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Abstract

There exists a great need for computationally efficient quantum simulation ap-

proaches that can achieve an accuracy similar to high-level theories while exhibiting

a wide degree of transferability. In this regard, we have leveraged a machine-learned

force field based on Chebyshev polynomials to determine Density Functional Tight

Binding (DFTB) models for organic materials. The benefit of our approach is two-fold:

(1) many-body interactions can be corrected for in a systematic and rapidly tunable

process, and (2) high-level quantum accuracy for a broad range of compounds can be

achieved with ∼0.3% of data required for one advanced deep learning potential (ANI-

1x). In addition, the total number of data points in our training set is less than one half

of that used for a recent DFTB-neural network model (trained on a separate dataset).

Validation tests of our DFTB model against energy and vibrational data for gas-phase

molecules for additional quantum datasets shows strong agreement with reference data

from either hybrid density-functional theory, coupled-cluster calculations, or experi-

ments. Preliminary testing on graphite and diamond successfully reproduce condensed

phase structures. The models developed in this work, in principle, can retain most of

the accuracy of quantum-based methods at any level of theory with relatively small

training sets. Our efforts can thus allow for high throughput physical and chemical

predictions with up to coupled-cluster accuracy for materials that are computationally

intractable with standard approaches.
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Atomistic simulations are an essential tool for studies in physics, chemistry, biology, and

materials science. These calculations can provide atomic level detail of physical phenom-

ena and chemical reactions that can help to understand experimental observations. With

modern computing advances, computationally intensive simulations using quantum mechan-

ical methods such as hybrid density-functional theory (DFT), Møller-Plesset second-order

perturbation theory (MP2), or coupled-cluster approaches can be performed to provide ac-

curate descriptions of electronic and vibrational states, as well as thermodynamic quantities

for a diverse set of systems. The high computational expense of these approaches, however,

generally limits their application to static gas-phase clusters or small, sub-nanometer sys-

tems sizes. This can be far below the spatial scales of most experimental studies, which

frequently probe nanometers or beyond and involve dynamic measurements. For example,

the “gold standard” CCSD(T) (coupled-cluster considering single, double, and perturbative

triple excitations) method scales as O(N7), where N is the number of basis functions in-

volved in the calculation. Consequently, it is generally only applicable to systems with tens

of atoms or less, precluding its use for larger biomolecules or condensed phases. Neural

network (NN) approaches can be used to completely parameterize the quantum mechanical

interactions,1–3 bypassing the need for direct electronic state calculation and thus yielding

improved scaling and efficiency. However, NNs tend to require extremely large training sets

and can perform poorly outside of their training regime.1 This need for large data sets, in

particular, makes such approaches challenging to implement and use effectively. Therefore,

there is a widespread need for the development of computational methods that can maintain

the accuracy of high level approaches while yielding substantial gains in training set size,

computational costs, and scaling.

Semi-empirical methods, for example Density Functional Tight Binding (DFTB),4–7 are a

potential strong alternative quantum approach. The DFTB Hamiltonian is derived directly

from an expansion of the Kohn-Sham DFT total energy, yielding a good balance between

approximate quantum mechanics and empiricism. This can result in calculations requiring
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only a small fraction of the computational cost compared to DFT or other high-level quantum

approaches. Here, the DFTB total energy is written as:

EDFTB = EBS + ECoul + Erep, (1)

where EBS corresponds to the band structure energy, ECoul is the charge fluctuation term,

and Erep is the repulsive energy. EBS is calculated as a sum over occupied electronic states

from the DFTB Hamiltonian. In practice, DFTB Hamiltonian matrix elements are computed

from pre-tabulated Slater-Koster tables derived from reference calculations with a minimal

basis set. The repulsive energy, Erep, corresponds to ion-ion repulsions, as well as Hartree

and exchange-correlation double counting terms. This term can be expressed as an empirical

function where parameters are fit to reproduce high-level quantum or experimental reference

data. A pairwise potential energy function is often used for the repulsive energy term,8,9

though many-body interaction terms are required in some cases.10,11 DFTB is approximately

three orders of magnitude more efficient than DFT calculations and exhibits O(N3) scaling.

