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Abstract

Nearly all electronic structure simulations begin
with obtaining approximate geometries, mak-
ing a systematic quantification of errors in ap-
proximate molecular structures of key impor-
tance. Recently, the geometric energy offset
(GEO) framework based on a single and natu-
ral measure for quantifying and analysing these
errors has been proposed [J. Phys. Chem. Lett.
2020, 11, 99579964]. An accurate and way less
costly approximation to GEO is utilized here
to readily quantify errors in main-group struc-
tures and analyze them in a chemically intuitive
way. The use of semiexperimental geometries as
a reference further simplifies the analysis. The
analysis reveals new insights into the geometric
performance of methods, their rankings, as well
as patterns across different classes of methods
and basis sets that arise from the analysis.

1 Introduction and back-

ground

The use of electronic structure calculations to
rational, guide and support experiments has
become a routine in different branches of sci-
ence. Such practical calculations, be they based
on wave-function or density functional theory
(DFT) approximations, conflate errors in both

approximate molecular geometries and total en-
ergies. Thus, a proper analysis of the per-
formance of electronic structure methods re-
quires decoupling these two distinct sources of
errors and their separate analysis. The ener-
getic performance of electronic structure meth-
ods is often drastically different from their
performance for molecular geometries. Meth-
ods with comparable energetic performance, for
e.g., binding energies of noncovalent systems,
can have strikingly different geometric perfor-
mance for the same systems.1 Other examples
include Hartree-Fock (HF) and the local den-
sity approximation (LDA), which give reason-
able structures despite their poor energetic per-
formance. Nearly all electronic structure simu-
lations (and beyond) begin with obtaining ap-
proximate geometries, making a proper and ex-
tensive quantification of geometric errors of key
importance in computational chemistry.

By using the standard tools for comparing
structures, it is not easy to tell which of ap-
proximate geometries is better, as it requires
comparing errors in 3N − 6 degrees of freedom.
What typically happens is that some geometric
parameters are more accurate in one method,
some are better in another (see, e.g., Refs. 1–3).
The geometric performance of electronic struc-
ture methods is commonly assessed by compar-
ing averages of errors in these parameters (e.g.,
bond lengths, angles, distances from a chosen
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point in a molecule such as the center of mass,
etc.)3–9 But, when such metrics are used, the
rankings of approximations strongly depends on
a chosen metric as illustrated in detail in Ref. 1.
By comparing errors in geometric parameters,
it is not trivial to tell which of the approxima-
tions yields an overall better geometry even for
systems with two degrees of freedom (e.g., wa-
ter1), as one approximation can beat the other
for the first degree of freedom, but not for the
second. Other ambiguities that affect the rank-
ings based on this approach also arise, such as:
whether one should average errors over all bond
lengths/angles or only unique ones.

In a recent work, Vuckovic and Burke (VB)
introduced a framework for quantifying and
analysing errors in approximate geometries
based on the concept of geometry energy off-
set (GEO). GEO provides a remarkably simple
and intuitive approach for quantifying errors in
molecular geometries, which by-passes the need
to compare the errors in individual geometric
parameters. For a given approximate geome-
try, GEO is simply defined as the difference in
exact energies at the approximate and exact ge-
ometries:

GEO = E
(
G̃
)
− E (G0) , (1)

where E(G) is the ground-state energy at ge-
ometry G, G0 the exact geometry and G̃ an
approximate geometry. The theoretically exact
geometry is defined here as the exact minimum
of the exact ground-state potential energy sur-
face, and the Born-Oppenheimer approxima-
tion is assumed throughout this work. Defined
this way, GEO represents an energetic distance
between the exact and approximate geometries,
and thus provides a single number measure for
the quality of geometries. At minima, GEO
vanishes only if G̃ = G0, and otherwise it is
always a positive number given in energy units.
Thereby, GEO provides an unambiguous mea-
sure for the quality of approximate geometries
(the higher the GEO value, the worse the geom-
etry). As such, it circumvents a need for com-
paring errors in possibly dozens of bond lengths
and angles to rank approximations. These fea-
tures make GEO an ideal quantity for assess-

ing the quality of geometries of any molecule
and any method so long as the reference ge-
ometries are available. Furthermore, GEO can
also tell us what fraction of the total error is
due to geometry, and what due to total energy.
In Appendix A, we show the decomposition of
the total error of an electronic structure calcu-
lation into geometric and non-geometric part.
This decomposition has shown that geometric
errors are typically small (but not negligible)
part of errors for e.g., atomization energies, but
can account for most of the error for weak in-
teractions.1 It also enabled identification of spe-
cific situations where better results are obtained
by using less accurate structures due to error
cancellations between the geometric and non-
geometric part of the total error.1

Computing GEO by Eq. 1 requires access to
the exact geometries and exact energies at ap-
proximate geometries. For single-reference sys-
tems, CCSD(T) with large enough basis set
provide accuracy that rivals experimental ge-
ometries,10 so we can consider them ’exact’.
VB used CCSD(T)/aug’-cc-pV5Z11,12 as a ref-
erence to calculate GEO for a set of small
molecules that had been earlier optimized by
Karton and co-workers.11 For somewhat larger
systems (e.g., aromatics containing two ben-
zene rings), running CCSD(T) geometry opti-
mizations with a large basis set becomes too
expensive. For this reason, VB had to rely
on B2PLYP as a proxy reference,13 given its
nearly CCSD(T) performance for small molecu-
lar structures. In a more recent work, Bakowies
and von Lilienfeld extended this analysis to a
larger set of small molecules, and even built
empirical corrections for the part of atomiza-
tion energies error that is due to approximate
geometries.14

