box of 1000 molecules of the target substance were placed in a sim-
ulation box using PackMol [75], with parameters then assigned using the OpenFF Toolkit version 0.6.0 [76].
An energy minimization and 0.2 ns equilibration run were then performed using OpenMM. Subsequently,
the molecules were simulated for 2 ns. For all simulations, a Langevin integrator with BAOAB [77] splitting
and a 2 fs timestep, and the default OpenMM Monte Carlo barostat, were employed to ensure simulation
in the correct NPT ensemble. Uncorrelated and well-equilibrated snapshots were used to compute the en-
semble averages of any observables, according to the procedure outlined by Chodera [78]. All uncertainties
in the average observables were computed by bootstrapping with replacement, and propagated through
any further calculations, assuming a Gaussian error model.

Locations of scripts to run the simulations and reproduce the results in this study are available in the
Code and Data Availability section.
2.3.2 Enthalpy of Vaporization Calculations
Enthalpies of vaporization require a pure liquid simulation, as described in 2.3.1, as well as a gas phase
simulation. This gas phase simulation is performed for a single molecule in the NVT ensemble, with pe-
riodic boundaries disabled, using the same Langevin integrator as used with the liquid simulations. This
simulation is run for 30 ns instead of the liquid phase 2 ns to converge statistics with only a single molecule.
2.3.3 Mixture Properties
Mixture densitieswere simulatedwith a similarworkflow to thepure liquid simulations, butwith themolecules
in the initial box split proportionally between the two species according to the experimental mole fraction.
Densities of binary mixtures are straightforward to calculate as they do not require more than one simu-
lation; the process is the same as for densities of single component liquids. Binary enthalpies of mixing
are calculated according to equation 1, where the enthalpies of the individual simulated components are
multiplied by their mole fractions in themixture, and then subtracted from the simulatedmixtureΔHmix,x1 ,x2 .

ΔHmix,x1 ,x2 = Hmix − x1H1 − x2H2 (1)
Enthalpies used in this calculated were simulated with a set of 3 simulations: one for each pure component,
and one for the mixture. Each of these simulations followed the standard workflow for a pure or mixture
property.
2.4 Optimization
For stochastic gradient descent optimizations, we need to estimate gradients of the observables of interest
as a function of force field parameters. In this paper, gradients are calculated using a reweighted finite
difference scheme, where the derivative dO∕dx of an observable O with respect to a parameter x is calcu-
lated using the central difference method with a relative step size of ℎ = 10−4. Values of O at x − ℎ and
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x + ℎ are estimated using MBAR reweighting [79], which is accurate for the properties of interest over the
step size ℎ. All optimizations were performed using the ForceBalance software package using the built-in
OpenFF Evaluator target [32, 33]. Optimizations were run using the Levenberg-Marquardt [80] non-linear
least squares algorithmwith adaptive trust radius [81, 82] to iteratively minimize the objective function until
it was observed to fluctuate around a minimum value in each optimization. This algorithm has been used
successfully with ForceBalance for force field optimization previously [32, 83]. In all cases 12 iterations was
sufficient to meet this criteria. Each iteration consists of 1) estimation of each physical property measure-
ment in the training set using the current force field parameters, 2) comparison of those estimated values
to the experimental values in ThermoML, 3) adjustment of the target parameters with the ForceBalance
optimizer. A weighted least squares objective function, � , was used to measure deviations of the reference
and estimated physical property values. An L2 penalty function based on the norm of the parameter dis-
placement vector (from the initial parameters) is used to regularize the optimization, with a prior over the
mathematical parameters of 0.1 for " and 1.0 for � [32].

