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ABSTRACT: A new Ru3(CO)12-catalyzed directed alkenylation of 2-carboxaldimine-heterocyclopentadienes has been accomplished. 
This process allows to couple furan, pyrrole, indole and thiophene 2-carboxaldimines with electron-poor alkenes such as acry-
lates, vinylsulfones, and styrenes. This regio- and chemoselective oxidative C–H coupling does not require the presence of an 
additional sacrificial oxidant. Density functional theory (DFT) calculations allowed to propose a mechanism and unveiled the na-
ture of the H2 acceptor. 

Alkenyl-substituted five-membered heteroarene scaffolds, such as furan, pyrrole, indole and thiophene de-

rivatives, are found in many bioactive and pharmaceutical compounds (Figure 1),1–7 as well as in various func-

tional organic materials.8–10 As a consequence, the search for safer and safer, and more atom- and step-

economical methods to synthesize these motifs from simple heterocycles and alkenes is a topic of constant 

great interest. In this context, the formation of new C–C bonds through a transition metal (TM)-catalyzed C–H 

activation process has received particular attention,11–14 providing a rapid access to a wide range of highly func-

tionalized heterocyclic motifs. 

 

Figure 1. Some bioactive heteroarenes alkenylated at position 3. 

The Fujiwara-Moritani reaction, a dehydrogenative cross-coupling, is one of the earliest examples of such a 

TM-catalyzed C–H functionalizations.15–22 This type of C–H/C–H cross-coupling23 is regarded as an ideal method 

to join an acrylate and an aromatic substrate, via Pd(II), Ru(II), Rh(III), Ir(III), or Co(III) catalysis.24–27,20 However, 



 

as these dehydrogenative couplings are inherently endergonic, the driving force to push the transformation 

toward the products side often needs the addition of (super)stoichiometric amounts of an external sacrificial 

oxidant that accepts the two released H atoms, or the input of electrical energy,28–30 which drives hydrogen evo-

lution at the cathode. In the former case, sacrificial oxidants such as quinones, Cu(II)-, Mn(IV)-, or Ag(I)-salts are 

required, which obviously reduces the sustainability of the coupling process. The only green terminal oxidant is 

molecular oxygen,31 which is often used in combination with photoredox catalysis.32–34 

As part of a long term project directed toward the sustainable C–H functionalization of aldimine-armed het-

erocyclopentadienes of biomass derivation such as furan,35–37 pyrrole,38,39 as well as thiophene units, we have 

recently developed several directed Ru(0)-catalyzed C3-functionalizations (Scheme 1A), such as: the alkylation 

(Murai reaction40) of N,N’-bidentate furfurylimines with vinylsilane or styrene derivatives (a),41 the arylation of 

electron-rich furfurylimines with arylboronates (b),42,43 and the acylation (carbonylative Murai reaction) of fu-

ran- (c) or pyrrole-based p-methoxyphenyl imines or N,N’-bidentate imines (d) under CO atmosphere with vi-

nylsilane or styrene partners.44 However, the directed C3–H alkenylation of 2-formyl-heterocyclopentadiene 

units, which overwhelms the natural C5 electrophilic preference of these heterocycles,45 remains a challenge. 

The few reported C3–H/C–H couplings between 2-substituted heterocyclopentadienes and electron-poor al-

kenes make use of C2-linked directing groups belonging to the carboxylic acid oxidation level, such as carbox-

ylates, amides, and esters.46–49 Herein, we disclose a selective, external oxidant free,50–54 Ru(0)-catalyzed C3-

alkenylation of furfural, 5-hydroxymethylfurfural (HMF) derivatives, pyrrole-, indole-, and thiophene 2-

carboxaldehydes through their corresponding aldimines (i.e. without modification of the formyl redox state), 

which act as removable directing groups (Scheme 1B, e). 

Scheme 1. Ru-catalyzed direct functionalization of biomass-derived 2-formyl heteroaromatic compounds: 

previous results and present work 

 



 

In our previous studies, we established that the directed C3–H activation of 2-carboxaldimine-

heterocyclopentadienes could be successfully achieved only through a nucleophilic catalysis, which involves an 

initial oxidative addition step of the targeted C–H bond to the Ru(0) catalyst. In contrast, electrophilic TM-

complexes, such as Ru(II) or Pd(II) catalysts, which normally involve an ambiphilic metal–ligand activation / con-

certed metalation deprotonation (AMLA / CMD) mechanism, appeared uneffective.13 Classical Fujiwara-Moritani 

reaction conditions [Pd(OAc)2 cat. / p-benzoquinone or [RuCl2(p-cymene)]2 cat. / Cu(OAc)2], tested in the model 

coupling between p-methoxyphenylfurfurylimine (PMP-imine) F1 and ethyl acrylate (4 equivalents), gave no C3-

alkenylated product F2a (Table 1, entry 1). Only traces of the C5-alkenylated product F2a’ were observed in the 

case of Ru(II) catalysis (entry 2). Gratifyingly, the use of Ru3(CO)12 (5 mol%), in toluene, gave, after 24 h at 135 °C 

in a sealed tube under argon atmosphere, the expected dehydrogenative C3 coupling product F2a in 44% isolat-

ed yield, without any trace of the corresponding C5- functionalized product (entry 3).55 This result suggests that 

the nature and the oxidation state of the Ru catalyst are crucial to obtain the desired imine-Ru coordination, 

which is in turn a condicio sine qua non to promote the C3-functionalization. However, the bidentate N,N’-

imino-amine directing group, which gave satisfactory results in the Murai reaction,41 provided neither the de-

sired alkenylated (Fujiwara-type) product, nor the alkylated (Murai-type) product (see Supporting Information 