Here an important question arises: When ac-
curate reference geometries are available, can
the use of expensive single point calculations
at approximate geometries needed to calculate
GEO by Eq. 1 be by-passed? Such calculations
make the benchmarking of geometries more ex-
pensive, and thus pose the restrictions regard-
ing the molecular size. The answer to this ques-
tion is yes, as assessing geometric performance
of approximations by calculating GEO values
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Figure 1: Left panel: GEO with CCSD(T) as reference (black), and GEO′ with both CCSD(T)
(magenta) and semiexperimental structures15 (blue) used as a reference for the HCN molecule. all-
electron CCSD(T) has been used as a reference in all calculations in tandem with aug-cc-pCV5Z
for C and N atoms, and cc-pV5Z for the H atom. For all approximations (DFT and MP2), aug-cc-
pVQZ basis set has been employed. Right panel: GEO contours as a function of errors in the triple
and single bond for the same molecule and the positions of selected approximation with CCSD(T)
as a reference. The position of semiexperimental results is denoted by a blue circle.

can be greatly simplified by introducing its ap-
proximation:1

GEO′ = Ẽ (G0)− Ẽ
(
G̃
)

(2)

For covalent systems, GEO is excellently ap-
proximated by GEO′ and provides essentially
the same information (e.g., rankings of approx-
imations, the decomposition of the error into
contributions from the errors in different struc-
tural parameters, etc.)1 At the same time, com-
puting GEO′ is way less costly as it does not
require running a single-point calculation with a
high-level method, such as CCSD(T). Further-
more, if a reference geometry is derived from an
experiment, we no longer need CCSD(T) at all,
as for GEO′ we only need approximate energies
at both reference and approximate geometries
(Eq. 2). In practice this can be done by us-
ing accurate geometries as a starting point for
a geometry optimization with an approximate
method. After the convergence, one can easily
calculate GEO′ from the differences in approx-
imate energies from the first and last iteration
of the optimization procedure.

In the present paper, the advantages of GEO′

over GEO are used for a systematic analysis
of geometric performance of approximations for

main-group structures. By using GEO′ in place
of GEO in tandem with accurate semiexper-
imental geometries,15–17 the analysis does not
rely on the expensive CCSD(T) calculations nor
on a proxy reference as it was the case in the
previous study.1 While the previous study fo-
cused on the GEO analysis at a fixed basis set,
here we observe how the changes in a basis set
affect the geometric performance of approxima-
tions. From this analysis, we find that some of
the worst performers at a large basis sets are
one of the top performers at a smaller basis due
to error cancellations. We dedicate special at-
tention to the geometric performance of differ-
ent classes of DFT methods, and analyze how
it varies with the amount of exact exchange. A
harmonic approximation to GEO′ enables us to
directly link and partition GEO′ into contribu-
tions from errors in specific geometric param-
eters. This analysis reveals different patterns
for different classes of DFT approximations and
tells us how these patterns change with a basis
set size.

The paper is organized as follows. The stage
is set in Sec. 2, where the the differences be-
tween GEO and GEO′ are examined by us-
ing the HCN molecule as an example. In the
same section, the set of accurate semiexperi-
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mental geometries is validated for the purpose
of calculating GEO′ in the present work. The
main results are in the next two sections, with
Section 3 focusing on the quantification of geo-
metric errors and trends across approximations,
and Section 4 focusing on the GEO′ analysis
(a breakdown of GEO′ into contributions from
different geometric parameters). The last sec-
tion is devoted to conclusions and discussion on
where the GEO approach should prove power-
ful in the future.

2 Setting the stage

2.1 The simple HCN example

To compare GEO with GEO′ and get a feeling
how the errors in geometric parameters trans-
late into GEO, we use the HCN molecule. The
CCSD(T)(full) method is taken as a reference
with the aug’-cc-pCV5Z basis set [cc-pCV5Z for
the hydrogen atom and aug-cc-pCV5Z for the
other two atoms18], and (full) indicates that all
electrons are included in the correlation treat-
ment.

The right panel uses GEO values to rank
various approximation for the HCN structure
(black line). Both sets of GEO′ values, the
one that uses values the CCSD(T) structure
(magenta) and the one that uses semiexperi-
mental (SE) structure (blue) are virtually in-
distinguishable from GEO′. This is the case
even though GEO costs way more to compute
than GEO′. The use of GEO′ in place of
GEO enables us to bypass the use of expen-
sive CCSD(T) energies to perform the GEO
analysis. For GEO′ we also need reference
G0 (Eq. 2), but the use of SE geometries
enables us to completely by-pass input from
CCSD(T) and extend the GEO′ analysis to
molecules whose structures cannot be obtained
by CCSD(T)(full) within a sufficiently large ba-
sis set. In general, GEO′ is energetically very
close toGEO even for inaccurate methods, such
as HF,1 as the curvature of Ẽ (G) at the mini-
mum is reasonable even for HF (compare Eqs. 6
and 7).

To see how the errors in geometric parameters

of HCN translate to GEO, the GEO contours
are plotted in the right panel of Figure 1. This
is done by calculating the CCSD(T)(full) po-
tential energy surface around the equilibrium
geometry. The molecule is linear and all tested
approximations get that right. Thus, in the
contour plot we show only errors in the two
geometric parameters: the C≡N (x-axis) and
C−H (y-axis) bond lengths. The poorest per-
formers are HF, M11-L, M06-HF, whose errors
are beyond the shown range. First we note that
the SE structure (blue dot) is in an excellent
agreement with the reference. The B2PLYP ge-
ometry is in a very good agreement with both
SE and CCSD(T) structures, and has negligibly
small GEO value.