�(�) =
N
∑

n

1
Mn

Mn
∑

m

(

yrefm − ym(�)
dn

)2

(2)
whereN is the number of types of properties (e.g. density, enthalpy of vaporization, etc.),Mn is the number
of data points of type n, yrefm is the experimental value of data point m and ym(�) is the estimated value of
data point m using the current force field parameters. The denominator dn is an inverse weight with the
same units as property type n chosen so that that each property type contributed approximately equally to
the objective function. For example, for the pure training set, ∼ 50% of the objective function value is due to
�l data, and ∼ 50% is due to ΔHvap. This a priori approximation was made as it is unclear that any one type
of property should be weighted more than another.
2.4.1 Parameters optimized
Both the training and test sets, each containing only molecules composed of carbon, hydrogen, and oxy-
gen, exercise a total of 18 SMIRNOFF parameters (9 different SMIRKS parameter types with one " and �
per SMIRKS). Of these parameters, 12 were optimized, with the remaining 6 held constant at their initial
OpenFF 1.0.0 values. The parameters held constant (all for hydrogens) were not optimized because either
the parameter correspond to a specific context that was not sufficiently constrained by the training data set
or, in the case of [#1:1]-[#8] (hydroxyl hydrogen), the OpenFF 1.0.0 " value is explicitly set to a very small
nonzero value (" = 5.27 × 10−5) and not reoptimized. This is a slight modification of the AMBER hydroxyl hy-
drogen parameter [84] (HO, " = 0) to avoid unphysical effects caused by the AMBER parameterization [85].
Here each parameter is uniquely identified by a SMIRKS pattern which encodes the chemical environment
to which the parameter will be applied [86]. These parameters, along with brief descriptions, are listed in
Table 2.
2.5 Testing
Tests of force field performance were performed by taking the final force fields produced from each opti-
mization and estimating each data point in the test set using OpenFF Evaluator. All property calculations
were made using the same property prediction workflows from section 2.3. Estimated properties for each
data point were then compared against the experimental values, with RMSE and average Kendall � rank
correlation [87] values calculated against the test set for each force field.
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SMIRKS Pattern Description Illustration
Atoms with Optimized Parameters

[#1:1]-[#6X4] Hydrogen attached to tetravalent carbon

[#6:1] Generic carbon

[#6X4:1] Tetravalent Carbon

[#8:1] Generic oxygen
[#8X2H0+0:1] Divalent oxygen attached to zero hydro-

gens
[#8X2H1+0:1] Divalent oxygen attached to one hydrogen

Atoms with Fixed Parameters
[#1:1]-[#6X4]-[#7,#8,#9,#16,#17,#35] Hydrogen attached to tetravalent carbon at-

tached to N/O/S/Halogen
[#1:1]-[#6X3](∼[#7,#8,#9,#16,#17,#35])
∼[#7,#8,#9,#16,#17,#35]

Hydrogen attached to tetravalent carbon at-
tached to 2 N/O/S/Halogen atoms

[#1:1]-[#8] Hydrogen attached to generic oxygen
Table 2. All atoms with LJ parameter types exercised by the training and test sets, categorized by whether they
are re-optimized in this study. SMIRKS atom types are applied hierarchically, with more specific types superseding lessspecific types, as described in Mobley et al. [86]. Each of these atom types has both a � and " parameter that describethe Lennard-Jones interactions; with 6 SMIRKS types included in the optimization, 12 Lennard-Jones parameters wereoptimized. In the “illustration” figures, any atomic index including a ‘*’ is a wildcard, representing any atom, or group ofatoms.

3 Results & Discussion
3.1 Optimization
3.1.1 Parameter Changes
The objective function was observed to decrease by 50-70% for each of the four optimizations performed,
indicating improvements against the training set in all cases (see Supporting Information Section 3.1). This
improvement was achieved with relatively small changes in the target parameters, as most of the refitted
parameters changed only slightly from their initial values, varying less than 5% in most cases (Figure 4). A
notable exception is " for [#1:1]-[#6X4] (hydrogen attached to tetravalent carbon), which changes up to
40% depending on the optimization. We also note that the � for [#8X2H1+0:1] (hydroxyl oxygen) changes
much more when trained against mixture data (-0.4 % for “pure only” vs. -1.7-2.8% for sets containing
mixture data).
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Figure 4. The 4 different training sets generally drive the parameters in the same direction and to similar mag-
nitudes, indicating all data sets encode somewhat similar parameter information. Changes in parameter valuesfor each of the training sets considered in this paper are shown as bar graphs above. The percent change in the eachparameter for each of the training sets relative to their starting value taken from the OpenFF 1.0.0 force field. One no-table difference between the “pure only” set and the sets containing mixtures is the [#8X2H1+0:1] (hydroxyl oxygen) �parameter, which is nearly unchanged in the “pure only” (orange) set, but reduced by 1.5-3% in the other sets.

