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Abstract 

Understanding the specifics of interaction between protein and nanomaterial is crucial for 

designing efficient, safe, and selective nanoplatforms, such as biosensor or nanocarrier systems. 

Routing experimental screening for the most suitable complementary pair of biomolecule and 

nanomaterial used in such nanoplatforms might be a resource-intensive task. While a variety of 

computational tools is available for pre-screening libraries of small drug molecules interacting 

with proteins, options for high-throughput screening of protein libraries for binding affinities to 

new and existing nanomaterials are limited. In the current work, we present the results of a 

systematic computational study of protein interaction with zero-valent silver nanoparticles using a 

multiscale approach. A variety of blood plasma and dietary proteins, namely, bovine and human 

serum albumins, bovine and human hemoglobin, papain, bromelain, lysozyme, and bovine 



lactoferrin, were examined. Selected combinations of nanomaterial and proteins can serve as a 

starting model for developing noble metal-based nanocarriers and biosensors. The computed 

binding (adsorption) characteristics for selected proteins were validated by experimental data 

reported in the literature. An advanced in silico nano-QSAR/QSPR interfacial descriptor log 𝑃NM 

was also introduced to characterize the relative hydrophobicity/hydrophilicity of the nanomaterial. 

 

Introduction. 

The antimicrobial properties of metallic silver are well known for centuries1. During the last few 

decades, nanosilver found numerous applications in several fields2,3. In medicine4, it works as an 

antibacterial, antifungal, antiviral, or anti-inflammatory agent. It is also used as an antifouling 

coating on implants, catheters, and other surfaces contacting with biological fluids. These 

properties made nanosilver popular as an additive ingredient for textile and cosmetic products. 

Due to distinct and tunable plasmonic characteristics (specifically, a localized surface plasmon 

resonance), silver nanoparticles (AgNPs) attracted great interest for bio- and chemosensing  

applications5–7. However, such popularity of AgNPs causing their increased occurrence in the 

biosphere raised many concerns due to a potential nanotoxicity8,9. 

The potency of nanosized silver (where at least one dimension is less than 100 nm) is linked to its 

higher reactivity arising from the higher surface-area-to-volume ratio when compared to the bulk 

material. After immersion of AgNPs into biological fluids (e.g. blood serum and plasma, mucus) 

they interact and form complexes with biomolecular solutes10. Depending on the exposure 

pathways (at the contact area of blood with medical instruments, air pathways, or skin), a multitude 

of biochemical and biophysical responses can be initiated11. One of the detected responses against 

a nanosized guest in the bloodstream is a formation of a protein corona, a layer(s) of blood plasma 



proteins on the surface of the nanomaterial12. That mask, built of proteins, gives a pristine NP “a 

new identity”13 which helps it to stay below the cellular defense radars and allows it to penetrate 

the cell membrane. After passing into the cell, the NP can interact with other cell constituents at 

all levels of the cell organization, from organelles to lipid bilayer/proteins/DNA to individual 

biomolecules (e.g. carbohydrates, amino acids (AA), cholesterol, etc.). These interactions 

occurring at the bio-nano interface provide the background for the toxicity of NPs. Although 

nanotoxicity itself is an undesirable consequence of the exposure of a living organism to the 

nanosized material, it can be harnessed to provide benefits in fighting enemies, e.g. cancer cells or 

pathogenic bacteria. The ability of NPs to slip through the cell defensive barrier makes them 

attractive candidates for developing drug delivery and detecting platforms, aiming for hard-to-treat 

cancers, neurodegenerative, and other types of human diseases14. 

A decoration of NPs with a specific protein targeting extracellular membrane elements of the tumor 

cell (e.g. CD markers15,16) directs the NP toward the localization area of the cells. After the 

attachment, the NP can damage the membrane of the tumor cell causing its death. Alternatively, 

an NP loaded with a drug can act as a nanocarrier17,18, delivering antitumor reagent directly to the 

target (Figure 1). Coupling of the NP to the protein that is complementary to a membrane receptor 

can occur either via chemical bonding or physisorption. In some cases, physical adsorption of 

specific proteins may result in a higher efficacy of nanocarriers due to improved cell uptake19.  



Figure 1. Working principle of drug nano-carrier for cancer therapies. 

 

Caption: The figure was prepared by using Servier Medical Art20 service. 

Finding an optimal protein-NP combination for a drug nanocarrier model experimentally can be a 

challenging task, as it relies on the systematical screening of large libraries of proteins and NPs. 