It is commonplace to run CCSD(T) calcu-
lations with the frozen core (FC) approxima-
tion, and if this approximation is turned on
for CCSD(T)/aug’-cc-pCV5Z, the structure is
still accurate (green dot), but it is off the cen-
ter. This confirms that apart from a large ba-
sis set one also needs all-electron CCSD(T) to
rival the accuracy of the SE approach.10 This
also demonstrates the advantage of using the
SE structures as running CCSD(T)(full) with
a large basis can only be done for very small
molecules. When it comes to the DFT ap-
proximations in the GEO contour plot, one
can observe their clustering, as previously ob-
served for water.1 Here, the hybrid functionals
are clustered together in the first quadrant (too
short triple bond and accurate single bond),
and metaGGA/GGAs are in the second quad-
rant (predicting too long bonds with larger er-
rors for the single bond). M06-L19 is an excep-
tion, but as we shall see later, its performance
for geometric structures is more in-line with hy-
brids than with metaGGAs.

2.2 A dataset of semiexperimen-
tal geometries used for GEO′

evaluations

In the remainder of this work, reference ge-
ometries (’exact’ G0 ones entering Eq. 2) are
taken from the B2se dataset of Barone and co-
workers.15 This dataset contains accurate equi-
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librium structures of 68 molecules that have
been obtained from the SE approach. Within
the SE approach, equilibrium structures are
derived from experimental ground-state rota-
tional constants in which vibrational contri-
butions computed by a suitable quantum me-
chanical (QM) methods are subtracted.15–17

Thereby, the SE structures match our defini-
tion of G0, as they correspond to the minima
on the Born-Oppenheimer potential energy sur-
face. In terms of applicability and accuracy, the
SE approach offers a range of advantages for
accurate structure determinations over only ex-
perimental or only theoretical approaches (see,
e.g., Refs. 15,16). The B2se structures em-
ployed here are shown in the SI (see Fig. S1),
and the phenyl radical, as the only open-shell
B2se species is excluded and later separately
analysed in Section 4.4.

Barone and co-workers have built the B2se set
by using B2PLYP/cc-pVTZ to compute vibra-
tional corrections.15 This level of theory gives
nearly identical structures to those computed
from CCSD(T) vibrational corrections.15 For a
subset of the B2se structures, vibrational cor-
rection have been computed at the CCSD(T)
with at least a triple-ζ basis set and these are
contained in the CCse set.10 To validate the use
of the B2se structures as a reference, we cal-
culate GEO′ values for a range of approximate
structures by using both B2se and CCse geome-
tries as a reference. This is done for a subset of
the B2se set for which the CCse geometries are
available. The two sets of GEO′ values (B2se
vs. CCse as a reference) are essentially the same
(typically within 0.005 kcal/mol), as shown in
Fig. S2 of the SI. This confirms the suitability
of the B2se structures as reference geometries
for performing the GEO analysis in the present
work.

3 Quantification of geo-

metric errors by GEO′

and trends across ap-

proximations

3.1 The GEO′ rankings of ap-
proximations and basis set
trends

In Figure 2, the rankings of various approxima-
tions (DFT methods, HF and MP2) based on
the average GEO′ values for the B2se dataset
are shown. The aug-cc-pVnZ (AVnZ) basis set
is used, with n=Q in the left, n=T in the mid-
dle, and n=D in the right panel. The approxi-
mations are ranked by their mean GEO′ values
at the AVQZ basis set, so one can see how the
rankings are affected as the basis set size de-
creases.

First we focus on the AVQZ panel of Fig-
ure 2. B2PLYP (a double hybrid)13 is the
winner and HF has expectedly the worst per-
formance. Hybrids typically perform better
than semilocal DFT functionals. An exception
is M06-L that has an excellent performance,
which is more in line with hybrid function-
als than with other tested semilocal function-
als. On the other hand, M06-HF20 performs
much worse than other hybrids. LDA’s GEO′

is comparable to that of PBE21 and even bet-
ter than BLYP.22,23 This makes the geometric
performance of LDA remarkable relative to its
poor energetic performance (for, e.g., atomiza-
tion energies).21,24 M11-L,25 as observed earlier
by Jacquemin and co-workers,26 displays very
bad performance for molecular geometries and
it is here just slightly better than HF.

Moving from the AVQZ to AVTZ panel (mid-
dle), the rankings are mostly preserved with
some exceptions. B2PLYP is still the winner,
HF is still the worst, but MP2 now loses to most
of the hybrids. The gap between hybrids and
semilocal functionals is now bigger. The excep-
tion is M06-L again, which now beats all tested
hybrids.

Much more abrupt changes in the rankings
are seen as one goes from AVTZ to AVDZ
(the right panel): M06-2x27 is now the best,
MP2 is behind LDA and beats only PBE and
BLYP, and B2PLYP is now worse than all of
the hybrids. Surprisingly, the performance of
HF strikingly improved, and it is now in front of
all semilocal functionals except for M06-L. In-
terestingly, GEO′ of HF/AVDZ is about a half
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Figure 2: Mean GEO′ values for approximations for the B2se dataset within different basis sets:
AVQZ (left), AVTZ (center), AVDZ (right). Purple bars denote B2PLYP and MP2, blue bars
denote hybrids, green bars denote meta-GGAs and GGAs, pink denotes LDA and orange color is
used for the HF method. The approximations in all three panels are ranked by their AVQZ GEO′

values (left panel).

of that of HF/AVQZ and a half of MP2/AVDZ.
This clearly suggest that this surprisingly good
geometric performance of HF/AVDZ is due to
the error cancellation between the absence of
correlation and a large basis set incompleteness
error.