3.1.2 Training Set Property RMSE
We examine the performance of the trained force fields on the training set, as well as the changes in pa-
rameters after optimizations. This detailed look at the optimization process sheds light on which parameter
changes are driving the specific property improvements that result in an optimized force field. Using the
RMSE for each target property measurement and grouping by property and chemical environment as a
metric, it is clear that most of the different moieties in the training set are improving when trained against
either pure or mixture data. This is evident when training against both the “pure only” data set in Figure 5
and the “mixture only” data set in 6. Improvements in both pure andmixture training data for the other two
(mixed) optimizations were also observed, which are shown in supporting information (Section 3.4.2,3.5.2).

Figure 5. Optimization generally improves RMSEs of pure properties for all training sets. Figure shows categorizedRMSE vs. experiment of �l (left panel) andHvap (right panel) measurements in the “pure only” training set, estimated usingthe initial parameters (OpenFF 1.0.0, blue points) and the final parameters after 12 optimization iterations (“pure only”,orange points). RMSEs are categorized by chemical environment, and error bars represent 95% confidence intervalscomputed by bootstrapping with replacement for 1000 iterations. The results from the other training sets containingpure properties (“mixtures and pure density”, “pure andmixture”) are statistically equivalent, with the exception of ketonepure densities (statistically better in the “pure only” set), and alcohol heats of vaporization (statistically inferior in the “pureonly” dataset). Figures for other optimization are available in Supporting Information Section 3.4.2,3.5.2.
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Figure 6. Optimization improves RMSEs of mixture properties for all training sets. Figure shows categorized RMSEvs. experiment of �l (x) (left panel) and ΔHmix (x) (right panel) measurements in the “mixture only” training set, estimatedusing the initial parameters (OpenFF 1.0.0, blue points) and the final parameters after 12 iterations (“mixture only”, orangepoints). RMSEs are categorized by chemical environment, where “Ether > Ketone” denotes amixture with ethermoleculesin excess of ketonemolecules, and “Ether ≈ Ketone” denotes a mixture with ether and ketonemolecules in roughly equalcompositions, etc. Error bars represent 95% confidence intervals computed by bootstrapping with replacement for 1000iterations. The results from the other training sets containing mixture properties (“mixtures and pure density”, “pure andmixture”) show statistically equivalent improvements in training set RMSEs, and are available in Supporting InformationSections 3.4.2 and 3.5.2.

One notable exception is ketones, as pure ketone densities and “Ketone > Ether” binary densities were
both degraded upon training. Given that this occurs for both pure and mixture training data, it is unlikely
that it is a symptom of the training sets selected. We also note that ketone ΔHvap RMSEs are improved,
alongside both densities and ΔHvap RMSEs for esters, which utilize the same [#8:1] generic carbon param-
eter. It is likely that these properties are improved at the expense of ketone densities. By examining the
first derivatives of the density contribution to the objective function with respect to the force field param-
eters, again partitioned by moiety (Figure 7), we see that modifying the [#1:1]-[#6X4] (hydrogen attached
to tetravalent carbon), [#6X4] (tetravalent carbon), and [#8:1] (generic oxygen) has an opposite effect on
ketone objectives compared to the objective for other moieties. This suggests that the force field lacks the
degrees of freedom required to accurately capture carbons and hydrogens in ketone environments along-
side the other environments represented by the same SMIRKS patterns. It is possible that including a more
specific hydrogen or carbon parameter for this environment might improve prediction of ketone densities.
Another possibility is that the LJ parameters are compensating for deficiencies in the AM1-BCC electrostatic
model which was not optimized in this study. This result will be explored in further work as it is beyond the
scope of the current study. However, analyses such as these point out how additional interaction types can
be motivated by the large sets of data generated by this sort of study.
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Figure 7. Parameter gradients indicate that ketone measurements drive parameters for hydrogen, carbon, and
oxygen in opposite directions as other moieties. The data show the contribution of the first derivatives of the forcefield parameters to the pure density data portion of the objective function for the “pure only” training set. Dotted linescorrespond to the same moieties as solid lines of the same color, and indicate that magnitude of gradient is small, andis shown enlarged to a magnitude of 1 in this figure. The data indicate that the ketone measurements in the training set(orange dotted line) are pulling the hydrogen parameter [#1:1]-[#6X4], general tetravalent carbon parameter [#6X4],and generic oxygen parameter [#8:1] in opposite directions from the other chemical environments (all other lines). Thissuggests that adding a separate parameter (or parameters) to explicitly address ketone environments is likely to improveparameterization.