Its combination of approximate quantum mechanics with empirical functions can allow for a

high degree of flexibility in terms of optimization approaches, desired accuracy, and transfer-

ability across element types and diverse conditions.12–14 DFTB models have been created for

a broad range of materials, though the repulsive energy largely has been tuned to relatively

low-level DFT data for condensed phases.15–19

Recent efforts have been made to enhance the accuracy of DFTB through creation of more

sophisticated and systematic approaches for determining the repulsive energy term.14,20–22

Kranz et al. added general polynomial forms to the standard DFTB repulsive energy to

describe different bond types and various chemical environments.20 By training to energies

and atomic forces of ∼ 150,000 structures of 2100 unique C, H, N, O, and F containing

molecules in both equilibrium and distorted configurations, their model can reproduce refer-

ence atomization energies of an ∼ 130,000 molecule test set. Gaussian Process Regression21
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and the Curvature Constrained Splines methodology14 have been used to create strictly

pair-wise additive repulsive energies for several organic and inorganic systems. However,

these methods can struggle for systems where greater than two-body interactions in Erep are

needed.14 NNs have been proposed as a promising method to include many-body interactions

into the DFTB repulsive energy.22,23 The resulting DFTB-NN models have the capability

of predicting molecular properties for a wide range of compounds and element types. How-

ever, the drawback of utilizing NNs for Erep is similar to their use for classical force fields

in that they require large amounts of training data and can have slow parameterization due

to the presence of quasi-degenerate local minima,24 making their development exceedingly

challenging.

Here, we explore the possibility of creating DFTB models that can leverage the relative

simplicity of linear regression machine learning in the recently developed Chebyshev Interac-

tion Model for Efficient Simulation (ChIMES) method. ChIMES is a many-body force field

based on linear combinations of Chebyshev polynomials.25 It has been shown that ChIMES

models yield good agreement with DFT reference method for a wide range of properties and

materials under both ambient and extreme conditions.26–28 The main advantage of ChIMES

is that it is completely linear in fitted coefficients, allowing for rapid parameterization to

a global minimum. The reliance on Chebyshev polynomials, which are orthogonal, allows

the complexity of a ChIMES model to be systematically tuned to an arbitrary degree of

accuracy and transferability, while also providing straightforward methods for regularization

to minimize overfitting.16 In this study, we determine an optimal DFTB/ChIMES model for

C, H, N, O-containing systems using high level quantum chemical reference data. We use an

iterative scheme to systematically expand our training set where at each iteration, a small

fraction of the force configurations with largest deviation in our validation set are included

in the next training set iteration. The accuracy and transferability of the resulting model

are investigated for a wide variety of gas-phase clusters as well as some carbon solids. We

find that use of a small fraction of our chosen data set (∼0.3% of similar NN efforts) yields
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DFTB/ChIMES models that maintain close to hybrid functional, coupled-cluster, and/or

experimental accuracy for the gas-phase clusters studies here, and compares favorably to

previous DFTB-NN efforts for similar systems.

For our DFTB/ChIMES models, the total energy is determined as the sum of the standard

DFTB energy with an additional ChIMES contribution:

EDFTB/ChIMES = EBS + ECoul + Erep + EChIMES, (2)

For this work, DFTB calculations are performed using the 3ob-3-1 parameter set, which

contains a third-order expansion about the charges and is considered an optimal DFTB

starting point for most organic system.22,29 The ChIMES energy is written as a many-body

expansion:

EChIMES =
na∑
i=1

Ei +
na∑
i=1

i−1∑
j=1

Eij +
na∑
i=1

i−1∑
j=1

j−1∑
k=1

Eijk

+
na∑
i=1

i−1∑
j=1

j−1∑
k=1

k−1∑
l=1

Eijkl + · · · ,

(3)

where na is the number of atoms in the system. The atomic energies Ei are constants used to

match energies from reference data, and two-body (pairwise) energies are expressed as linear

combinations of Chebyshev polynomials of the first kind.30,31 Higher-bodied interactions are

determined through products of a cluster’s constituent pair-wise polynomials.32 ChIMES

parameters are determined by fitting to the difference between the reference energies and

atomic forces and those computed from DFTB alone using the following objective function:

Fobj =

ng∑
i=1

 n
(i)
a∑

j=1

3∑
k=1

w2
Fijk

(∆Fijk)2 + w2
Ei

(∆Ei)
2

 /Nd, (4)

where Nd is the total number of data entries, given by Nd = ng +
ng∑
i=1

3n
(i)
a . Here the number

of gas phase molecular conformations in the training set is given by ng and n
(i)
a indicates the

number of atoms in the configuration i. Fijk is the kth Cartesian component of the force acting
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on atom j in configuration i, while Ei is the energy per atom of configuration i. The term

∆X is equal to Xref−XDFTB−XChIMES (where X ≡ Fijk, Ei). The subscripts “ref”, “DFTB”,

and “ChIMES” indicate the predicted quantity X from reference method, DFTB, and the

present ChIMES correction, respectively. Further details about our DFTB calculations,

the ChIMES functional form, the fitting procedure and ChIMES hyper-parameter selection

(including radial ranges, polynomial orders, and other pertinent details) can be found in the

Supporting Information.