To shed more light on the different GEO′

trends with the basis set size, in Figure 3 we
show the GEO′ boxplots for MP2, B3LYP,
M06-2x and HF at the three basis sets (for the
same plot for other methods, see Figure S4).
Each of these approximations behaves differ-
ently. MP2 is a disaster at AVDZ and then
it dramatically improves at AVTZ. A signifi-
cant improvement is also observed as one goes
from AVTZ to AVQZ. In the case of B3LYP,
the spread is also larger as the basis set de-
creases but expectedly much less drastic than
it is the case with MP2. M06-2X is interest-
ing because its GEO′ trends change very little
with the basis set size. This is also the case with
other Minnesota functionals except for MN15-
L28 (see Figure S4, where we show the same
boxplots for all tested approximations). HF
displays a unique trend here: the spread be-
comes smaller as the basis set size decreases.
This behaviour has also an impact on the GEO′

performance on hybrids, and in Section 3.4, we
study in more detail how the amount of exact
exchange affects the geometric performance of
hybrids.

Since the inclusion of diffuse functions in a ba-
sis set is often too expensive for the geometry
optimizations, we also test here what happens
with the GEO′ performance of approximations

as one goes from the AVnZ to VnZ basis set.
The results are shown in Figure 4, where in
each of the panels the ranking is kept of the
respective AVnZ basis set. From this figure, we
can see that the omission of the diffuse func-
tions does not much affect the rankings of ap-
proximations, but it typically increases average
GEO′. Expectedly, it does more so as one goes
from AVQZ to AVDZ. In the case of hybrids,
the AVnZ to VnZ change worsens the average
GEO′ by no more than 5% when n=Q or n=T,
but it can worsen by ∼40% when n=D.

3.2 How does dispersion correc-
tions affect DFT GEO′ values
for the B2se set?

In Figures 2-4, the DFT approximations are
employed without empirical dispersion correc-
tions as these have a little effect on the geo-
metric performance given the relatively small
size of the B2se molecules. To see the effect
of the dispersion correction for the B2se ge-
ometries, in Figure 5 we show a parity plot
comparing GEO′ of TPSS (a metaGGA) en-
hanced by D3(BJ) against that of bare TPSS.
D3(BJ) denotes Grimme’s dispersion correc-
tion29 with the dumping function of Becke and
Johnson.30,31 The GEO′ values for BLYP and
TPSSh32 are also shown for comparison. We
can see from the plot that the addition of
D3(BJ) has almost no effect on the GEO′ val-
ues of TPSS. On the contrary, the effect of exact
exchange addition is way more profound as the
GEO′ values of TPSSh, which contains 10% of
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Figure 3: Boxplots of the B2se dataset showing GEO′ for selected approximations within the
AVnZ basis set, with n={Q,D,T}. The central 50% of the GEO′ datapoints are bounded by boxes,
whiskers bound all data points except for the outliers which are beyond 1.5 times the interquartile
range of the box edges and are represented by dots. White lines mark median values. For boxplots
of other approximations and γ′ version of boxplots, see Figures S4-S6 in the SI.
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Figure 4: Same as Figure 2, but within the VnZ basis set (no diffuse functions). The approximations
in all three panels are sorted by their respective AVnZ GEO′ rankings so one can see how the
exclusion of the diffuse functions from the basis affects the rankings of approximations. For the
same plots within the VnZ basis set, see Figure S3

.

exact exchange, are about one-third of those of
TPSS. Of course, for larger molecules and weak
interactions, we expect that dispersion correc-
tions would have a larger effect on DFT GEO′

values.1,14,33

3.3 GEO′ rankings of approxi-
mations on the absolute GEO
scale

As discussed in Ref. 1, GEO and GEO′ values
increase with the molecular size. That is why
the GEO absolute scale has been introduced as
the GEO′ values relative to it do not increase
as molecules grow. To introduce the absolute
GEO scale, we first define ∆G as the error in

approximate geometry: ∆G = G̃−G0. Setting
∆G = γG0, produces to second order in γ:

GEO′γ = γ2D̃/2 (3)

where,
D̃ = G̃ᵀH̃G̃, (4)

where H̃ is the Hessian of Ẽ(G) at the G̃ mini-
mum. D̃ is here the absolute GEO scale, which
by Eq 3 gives us GEO′ value when the exact
geometry is compressed (or expanded) by γ. If
γ = 1%, GEO′γ values for the B2se molecular
are in a narrow interval in between 0.1 to 1.2
kcal/mol with the average GEO′γ being about

0.5 kcal/mol. The D̃ value varies little across
approximations. For example, B3LYP D̃ val-
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Figure 5: GEO′ values of TPSS-D3(BJ), BLYP,
and TPSSh vs. GEO′ values of TPSS for the
B2se molecules. The coefficients in the linear
fits are obtained from the ratios between MAEs
of the three methods and MAE of TPSS. The
AVQZ basis set is used in all calculations.

ues are within 1% of CCSD(T) ones and even
HF gives reasonable values.1 Thus, the D̃ values
are always computed here at the B3LYP/AVTZ
level, and are reported for the B2se molecules
in Figure S1 . As said, the main idea of D̃ is to
give a scale on which GEO′ does grow with a
molecular size. Thus, we define:

γ′ =

√
2 GEO′

D̃
, (5)

by equating GEO′ of Eq. 2 with GEO′γ of
Eq. 3. In this way, GEO′ from a given approx-
imation would also be obtained if γ′ were a rel-
ative error in all bond lengths and there were
no errors in angles.

If γ′ is now used in place of GEO′ to rank
the approximations, the rankings are preserved
with few exceptions when the differences in
numbers are marginal. This is illustrated in
Figure 6, where we repeat Figure 2, but with
bars denoting mean γ′ values of approxima-
tions, which range from ∼ 0.2% to ∼ 1.7%.
If one wants to estimate GEO′ values for a
molecule that is larger than those of B2se, it
can be done from: GEO′ ∼ γ′2D̃/2, by using
the average γ′ values reported in Figure 6 and
K of that specific molecule.