Alternatively, the pre-screening for potential candidates can be performed in silico. Numerous 

computational approaches have been developed to evaluate the relevant binding affinities with the 

help of rigorous protocols combining docking techniques and molecular dynamics simulations21–

23. Yet, despite their accuracy and veracity, brute-force techniques are hardly applicable for 

screening multiple protein adsorbates due to their significant computational costs. A typical 

computation of the protein adsorption energy using an all-atom model entails using enhanced 

sampling technics, to address the vast number of degrees of freedom of the protein, which can 

undergo relatively large conformational changes in globular structure upon adsorption onto a solid 

surface. Given the size of the system such as a protein-NP complex and the high energy barriers 

associated with this interaction24–28, getting a representative sampling becomes a profound task. 

To overcome the dimensionality problem, several coarse-grained (CG) models of bio-nano 

interactions have been introduced. In particular, we proposed a bottom-up multiscale approach to 

estimate adsorption energies29–31. In this method, a globular protein is represented by a one-bead-



per-amino-acid CG rigid structure (a UnitedAtom (UA) scheme). The total interaction potential 

between the protein and NP is obtained by summing up all the molecular interactions between the 

protein segments and the NP. The total energy of interaction between the nanomaterial and 

adsorbed protein in the UA model is evaluated as a sum of a short-range contribution computed 

with a high resolution using an all-atom MD and a long-range contribution evaluated via a CG 

potential. The UnitedAtom model has been already applied to predict protein binding energies for 

titania and gold NPs32,33. 

In the current work, we extend the application of the UA method for predicting protein adsorption 

affinities to zero-valent silver NPs. We present the short-range surface interaction potentials 

between three FCC facets of AgNP and thirty-two biomolecular fragments (amino acid, 

carbohydrate, and lipid fragments) sufficient to create CG UA models of different proteins 

(including glyco-, and lipoproteins). Obtained short-range surface interaction potentials are then 

utilized and validated for the prediction of the adsorption characteristics for several blood plasma 

proteins and food proteins by the UnitedAtom model.  

 

Methods and materials. 

The UnitedAtom Model. In this section, we present the main theory for the UnitedAtom model29–

31. In the UA model, only physical adsorption of biomolecules on nanomaterial surfaces is 

considered. It is assumed that both entities are in an aqueous medium containing counterions or 

salts with constant concentration. The water is represented implicitly. The protein is represented 

as a rigid body with CG beads, that is, no internal movement is accounted for within the protein. 

In the simplest approximation of the UA model, the nanoparticle is also treated as a rigid flat 

surface, sphere, or cylinder with a defined thickness/radii. 



The total interaction potential between NP and the protein for a given configuration is written in a 

pairwise-additive way via individual non-bonded interaction potentials for each CG AA bead, 

which depend on the distance di between centers of mass (COM) of NP and the AA bead. The 

distance di, in turn, depends on the orientation of the whole protein with respect to the NP surface, 

which is defined by two rotational angles 𝜃 and 𝜙 relative to the initial protein orientation defined 

in the PDB file: 

𝑈𝑃−𝑁𝑃 = ∑ 𝑈𝑖
𝐴𝐴−𝑁𝑃(𝑑𝑖(𝜃, 𝜙))

𝑁𝐴𝐴
𝑖=1         (1) 

The CG interaction energy for each AA is a sum of non-bonded (van der Waals, dipolar, and 

excluded volume) and electrostatic terms: 

𝑈𝑖
𝐴𝐴−𝑁𝑃(𝑑𝑖(𝜃, 𝜙)) = 𝑈𝑖

el(𝑑𝑖(𝜃, 𝜙)) + 𝑈𝑖
𝑛𝑏(𝑑𝑖(𝜃, 𝜙))     (2) 

The electrostatic interaction potential between NP and AA, which implicitly accounts for 

properties of the environment, e.g. ionic strength 𝐼, buffer composition, and salts concentrations 

𝑐𝑖, the dielectric constant of solvent 𝜖, is defined as follows: 