The dataset used to develop the DFTB/ChIMES model here is a subset of the ANI-1x

dataset which we will refer to as ‘sub_ANI-1x’. It contains only molecular conformations

from ANI-1x computed using CCSD(T)/CBS, wB97X/def2-TZVPP, and wB97X/6-31G*

levels of theory.33 This corresponds to ∼10% of the full ANI-1x data set, and resulted in

459,464 molecular conformations of 1895 unique molecules, including transition states of

some chemical reactions. Since there are no data for atomic forces at the CCSD(T)/CBS

level of theory in the ‘sub_ANI-1x’, for our fitting purposes we use the wB97X/def2-TZVPP

reference data only. We note here that fitting a DFTB/ChIMES model using a whole

‘sub_ANI-1x’ set directly would utilize ∼19M data points, resulting in a slow parame-

terization. In addition, it is of great benefit to create semi-empirical quantum approaches

that do not require the traditionally vast amounts of training data needed by most machine

learning approaches. As a result, our first objective is to determine how much data is needed

from ‘sub_ANI-1x’ to train a good DFTB/ChIMES model. Starting from this dataset, we

randomly selected only 1% of the total possible configurations (4594 molecular geometries)

with the remainder kept for validation purposes. The performance of this iteration is labeled

“circle 0” in figure 1(panel (a) and (d) for the comparison of energies and forces, respec-

tively). The largest deviations in energies and forces come from molecular configurations

where short-ranged interactions are not adequately sampled, i.e., the smallest atom pair

distances in non-equilibrium molecular conformations are somewhat poorly sampled in the

initial training set. We then used an iterative fitting scheme to generate the next set of
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DFTB/ChIMES models.

At each “circle”, an additional 1% of configurations from the validation set with the

highest force deviations is added to the previous training set to generate our next iteration

of the model. Model performance evaluation (based on the MAE/RMSE for energies and

forces) is done on the new validation set. The process is repeated until changes in the

MAE/RMSE converge. Surprisingly, we found that our approach converges quickly, since

at “circle 2” the changes in MAE/RMSE for energies and forces are relatively small (less

than 0.1 kcal/mol for energy and 0.1 kcal/mol-Å for force, see Supporting Information).

This means that by using only 3% of the ‘sub_ANI-1x’ data, DFTB/ChIMES is able to

reproduce the reference data in the remaining 97% of the configurations. The required

training set size for this DFTB/ChIMES model (only 0.3% of ANI-1x dataset) is therefore

significantly less than that of previous ANI potentials,1–3 which generally have used at least

5M molecular conformations in the training data. This can be attributed in part to the

relative accuracy of the approximate quantum mechanics in DFTB as well as the flexibility of

ChIMES. Our method also leverages previous efforts in generating high accuracy and highly

diverse quantum-mechanical ANI-1x dataset.34 We note here that our final DFTB/ChIMES

model contains approximately two orders of magnitude fewer parameters than a similar NN

effort2 (5546 for DFTB/ChIMES vs. 389376 for ANI-1x), also helping to reduce the needed

amount of training data. The final total size of our training set (∼372K data points) is also

less than the ∼800K data points used for a recent DFTB-NN model with deep tensor neural

networks.22

To further test the transferability of our model, we compute comparisons from DFTB/ChIMES

to three additional high-level quantum chemical data sets for organic materials, with refer-

ence energies/forces at the level of wB97X (the same as in the training data) or coupled-

cluster calculations (higher level of accuracy). The GDB-10to13 data set2 consists of the

molecular energies and forces at the DFT (wB97X) level of nearly 3000 molecules containing

10-13 C, N, or O atoms. For each molecule in this data set, 12 to 24 non-equilibrium geome-
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tries are generated from displacements along normal modes, yielding a total number of 47,670

configurations. Table 1 provides MAE and RMSE for DFTB and DFTB/ChIMES models on

the GDB-10to13 benchmark. The standard DFTB method predicts relatively large values for

MAE/RMSE. Our DFTB/ChIMES model exhibits a 60% and 45% decrease in MAE/RMSE

of the energies and forces, respectively, over standard DFTB. We note that the predicted

MAE/RMSE using DFTB/ChIMES is similar to values from the ANI-1 and ANI-1x poten-

tials,2 though here we have only trained our model on ∼14k molecular geometries compared

to 22M and 5M molecular conformations used to train ANI-1 and ANI-1x, respectively.