3.4 How does geometric perfor-
mance of DFT approxima-
tions vary with the amount
of exact exchange?

In this section we focus on how the geometric
performance of DFT methods varies with their
amount of exact exchange. For this purpose, we
employ the α-PBE hybrid which is built from
the PBE functional by replacing the α amount
of PBE exchange with the same amount of ex-
act exchange. At α = 0.25, α-PBE becomes
PBE0.34,35

The mean B2se’s GEO′ values for α-
PBE/AVnZ (n={Q,D,T}) are shown in the
top panel of Figure 7 (note the log-scale in the
y-axis). In terms of the shape of the curves,
their ranges, and the position of the minima,
AVTZ curve is similar to AVQZ, but very dif-
ferent from the AVDZ. Up to α ∼ 0.3, the mean
GEO′ is lower with AVTZ than with AVDZ. At
larger α values (α greater than ∼ 0.3), AVDZ
becomes more accurate than AVTZ. This be-
haviour of α-PBE can be traced back to the
geometric performance of HF, given that: (i)
α-PBE becomes more similar to HF as α ap-
proaches 1, (ii) HF’s GEO′ is much lower with
AVDZ than AVTZ. The minima of the AVQZ
and AVTZ curves are at α ∼ 0.2, whereas that
of the AVDZ curve is expectedly shifted towards
larger α (α = 0.36). Around these values we
can also find most of the optimal α values for
GEO′ of the individual B2se molecules (see
Figure S9). For example, more than 70% of
the optimal α values within the AVTZ basis set
for the individual B2se structure lie in between
0.17 and 0.24. If we look at the mean γ′ (in
place of mean GEO′) as a function of α, the
minima are still at about the same α values
(see the inset in the top panel of Figure 7).

The bottom panel of Figure 7 zooms in on
the region about the minima of the AVDZ and
AVTZ curves, and there we add datapoints of
the mean GEO′ values of functionals containing
different amounts of the exact exchange. From
there we can see that the performance of TPSSh
and B3LYP is nearly the same as that of re-
spective α-PBE. On the other hand, Minnesota
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Figure 6: Mean γ′ values (Eq. 5) of selected approximations within the three basis sets. The
approximations in all three panels are sorted by their respective AVnZ GEO′ rankings.
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Figure 7: Top panel: the mean GEO′ values
of the α-PBE/AVnZ as a function of α with
n={Q,D,T}, where α denotes the amount of
exact exchange. Note the log-scale on the y-
axes. The inset in the top panel shows the
same curves but with the mean γ′ in place of the
mean GEO′ values. Bottom panel: AVTZ and
AVDZ from the top panel zoomed around their
minima with the GEO′ datapoints for other
functionals with different amounts of exact ex-
change. For γ′ version of the bottom panel, see
Fig. S7.

functionals are typically better than the respec-
tive α-PBE functional (note that Minnesota

functionals are designed so that their exchange
and correlation parts fit each other). Only
MN15/AVDZ gets beaten by α-PBE within
the same amount of exact exchange and ba-
sis set, given the very good performance of α-
PBE/AVDZ in the region around that α value.
Finally, α-PBE at the optimal α = 0.36 value
outperforms all functionals with AVDZ. When
VDZ is used in place of AVDZ, the curve has
nearly the same shape but is shifted upwards
by ∼0.1 kcal/mol (see Figure S8).
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Figure 8: Boxplots same as those in Fig. 3, but
for α-PBE at the four α values.

In Figure 8, we also show the GEO′ boxplots
of α-PBE for the B2se at the following α val-
ues: 0, 0.21 (the minimum of the AVTZ curve),
0.36 (the minimum of the AVDZ curve), 0.5.
From these boxplots, we can see that at the
two smaller α values the GEO′ spread within
AVDZ is larger than that of AVTZ & AVQZ,
whereas the situation is reversed at the larger
two α values. This also suggest that α-PBE at
α = 0.36 and with AVDZ provides great geo-
metric performance relative to its cost.
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3.5 Geometric performance of
Grimme’s ’3c’ composite
methods
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Figure 9: GEO′ boxplots for the four 3c meth-
ods and the B2se dataset. The B3LYP results
within AVTZ and AVDZ are shown for com-
parison. Mean GEO′ values (kcal/mol) are also
reported in the figure. For the same plot, but
with a full range in the y-axes, see Figure S11.

In view of their excellent performance to cost
ratio, the ’-3c’ family of composite methods de-
veloped by Grimme and co-workers is becom-
ing more and more popular.3,36–38 The fam-
ily includes: HF-3c,36 PBEh-3c,37 B97-3c,38

and the most recent r2-SCAN-3c3 (’a Swiss
army knife’), which is built upon the original
r2-SCAN of Perdew and co-workers.39 These
methods are characterized by small, but care-
fully chosen set of atomic basis functions, and
classical potentials designed to correct their
electronic structure part. Boxplots with GEO′

values of the four 3c methods for B2se are
shown in Figure 9, with B3LYP/AVTZ and
B3LYP/AVDZ boxplots shown for compari-
son. From this figure, we can see that with
way larger GEO′ values, HF-3c stands out
from the other three 3c methods. These
three 3c methods have similar mean GEO′

values, with B97-3c having the lowest mean
GEO′, and r2-SCAN-3c having the smallest
spread. The three 3c methods are much bet-
ter than B3LYP/AVDZ, but get beaten by

B3LYP/AVTZ. Thus, they overall give highly
accurate B2se structures relative to their high
efficiency.