SI). Comparable results in terms of yield were obtained carrying out the coupling under air or argon atmosphere 

(compare entries 3 and 4). These results clearly prove that oxygen does not act as oxidant for the ruthenium 

catalyst. So, how to explain our seemingly acceptorless C–H/C–H coupling? We suspected that excess acrylate 

acted as an endogenous sacrificial H2 acceptor (vide infra).56 In line with the above speculation, repetition of the 

experiment of entry 4, in the presence of only 1 equivalent of acrylate, gave product F2A in a decreased yield of 

7%. However, the addition of tert-butylethylene as a potential hydrogen acceptor,57 along with the use of only 

one equivalent of acrylate, was not as effective, as using an excess of the acrylate partner (entry 5).58 Further 

optimization studies varying the solvent, the temperature, as well as the reaction time did not reach better re-

sults (see SI for details).59 

Table 1. Fujiwara-Moritani reaction on PMP-imine F1 

 

entry conditions results[a] 

1 Pd(OAc)2 (5 mol%), p-benzoquinone (1 equiv.), PTSA (1 equiv.), AcOH/PhMe, 60 °C, 24 
h 

NR 
/hydrolysis 

2 [RuCl2(p-cymene)]2 (5 mol%), Cu(OAc)2 (2 equiv.), PhMe, 135 °C, 24 h F2a’  
22% 

3 Ru3(CO)12 (5 mol%), PhMe, 135 °C, 24 h (argon atmosphere)  F2a  
(47%), 44% 

4 Ru3(CO)12 (5 mol%), PhMe, 135 °C, 24 h (air atmosphere) F2a  
(50%), 46% 

5[b] Ru3(CO)12 (5 mol%), 3 equiv. of TBE, PhMe, 135 °C, 24 h (air atmosphere) F2a  
(13%) 



 

[a] In parentheses, 1H-NMR yield, determined using p-dinitrobenzene as internal standard. Isolated yield from 
silica gel chromatography deactivated with 1% of Et3N. [b] With 1.1 equiv. of ethyl acrylate. TBE = tert-
butylethylene 

With the optimal conditions in hand [5 mol% Ru3(CO)12, acrylate (4 equiv.), PhMe, 135 °C, 24 h (air)], the 

scope of this C3–H alkenylation was subsequently studied in the coupling between the PMP-imines of furfural 

(F1), 5-methylfurfural (F3), O-TBS-protected HMF (F5), and ethyl-, n-butyl-, t-butyl-, and benzyl acrylates 

(Scheme 2, top). The nature of the C5 substituent in the starting furfurylimines did not sensibly affect the cou-

plings, which led to the expected coupled products F2a, F4a, and F6a from ethyl acrylate, F2b from t-butyl acry-

late, F4d and F6d from n-butyl acrylate, and F2c, F4c, and F6c from benzyl-acrylate, in moderate yields. 

Following these encouraging results, we decided to extend our study to pyrrol- and thiophene-based 2-imino 

heterocyclopentadienes (Scheme 2, bottom). First, pyrrole 2-carboxaldehyde was considered as a suitable start-

ing substrate,60 given its direct availability from furfural via the Paal-Knorr synthesis,61 or via a three-step se-

quence (carbonyl reduction / Achmatowicz rearrangement / Maillard condensation).62 Indole and thiophene 2-

carboxaldehydes were also included, to assess the scope of the coupling within the heterocyclopentadiene fami-

ly. The couplings of these N-based heterocycles were found to be much more efficient and selective than those 

of the previously studied more fragile furfural derivatives. Accordingly, the coupling between N-benzylpyrrole 2-

PMP-imine P1 and ethyl-, t-butyl-, n-butyl-, and benzyl acrylates led to the expected products (P2a-d) in fair to 

good yields. Similarly, this C–H/C–H coupling could be extended to the 2-PMP-imines of N-benzylindole (I1), and 

thiophene (T1), which reacted efficiently with ethyl- and benzyl-acrylates to afford the coupled products I2a, 

I2c, T2a, T2c. Further variations at the electron-poor alkene partner were also considered. However α- and β-

substituted acrylates, as well as acrolein did not allow the coupling, even under more forcing reaction condi-

tions. 