Our computed MAE/RMSE (3.57/4.72 kcal/mol for energies and 3.62/5.33 kcal/mol-Å for

forces) are smaller than the variations between wB97X-DFT itself and higher levels such as

CCSD(T) and MP2 (4.9/5.9 kcal/mol for energies and 4.6/5.9 kcal/mol-Å for forces).3

The performance of DFTB/ChIMES in comparison to coupled-cluster reference data is

also provided in Table 1. Here, we have selected the ISO34 data set35 which consists of

computed energies only of 34 isomers containing the elements C, H, N, and O. The reference

isomerization energies are at the CCSD(T) level of theory or contain experimental reac-

tion enthalpies with the removal of vibrational and thermal effects. This data set has been

widely used for benchmarking different computational methods, including DFT,36 DFTB37

and DFTB-NNrep (DFTB-NN with deep tensor neural networks).22 One can see that the

accuracy of DFTB/ChIMES is much better than that for standard DFTB, is slightly im-

proved over that from DFTB-NNrep, and approaches the PBE0 data given in Reference 22.

To test the performance of our model on high accuracy force data specifically, we compare

DFTB/ChIMES with the CCSD(T)/cc-pVTZ data for 2000 configurations of ethanol in the

GDML data set38 (54,000 data points total). Again our DFTB/ChIMES gives an improve-

ment over standard DFTB as MAE and RMSE are both reduced by ∼40%. A direct force

comparison to DFTB-NNrep or the ISO34 reference was unavailable.

To probe the smoothness in the potential energy surface from DFTB/ChIMES, we have

also computed the potential energy profile for rotation around the dihedral angles in alka-
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nes. The torsional profile for n−butane is shown in Figure 2 as a test case. The reference

data are at the level of wB97X/def2-TZVPP, where the C-C-C-C dihedral angles are fixed

at corresponding values and the other degrees of freedom are fully optimized. Comparison

was then made to DFTB or DFTB/ChIMES single point calculations at the DFT opti-

mized geometries. As shown, both DFTB and DFTB/ChIMES predict the relative energy

of the metastable minimum (at ±70◦) in good agreement with wB97X reference data with

deviations of less than 0.5 kcal/mol. DFTB, however, underestimates the torsional barriers

by 0.9 and 1.7 kcal/mol for the lower-energy (at ±120◦) and main barrier (at 0◦), respec-

tively. DFTB/ChIMES is more accurate overall, with deviations of less than 0.5 kcal/mol

for predicting all energy barriers discussed here.

Next, we compare the the vibrational frequency predictions of DFTB and DFTB/ChIMES

on 342 gas phase molecules from the Computational Chemistry Comparison and Benchmark

Database or CCCBDB (https://cccbdb.nist.gov/). The reference data is at the MP2/cc-

pVTZ level of theory. We also make comparisons with several DFT methods. The function-

als chosen here are wB97XD,39 which is the same as wB97X with an additional dispersion

correction, and the Perdew-Burke-Ernzerhof (PBE) functional.40 The predicted vibrational

frequencies for those DFT functionals are also taken from CCCBDB. Figure 3 shows the dis-

tribution of frequencies for each computational method. wB97XD gives good agreement with

MP2 reference data with MAE/RMSE = 20/36 cm−1. DFTB and PBE underestimate the

vibrational stretching frequencies by about 100 cm−1 on average, where the MAE/RMSE are

77/114 and 61/79 cm−1, respectively. DFTB/ChIMES yields smaller errors in the frequency

prediction with MAE/RMSE = 36/61 cm−1, showing notable improvement over PBE and

comparable accuracy to wB97XD.

Though the DFTB/ChIMES model developed here is trained on molecular (gas phase)

data, we have also tested its performance in reproducing the structural properties of graphite

and diamond. These systems were chosen due to the fact that they contain a single element

only while still probing different types of chemical bonds. Figure 4 shows the potential-
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energy landscape in the a-c plane of graphite (a = b) with DFTB (top) and DFTB/ChIMES

(bottom). The standard DFTB method is insufficient for obtaining the experimental cell

geometry and the potential energy surface is very flat along the c-direction, indicative of

the severe underestimation of dispersion interactions. The ChIMES correction, which was

fitted to hybrid DFT reference data, captures the interlayer interactions of graphite, leading

to a minimum that is in excellent agreement with experiment. The predicted density and

lattice parameters of graphite and diamond using DFTB, DFTB/ChIMES, and PBE-DFT

in comparison with experiment are provided in Table 2. For graphite, all computational

models considered here give an accurate description of the in-plane lattice parameters. DFTB

and PBE overestimate the interlayer separation (c/2) by over 25% and 30%, respectively,

and therefore underestimate the density by over 20%. DFTB/ChIMES predicts the lattice

parameters and density in excellent agreement with the experimental value, with a deviation

of less than 1%. For diamond, the computed values using DFTB, DFTB/ChIMES, and

PBE-DFT differ by ∼1% for lattice parameters and ∼3% for density from experimental

values.