4 GEO′ analysis: a break-

down of GEO′ into com-

ponents from errors in

geometric parameters

4.1 GEO′ decomposition

By expanding E(G) around its G0 minimum
up to second order, we obtain the harmonic ap-
proximation to GEO:1

GEO ≈ GEOh =
1

2
∆G̃ᵀH∆G̃, (6)

where H is the Hessian of E(G) at the G0 min-
imum. We can write GEO′ in the same way, by
expanding Ẽ(G) around its G̃ minimum:

GEO′ ≈ GEO′h =
1

2
∆G̃ᵀH̃∆G̃, (7)

The difference between GEO′h and GEO′ is de-
fined here as the measure of the anaharmonicty
of GEO′:

∆A = GEO′h −GEO′, (8)

which, as we shall see later, is negligibly small
for our molecules. Even a further simplification
can be obtained if we use H̃q in a given set of
internal coordinates and neglect its off-diagonal
elements. Then GEO′h becomes:

GEO′h ≈ GEO′s =
3N−6∑
i

1

2
f̃ qi,i (∆qi)

2 . (9)

where ∆qi = q̃i − q are the errors in internal
coordinates, and f̃ qi,i are the diagonal elements

of the H̃q Hessian in internal coordinates (force
constants). In this way, Eq. 9 enables us to
partition GEO′ into the contributions from the
errors in geometric parameters in internal co-
ordinates (bond lengths, bond angles, torsion
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angles, etc.). We also define:

∆C = GEO′s −GEO′h, (10)

which is a contribution to GEO′ from the cou-
pling of internal coordinates (due to typically
small, but generally non-zero off-diagonal ele-
ments of H̃q). Combining Eqs. 8- 10, we can
write:

GEO′ = ∆A + ∆C +
1

2

3N−6∑
i

f̃ qi,i (∆qi)
2 . (11)

Here, Eqs. 8-11 apply to GEO′, but one can de-
fine analogous equations for GEO. As we shall
see, the third term on the r.h.s. of Eq. 11 ac-
counts for most of GEO′, and this enables its
intuitive interpretation in terms of the errors in
individual geometric parameters. Instead of us-
ing internal coordinates to partition GEO′, one
can also use the errors in GEO′ normal modes
(the eigenvectors of H̃ in e.g., Cartesian coordi-
nates).1 The advantage of the latter analysis is
thatGEO′s becomes exactly equal toGEO′, but
the errors in these coordinates are less chemi-
cally intuitive than errors in e.g., bond lengths.
This is why we proceed with the GEO′ analysis
in internal coordinates.

4.2 Illustrations
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Figure 10: GEO′s, ∆A and ∆C values of Eqs. 7-
10 for the butadiene molecule. Note the log-
scale in the y-axes. The approximations are
ranked by the GEO′s values. The AVQZ basis
set is used in tandem with all approximations.

To illustrate the quantities of Eq. 11, we
take a butadiene molecule as an example. In
Figure 10, we rank the approximations within
AVQZ based on their GEO′s values. In the same
plot, we also show |∆A + ∆C | and |∆A| (note
the log-scale in the y-axes). From this figure we
can see that |∆A| is negligible relative to GEO′s,
and that ∆A + ∆C sum also accounts only for a
small fraction of GEO′. This means that most
of GEO′ can be directly linked and partitioned
into the contributions from the errors in specific
geometric parameters. This breakdown for the
same butadiene molecule is shown in Figure 11.
Based on Eq. 9, we partition GEO′s into con-
tributions from errors in the single and double
bond lengths and the remainder of GEO′s here
is due to the errors in the angles (the sum of
contributions from both bond and torsion an-
gles ). We can also see how these GEO′s compo-
nents vary as we change the basis sets: AVQZ
(left panel), AVTZ (middle panel), and AVDZ
(right panel). The contribution from the an-
gles is small for all approximations and basis
sets. The GEO′ weights do not change sub-
stantially as we go from AVQZ to AVTZ as
it is the case with the total GEO′ values. In-
teresting patterns and grouping of functionals
can be observed based on their GEO′ contribu-
tions. At the AVQZ and AVTZ level, we can see
that the single-bond contribution strongly dom-
inates old-school (semi)local functionals (LDA,
BLYP, PBE, TPSS). The situation is different
in the case of hybrids, for most of which a
double-bond contributions strongly dominates
their GEO′. As we go from AVTZ to AVDZ the
relative contributions to GEO′ change strik-
ingly and so do the rankings of approximations.
An immediate noticeable change is that the
light blue colour becomes more dominant in the
AVDZ bars, indicating a more significant con-
tribution from the errors in single-bond lengths.
This change in the basis also reverses the trends
in hybrids, where the contribution from single-
bonds dominates over that of the double-bonds.
On the other hand, a single-bond contribution
still dominates GEO′ of PBE, TPSS and BLYP,
with the difference thatGEO′ of these function-
als within AVDZ bears a substantial double-
bond contribution. As observed earlier, the ge-
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Figure 11: The decomposition of GEO′s for the butadiene molecule into the angle, double bond,
and single bond components (Eq. 9). The three panels show the results within different basis sets:
AVQZ (left), AVTZ (center), AVDZ (right). The approximations in all three panels are are ranked
by their AVQZ GEO′s values (left panel).

ometric performance of HF gets drastically bet-
ter as one goes from AVTZ to AVDZ and we
can see here that this change in the basis sub-
stantially reduces both single- and double-bond
contributions to its GEO′. At the AVDZ basis,
HF gets beaten here only by M06-2X, which
also contains a large amount of exact exchange
(54%).