3.2 Test Set Performance
3.2.1 Overall Results
Each of the retrained force fields and the original OpenFF 1.0.0 force field was assessed against the larger
test set. We see that all of the refit force fields improve RMSE against experiment, compared to the base
OpenFF 1.0.0 force fields. The Kendall � and RMSE values for each force field against the test set are shown
in Figure 8.

Figure 8. Benchmarking reoptimized force fields against the test set indicates that training againstmixture prop-
erties yields significantly improved performance compared to the original force field. The figure shows Kendall �and RMSE for the test set for original and all sets of optimized parameters. Training against data including mixture prop-erties significantly improves enthalpies of mixing without degrading performance in other properties. 95% confidenceintervals were computed by bootstrapping with replacement for 1000 iterations.
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Force fields reoptimized on all the different sets of observable data have statistically similar performance
on �l and �l(x), with highly accurate predictions of densities. Binary mixture densities in particular show
significant improvement over the OpenFF 1.0.0 force field, with all refitted force fields achieving an average
RMSE <=0.20 g/mL, compared to 0.25 g/mL forOpenFF 1.0.0. Force fields that includemixture data (“mixture
only” = green, “mixtures + pure density” = red, “pure and mixture” = purple) performed best on ΔHmix (x),significantly outperforming the “pure only” (orange) force field. For ΔHvap, the most improved force field
was the one trained using the "pure and mixture" training set, which sees similar improvement in most
properties compared to the other retrained force fields, but a notable improvement in ΔHvap. However, theutility of improved ΔHvap predictions is questionable for a force field intended to be used for biomolecular
systems. We also note that pure and mixture densities are already highly accurate (RMSE ≤ 0.03 g/mL)
when predicted with the OpenFF 1.0.0 force field, so improvements in enthalpic properties are likely more
meaningful given that densities are already well predicted.

These results indicate thatmixture properties can replace physical properties of pure systems as a target
for training LJ parameters, particularly in cases where more and more chemically diverse data is available
for mixtures. Training against the "pure only" set does lead a significant improvement to ΔHmix (x) againstthe baseline; however, training directly against the “mixture only” set yields a much larger improvement.
Training using mixture properties not only improved test performance against mixture properties, but also
performs similarly to training against pure data on ΔHvap. The correlation vs. experimental � is improved
slightly when training against the “mixture only” set, with an � of 0.85 (95% CI 0.0.74,0.92), vs. the "pure only"
set, with an � of 0.80 (95% CI 0.67,0.89). While the ΔHvap RMSE is higher when trained against the “mixture
only” (9.95 kJ/mol, 95% CI (7.92,12.04)) set vs. the "pure only" training set (7.47 kJ/mol, 95% CI (5.47,9.45));
training against the “pure and mixture” set (containing both the pure and mixture data)) performs simi-
larly on RMSE (7.51 kJ/mol, 95% CI (5.24,9.54)) for ΔHvap, while maintaining the improvement on ΔHmix (x).It appears that training against properties of mixtures alone sufficiently constrains the optimization, and
includes enthalpic information that the traditional pure dataset alone does not. We also note that augment-
ing a traditional pure data training set with mixture data (such as the “pure and mixture” set) can improve
treatment of mixture properties without degrading performance on pure properties.
3.2.2 Results by chemical environment
Notably, training against themixture properties appears to have corrected a systematic error in the enthalpy
of mixing, which training against pure properties alone is not able to correct. This is evident in the parity
plots for ΔHmix(x), where a systematic underprediction of alcohol/ester (green points) and alcohol/ketone
(orange points) mixture enthalpies is corrected (Figure 9).
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Figure 9. Training against measurements of liquid mixtures corrects systematic error in alcohol/ester and al-
cohol/ether enthalpies of mixing. This figure shows a comparison of the estimated and experimentally measured
ΔHmix (x) data points for the test set, plotting for force fields optimized against the “mixture only” and “pure only” train-ing sets, aswell as the baselineOpenFF 1.0.0 (Parsley) force field. The systematic error in alcohol/ester and alcohol/ketonemixtures (highlighted green and orange points) is significantly reduced when training against the properties of mixture,but not when training against properties of pure systems.