In conclusion, we have shown that ChIMES can be used to extend DFTB to hybrid

functional accuracy or greater. ChIMES parameters are determined rapidly through linear

optimization, creating a beyond-pairwise interaction potential for DFTB. DFTB/ChIMES

has the capability of reproducing vast quantities of high-level reference data while requiring

only a small fraction of it for training. The accuracy of DFTB/ChIMES is discussed for

total energies, atomic forces, isomerization energies, and vibrational frequencies across the

vast conformational diversity of organic molecules in several popular datasets, as well as

for the dihedral rotation energy profile of n−butane. Preliminary testing on solid carbon

allotropes at ambient conditions show that DFTB/ChIMES is able to reproduce the exper-

imental structure of graphite (a well-known challenge for standard DFT) as well as bulk

diamond properties, while having been determined from gas-phase cluster data, only. On

the basis of the results presented here, DFTB/ChIMES represents a promising direction for
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developing general purpose quantum models that are applicable to a wide range of materials

and conditions. The small training set required by our approach, as shown in this study,

could yield significant advantages for future development of computational models with a

coupled cluster accuracy, significantly improved scaling, and high efficiency. The utility and

ease of parameterization of DFTB/ChIMES allows for high-level quantum theory accuracy

in the systems where traditional methods are far too computationally intensive for use.
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Figure 1: Comparison of energies per atom (top panels) and forces (bottom panels) predicted
by DFT (wB97X) and DFTB/ChIMES for all configurations in the validation set. The
dataset used here is ‘sub_ANI-1x’, ∼10% of the full ANI-1x. The black line shows perfect
correlation.
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Table 1: Performance of DFTB and DFTB/ChIMES in predicting reference energies and/or atomic forces
in the GDB-10to13, ISO34, and GDML data set. MAEE/RMSEE and MAEF/RMSEF are in kcal/mol
and kcal/mol-Å, respectively. Reference molecular energies and atomic forces in the GDB-10to13 data set
are at the wB97X/6-31G* level of theory. Isomerization energies in the ISO34 data set are a mixture of
experimental- and CCSD(T) extrapolation energies. The CCSD(T)/cc-pVTZ atomic forces of 2000 config-
urations of ethanol in the GDML data set are used for comparison.

GDB-10to13 ISO34 GDML
method MAEE/RMSEE MAEF/RMSEF MAEE/RMSEE MAEF/RMSEF

DFTB 9.10/11.70 6.34/9.85 3.69/4.96 4.52/6.12
DFTB/ChIMES 3.57/4.72 3.62/5.33 2.06/2.56 2.72/3.61

ANI-12 3.12/4.74 3.96/7.09 - -
ANI-1x2 2.30/3.21 3.67/6.01 - -

DFTB-NNrep
22 - - 2.21/3.30 -

PBE022 - - 1.82/2.48 -

Table 2: Comparison of predicted density and lattice parameters of graphite and diamond for DFTB,
DFTB/ChIMES, PBE-DFT with experimental data.

phase method density (g/cm3) a(Å) c/2(Å)
graphite Expt.41 2.26 2.462 3.356

PBE-DFT42 1.71 2.470 4.420
DFTB/ChIMES 2.25 2.461 3.379
DFTB 1.77 2.474 4.248

diamond Expt.43 3.51 3.567
PBE-DFT9 3.48 3.580
DFTB/ChIMES 3.42 3.600
DFTB 3.42 3.600
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ANI-1x potential
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potential
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Linear optimization
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Figure 2: One dimensional potential energy profile for C-C-C-C dihedral angles of n−butane.
The molecular configurations are fully relaxed at fixed dihedral angles in the DFT (wB97X)
calculations. The single point energy calculations at DFT optimized geometries are per-
formed for DFTB and DFTB/ChIMES.
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Figure 3: The distribution of the calculated frequency values using DFTB and
DFTB/ChIMES for 342 neutral molecules taken from the CCCBDB database. The MP2
and DFT (PBE and wB97XD) calculations using cc-pVTZ basis set in the CCCBDB are
selected for comparison.
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Figure 4: Potential-energy surfaces (in kcal/mol) for the a-c plane of graphite obtained using:
DFTB (top) and DFTB/ChIMES (bottom). Experimental lattice parameters are marked
by a cross.
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