The same analysis for more molecules is
shown in Figure 12. Here the basis set is fixed
(AVTZ), but a more detailed analysis with dif-
ferent basis sets and additional molecules is
given in Section S6 of the SI. In the case of
acetylene molecule [panel (a)] the patterns are
even clearer than it was the case with butadi-
ene. Namely, GEO′ of LDA, PBE, BLYP and
TPSS is almost entirely due to the errors in the
triple bond length, whereas GEO′ of hybrids
are almost entirely due to the single bonds. In
the case of benzene [panel (b)], the picture is
more nuanced: GEO′ of GGAs, LDA and TPSS
is still mostly due the error in the single bond,
but has a significant contribution from the er-
rors in the unsaturated C-C bond lengths. By
looking at the remaining two panels in Fig-
ure 12, the similar patterns can be observed:
the angle contributions to GEO′s is still small,
GEO′s of hybrids is dominated by a single bond
component, whereas unsaturated bonds dom-
inate GEO′s of the PBE/BLYP/TPSS group.
The -L Minnesota functionals (ones that make
no use of exact exchange) behave differently:
the GEO′ weights of MN15-L are similar to
those of the PBE/TPSS/BLYP group, whereas

the weights of M06-L and M11-L are more sim-
ilar to those of hybrids. Of course, if the AVDZ
basis is used instead, the trends change, as was
described by the butadiene example (see Sec-
tion S6 for the results for the other basis sets).

4.3 Breakdown of GEO′ from
α-PBE for the formaldehyde
molecule

We could see in Fig.12 that the GEO′ weights
of PBE and PBE0 are substantially different.
To shed more light on that and gain insight
into the position of the α minimum for α-PBE
in Figure 7, we consider here how the α-PBE
GEO′ components vary for the formaldehyde
molecule. This molecule is chosen as its opti-
mal α value is about the same as that for the
whole B2se dataset (about 0.2 at the AVTZ ba-
sis set). The results are shown in Figure 13.
From the top panel, where AVTZ is used, we
first note that the GEO′ curve is accurately
described by that of GEO′s. Furthermore, the
angle contribution to GEO′ is very small, and
thus the GEO′ black curve is essentially the
sum of its single-bonds and double-bond com-
ponents (the light blue and blue curves). Up to
α ∼ 0.15, most of GEO′ comes from the single
bonds, whereas in the region for α values in be-
tween ∼ 0.35 and ∼ 0.6, it mostly comes from
the double bond. The minimum of the GEO′

curve (black) is at about α = 0.2, and is closer
to the minimum of the double-bond component
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Figure 12: Different components of GEO′s for a set of approximations and a selection of 6 molecules.
The AVTZ basis set is used in all calculations. ’Aromatic bonds’ denote the C−−−−C bonds inside of
the benzene ring. The same analysis for more molecules and basis sets is given in Section S6 of the
SI.

(α ∼ 0.09) than to that of the single-bonds
component (α ∼ 0.45), as the latter minimum is
shallower. The large distance between the blue
and light blue minima do not allow α-PBE to be
very accurate for both single- and double-bond
of formaldehyde at the same time. Thus, at the
α ∼ 0.2 minimum there is some contribution
from both bond types. In the bottom panel of
Figure 13, we repeat the same plot, but within
AVDZ. The situation in this panel is similar to
that of the upper panel, with the difference that
the position of the minima of the four curves
are now shifted towards larger α values (only
the angle between the bonds is most accurate
at α = 1 for both basis sets). This observation
is in-line with the earlier analysis that focused

on the changes in the total GEO′ values as one
goes from AVTZ to AVDZ.

4.4 GEO′ analysis for the phenyl
radical

As said earlier, the phenyl radical is the only
open-shell species in the B2se set. That is
why it was excluded from the GEO′ statis-
tics given in Section 3, and we analyse it sepa-
rately here. Figure 14(a) ranks the approxima-
tions within AVTZ based on their GEO′ val-
ues for the phenyl radical and compares GEO′

and GEO′s values. These rankings can be com-
pared to those for the benzene molecule [Fig-
ure 12(b)]. The most obvious difference be-
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Figure 13: GEO′, GEO′s and its angle, single-
and double-bond components for α-PBE as a
function of α for the formaldehyde molecule
at the AVTZ (top panel) and AVDZ (bottom
panel) basis sets.

tween these two plots is the position of MP2,
which was one of the top performers for ben-
zene, whereas it stands out as by far the worst
for the phenyl radical. The MP2 calculation
here is based on the unrestricted HF (UHF),
which is severely spin-contaminated (〈S2〉 off
by more than 50% for the considered radical),
and in such cases MP2 typically gives very bad
geometries.1,40,41 Although spin-contaminated,
UHF itself gives way more reasonable geom-
etry for the phenyl radical than MP2 [Fig-
ure 14(a)]. The inset of Figure 14(a) explores
GEO′ values for different methods built upon
MP2. It is of no surprise42 that GEO′ of
SCS-MP240 is just slightly lower than that of
MP2, as SCS-MP2 also uses the UHF orbitals
here. On the other hand, B2PLYP and the two

orbital-optimized (OO) MP2 approaches (OO-
MP2 and OO-SCS-MP243–45) reduce spin con-
tamination of MP2, and thus give highly ac-
curate structures for the phenyl radical (GEO′

values ∼0.05 kcal/mol). One should also note
that B2PLYP is the cheapest of the three meth-
ods as its cost is about the same as MP2, while
orbital optimizations make the two OO-MP2
approaches substantially more expensive than
MP2.