This is particularly significant as alcohol/ester and alcohol/ketone mixture enthalpies have strong posi-
tive deviations from ideality. Namely, ketone and esters are both hydrogen bond acceptors only and thus
do not form hydrogen bonds in the pure phase. However when mixed with a hydrogen bond donor (an
alcohol) they do. This is where mixture properties, and especially their ability to more readily capture com-
plementary interactions, appears to be advantageous over pure properties.
4 Conclusions
Using our automatic data set selection and force field optimization workflow, we re-parameterized select LJ
parameters of the OpenFF 1.0.0 force field against training sets containing combinations of pure (�l,ΔHvap)and mixture (�l(x),ΔHmix(x)) properties for alkanes, alcohols, esters, ethers, ketones, and acids. These train-ing sets were controlled such that the same molecules are used in both pure and mixture training sets, to
isolate the effect of the different data types used. Through iterative adjustment of parameter sets, new
force fields were produced that all exceeded the performance of the initial force field on the broader test
set. Furthermore, we observe that training LJ parameters against mixture data constrains the optimization
in a comparable or superior manner to optimizing with the traditional pure properties commonly used in
LJ parameterization.

We have shown that training againstmixture properties, specificallyΔHmix (x), is a compelling alternative
for capturing enthalpic contributions to LJ interactions to ΔHvap. Training against ΔHvap is problematic due
to limited data coverage and quality, as well as changes in molecular polarization between liquid and gas
phase simulations. Mixture property datasets also offer expanded datasets by varying composition, and are
more widely available in the ThermoML Archive. Moreover, we have shown here how mixture properties
offer significant advantages over pure properties as an optimization target, especially in those cases of
interactionswhich deviate strongly from ideality. These advantages lead to improved LJ parameters sets and
better agreement with experiment. We also note that parameterizing against mixture properties alongside
pure properties produces parameter sets with improved ΔHmix (x) and ΔHvap. Given that we control for theidentity of themolecules in the training set, this demonstrates that mixture properties contains information
about LJ interactions that pure component property measurements do not.

While the parameter sets we demonstrate in this work improved both enthalpies of vaporization and en-
thalpies of mixing, in our view, improvements in the properties of mixtures are a better metric of force field
improvement than pure or phase change properties for force fields intended for use in biomolecular simula-
tions, since simulations typically take place in mixed aqueous or other liquid phases. The same interactions
captured in enthalpies of mixing should also be informative for properties of pharmaceutical/biomolecular
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interest, such as binding affinities, solvation free energies, and other derivative properties. For this reason,
optimization of LJ parameters against mixture property targets is planned to be the standard going forward
for our general OpenFF force fields. It is also important to note the scope of the study is limited to LJ param-
eters, and that other parameters, such as electrostatics, torsions, and 1-4 atomic scalings will impact the
accuracy of these mixture properties. We anticipate that the automated property prediction in our param-
eterization workflow, along with the wider chemistry covered by the mixture properties in the ThermoML
Archive, will lead to more accurate LJ parameters for general small molecule force fields.
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6 Data and Code Availability
Scripts to run the simulations and reproduce the results in this study are available at https://github.com/

SimonBoothroyd/binary-mixture-publication.
The training and test data sets used in this publication are also available in this repository in .csv and

.json formats.
To provide feedback on performance of the OpenFF force fields, we highly recommend using the is-

sue tracker at http://github.com/openforce�eld/openforce�elds. For toolkit feedback, use http://github.com/

openforce�eld/openforce�eld . Alternatively, inquiries may be e-mailed to support@openforce�eld.org, though
responses to e-mails sent to this address may be delayed and GitHub issues receive higher priority. For
information on getting started with OpenFF, please see the documentation linked at http://github.com/

openforce�eld/openforce�eld, and note the availability of several introductory examples.
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