Other monosubstituted electron-poor alkenes were considered as coupling partners for imine P1 (Scheme 2, 

bottom). Methyl vinyl ketone gave the expected adduct P2e in 25% yield, whereas N,N’-dimethyl acrylamide 

gave P2f in only 9% yield. Better results were obtained with phenyl vinyl sulfone, which afforded the coupled 

product P2g in 49% yield. Styrene, and 4-chlorostyrene gave the corresponding coupled products P2h and P2i in 

46% and 58% yield, respectively. Thus, in the case of styrenes, by playing with the CO atmosphere, it is possible 

to switch from a carbonylative Murai coupling44 to a Fujiwara-Moritani type alkenylation. This feature renders 

the Ru(0)-catalyzed C3–H functionalization of five-membered heteroarene scaffolds quite general and versatile. 

Scheme 2. Ru(0)-catalyzed alkenylation of furan- (top) and pyrrole- and thiophene-based 2-PMP-imines (bot-
tom) 



 

 

 Finally, we wished to verify if the presently developed Ru(0)-catalyzed protocol could also enable the di-

rected Fujiwara-Moritani coupling between simple aryl PMP-imines (or aryl ketones) and electron-poor alkenes. 

To this purpose, N-PMP-(m-tolyl)methanimine was synthesized and then submitted to our standard protocol in 

the presence of ethyl acrylate. A second experiment was repeated replacing the imine with acetophenone 

(Scheme 3).  

Scheme 3. Attempted Ru(0)-catalyzed alkenylations of benzenic derivatives 

 

 The former experiment gave only traces of a mixture of the alkylated (Murai type) and the alkenylated prod-

ucts (Fujiwara-Moritani type), while the second experiment gave only 10% of the alkenylated one. These results 

unambiguously demonstrate that our Ru(0)-catalyzed protocol selectively enables the coupling between car-

boxaldimine-heterocyclopentadienes and electron-poor alkenes. Such a selective and unprecedented reactivity 

is likely due to the combination of the electron richness of the Ru(0) pre-catalyst and of the heterocyclopentadi-

enes with the electron poor nature of the acrylate derivative. 



 

 The mechanism of the C3-alkenylation between pyrrole P1 and methyl acrylate was also studied via DFT cal-

culations.64 As in our previous mechanistic studies concerning Ru-catalyzed C–H functionalizations,41,44 we antic-

ipate the conversion of the trimeric Ru3(CO)12 pre-catalyst into a mononuclear ruthenium carbonyl by Ru–Ru 

breaking and CO release.65,66 However, the simplicity of the model used may limit the scope of the calculations. 

The simplified calculated catalytic cycle is shown in Scheme 4, while the complete reaction free energy profile is 

presented in the SI. 

Scheme 4. Proposed mechanism for the Ru(0)-catalyzed alkenylative coupling between N-based PMP-imine 

P1 and methyl acrylate. All free energy values (kcal/mol) relative to A 

 

 The proposed mechanism starts with complex A, wherein the imine function of substrate P1 coordinates 

Ru(CO)3. Oxidative addition of the C3–H bond to the metal affords the corresponding Ru(II) hydride intermedi-

ate B. This is a slightly endergonic step (ΔG = 3 kcal/mol) with a barrier of 14 kcal/mol. The reaction proceeds 

with olefin 2-coordination, which occurs with simultaneous break of imine coordination to give intermediate C. 

This is followed by the regioselective carboruthenation of the acrylate to generate intermediate D, which over-

comes a barrier of 30 kcal/mol.67 This is the highest energy transition state along the path and corresponds to 

the TOF determining transition state (TDTS) of the process. The subsequent dehydroruthenation releases the 

final product P2a’, while a new acrylate unit that enters the cycle coordinates the newly generated Ru(II)-

dihydride E (see SI for more details). Hydroruthenation of E followed by metal coordination by the imine func-

tion of a new entering molecule of imine P1 gives intermediate F. Finally, passing through a barrier of 17 

kcal/mol, a reductive elimination generates methyl propionate and regenerates the starting Ru(0) complex. So, 



 

overall, in the catalytic cycle one molecule of imine reacts with two molecules of acrylate to generate one mole-

cule of alkenylated coupling product and one molecule of methyl propionate. 

 In summary, we have developed a novel Ru(0)-catalyzed method for the selective C3-alkenylation of oxygen-, 

nitrogen- and sulfur-based heterocyclopentadiene 2-PMP-imines, in the presence of acrylic acid derivatives. In 

the case of the pyrrole ring, the coupling could be extended to a variety of electron-poor alkene partners with 

good results. This method does not need the presence of an additional external sacrificial oxidant, as a second 

unit of the acrylic acid derivative enters the catalytic cycle, accepting the two H atoms expelled in the C–H/C–H 

coupling. This hidden acceptor part of the cycle is key, as it renders the process thermodynamically favorable, 

allowing the closure of the catalytic cycle.  

 This protocol is not only regioselective for the C3–H functionalization, but also chemoselective, as it does not 

touch carbocyclic arylimines. In particular, in the case of styrenes, by playing with the CO atmosphere, one can 

switch from a carbonylative Murai coupling to a Fujiwara-Moritani type alkenylation. Finally, DFT computations 

allowed to propose a plausible mechanism for this process, and unveiled the hidden acceptor. 
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