In Figure 14(b), we decompose GEO′s into
the contributions from C−H and C−−−−C bonds,
and angles. These results for the phenyl radical
can also be compared with those for the ben-
zene molecule [Figure 12(b)]. From this plot,
we can see that large GEO′ of MP2 comes al-
most exclusively from the errors in the C−−−−C
bond lengths. Instead of summing contribu-
tions for the same bond types, we can also mea-
sure the GEO′ contributions from each bond.
While a more detailed analysis is shown in the
SI (Fig. S34), we focus on MP2 in Figure 12(c),
where for each unique bond length we show er-
rors in pm. We can also see how each of these
translate to GEO′ contributions, which are ob-
tained by squaring the error and multiplying it
by half of the underlying force constant (Eq. 9).
We can see that the MP2 errors in C−−−−C bond
lengths are very large and range from ∼2.5pm
to ∼3pm resulting in GEO′ contributions from
0.3 to 0.5 kcal/mol per bond. The errors in
the C−H bond lengths are much smaller, and
result in way smaller GEO′s contributions given
that: GEO′ grows quadratically with the errors
in geometric parameters and given the smaller
value of the fC−H than fC−−−−C force constant. In
contrast to the large MP2 errors in C−−−−C bonds,
those of B2PLYP are much smaller (within 0.16
pm resulting in negligible GEO′ contributions,
∼0.001 kcal/mol).
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Figure 14: GEO′ analysis for the phenyl radical. Panel (a) compares GEO′ and GEO′s for a range
of approximate methods. Panel (b) shows a breakdown of GEO′s into components due to the errors
in: angles, C−H bond lengths (’single bonds’), and C−−−−C bonds (’aromatic bonds’). Panel (c)
shows errors in bond lengths in pm of MP2 and how each of them translate to GEO′s contribution
in kcal/mol (Eq. 9). AVTZ basis set is used in all calculations.

5 Conclusion and outlook

The present paper demonstrates the usability
of GEO′ for quantifying and analysing geomet-
ric errors in approximate molecular structures.
The use of GEO′ in place of GEO in tandem
with semiexperimental geometries greatly sim-
plifies the whole analysis and enables us to by-
pass a need for using the input from expen-
sive correlated wavefunction calculations, e.g.,
CCSD(T). With the GEO′ analysis, we identify
patterns in geometric performance across dif-
ferent classes of approximations and basis sets.
The focus here is on main-group structures, but
the developed tools are widely applicable and
can be used in a straightforward way to quantify
and analyse geometric errors for any molecule
and any approximation in simple and chemi-
cally intuitive terms.

Both GEO and GEO′ use energy units to as-
sess qualities of approximate geometries (unlike
other measures for geometric errors, such as av-
erages in errors in geometric parameters). Sev-
eral advantages arise from that. First, GEO′

and GEO can be directly compared to existing
energetic scores of electronic structure methods
or can be included in new ones. For this reason,
we recommend the inclusion of mean GEO′ val-
ues for the B2se set to new versions of energetic
scores, such as WTMAD-2 scores pertaining to
the GMTKN55 collection of databases.46,47 Sec-

ond, mean GEO′ for B2se can also be included
in the training of new empirical methods, since
the resulting methods would likely have bet-
ter geometric performance than those using the
same form but trained only on standard en-
ergetic datasets (e.g., datasets with atomiza-
tion energies, barrier heights, binding energies,
etc.)6,48

Here the focus is on ground-state structures,
but in the future work GEO will also be calcu-
lated for excited-state structures providing tests
for TD-DFT and wave-function methods.26,49

The same or slightly adjusted analysis will also
be applied to noncovalent structures,5,50 transi-
tion states (enabling quantification of geometric
errors for barrier heights), as well as the struc-
tures of large transition-metal complexes ob-
tained from semiempirical methods, for which
DFT structures should be sufficiently good ref-
erence.51 In the context of DFT, improved den-
sities should yield improved geometries.52 Thus,
in addition to the standard DFT, we will also
test the geometric performance of its density-
corrected variant.48,53–55

6 Associated content

The Supporting Information is available free of
charge at..., and it contains computational de-
tails and additional results references through-
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out the main text (PDF). Data for GEO′ val-
ues of approximations for the B2se molecules
are also provided (xlsx).

Acknowledgement This project has re-
ceived funding from the European Union’s
Horizon 2020 research and innovation pro-
gramme under the Marie Sk lodowska-Curie
grant agreement 101033630, and in part by NSF
(CHEM 1856165). Computational resources for
the present project have been provided through
NWO’s Vici grant 724.017.001. I also thank Dr.
Peter Kraus for suggesting the use of semiexper-
imental geometries in the context of the present
work.

A Further details on GEO

and GEO′

For an approximate electronic structure
method, the total error is given by:

∆E = Ẽ
(
G̃
)
− E (G0) , (12)

and thus contains errors both due to the ap-
proximate geometry and approximate energy
(see Section 1 for the definition of the quan-
tities in Eq 12). To decompose this error into
GEO and non-geometric part (’purely energetic
components’, denoted by P and P ′ below), we

add and subtract E
(
G̃
)

to the r.h.s of Eq. 12:

∆E = E
(
G̃
)
− E (G0)︸ ︷︷ ︸

GEO≥0

+ Ẽ
(
G̃
)
− E

(
G̃
)

︸ ︷︷ ︸
P

.

(13)
Adding and subtracting Ẽ (G0) to the r.h.s of
Eq. 12 we obtain an alternative form of Eq. 13:

∆E = Ẽ
(
G̃
)
− Ẽ (G0)︸ ︷︷ ︸

−GEO′≤0

+ Ẽ (G0)− E (G0)︸ ︷︷ ︸
P ′

.

(14)
The signs of GEO and GEO′ also dictate the

following chain of inequalities:

P ≤ ∆E ≤ P ′. (15)

Since GEO is typically very accurately approx-

imated by GEO′, then we also have: GEO ≈
1
2

(P ′ − P ). As discussed in Ref. 1, for equi-
librium structures (minima of potential energy
surfaces), GEO and GEO′ are always positive,
whereas their signs for transition states (the
first order saddle points of potential energy sur-
faces) are not definite.
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