𝑈𝑖
el(𝑑𝑖(𝜃, 𝜙)) =

𝜑𝑠𝑞𝑖𝑅𝑁𝑃

𝑅𝑁𝑃+ℎ𝑖(𝑑𝑖,𝜃,𝜙)
𝑒−𝜅ℎ𝑖(𝑑𝑖,𝜃,𝜙)       (3) 

where 𝜑𝑠 is the electrostatic surface potential of NP, 𝑅𝑁𝑃 is NP radius, ℎ𝑖(𝑑𝑖, 𝜃, 𝜙) is a distance 

between the center of mass for AA and the surface of the nanoparticle, 𝜅 = 𝜆𝐷
−1 = √8𝜋 𝑙𝐵𝐼 is the 

inverse Debye length, 𝑙𝐵 =
𝑒0

2

4𝜋𝜖𝜖0𝑘𝐵𝑇
 is the Bjerrum length, and 𝐼 is the ionic strength of the 

background electrolyte: 

𝐼 =
1

2
∑ 𝑐𝑖𝑧𝑖

2
𝑖            (4) 

The pH of the medium is excluded from consideration in this work as we assume a neutral pH in 

all calculations. 



Although the NP is assumed to be homogeneous in the UA model, nonbonded interactions of AA 

with the NP’s inner core and surface parts are modeled at different resolutions. The non-bonded 

potential is split into two parts, representing the non-bonded interaction of each AA with the NP 

surface and its core. It depends on the distance between NP surface and the COM for amino acid: 

𝑈𝑖
nb(ℎ𝑖(𝑑𝑖, 𝜃, 𝜙)) = 𝑈𝑖,𝑠  

nb(ℎ𝑖(𝑑𝑖, 𝜃, 𝜙)) + 𝑈𝑖,𝑐
nb(ℎ𝑖(𝑑𝑖, 𝜃, 𝜙))    (5) 

The boundary between the core and the surface regions of NP is defined by a cut-off distance 𝑟𝑐 

(Figure 2) and any non-bonded interactions below that distance (short-range surface potential 

𝑈𝑖,𝑠  

nb(ℎ𝑖(𝑑𝑖, 𝜃, 𝜙))) are calculated by all-atom MD simulations. Typical values for 𝑟𝑐 are in the 

range 1.0-1.2 nm, and the choice depends on the selection of force field for calculations of the 

short-range surface potential. 

Figure 2. Definition of cut-off distance for the Hamaker potential in UA model (lens model29). 

Non-bonded interactions outside the cut-off distance (long-range core potential 𝑈𝑖,𝑐
nb), arising from 

dispersion forces acting through the water medium between NP’s core and the i-th AA of radius 

𝑅𝐴𝐴, are approximated by Hamaker potential34: 



𝑈𝑖,𝑐
𝑛𝑏(𝑅𝑁𝑃, 𝑅𝐴𝐴, 𝑑𝑖(𝜃, 𝜙) > 𝑟𝑐) = −

𝐴132

12
(

4𝑅𝑁𝑃𝑅𝐴𝐴

𝑑𝑖(𝜃,𝜙)2−(𝑅𝑁𝑃+𝑅𝐴𝐴)2
+

4𝑅𝑁𝑃𝑅𝐴𝐴

𝑑𝑖(𝜃,𝜙)2−(𝑅𝑁𝑃−𝑅𝐴𝐴)2
  +

2ln (
𝑑𝑖(𝜃,𝜙)2−(𝑅𝑁𝑃−𝑅𝐴𝐴)2

𝑑𝑖(𝜃,𝜙)2−(𝑅𝑁𝑃+𝑅𝐴𝐴)2
))         (6) 

where 𝐴132, is a Hamaker constant for materials 1 (nanomaterial) and 2 (i-th AA) interacting 

through the solvent 3. It can be calculated34 from experimentally measured dielectric permittivity 

𝜖𝑗 and the refractive index 𝑛𝑗  of participating phases j = 1, 2, 3: 

(a) If materials 1 (AA) and 2 (NP) are both dielectric ones: 

𝐴132 ≈
3𝑘𝐵𝑇

4
(

𝜖2−𝜖3

𝜖2+𝜖3
) (

𝜖1−𝜖3

𝜖1+𝜖3
) +

3ℎ𝜈2

8√2

(𝑛1
2−𝑛3

2)(𝑛2
2−𝑛3

2)

√(𝑛1
2+𝑛3

2)√(𝑛2
2+𝑛3

2)(√(𝑛1
2+𝑛3

2)+√(𝑛2
2+𝑛3

2))

   (7) 

(b) If nanomaterial 2 is piezoelectric/conducting/semiconducting: 

𝐴132 ≈
3ℎ

8√2
 
(𝑛1

2−𝑛3
2)

(𝑛1
2+𝑛3

2)
 

𝜈2√𝜈1𝜈3

√𝜈1𝜈3+ 
𝜈2

√𝑛1
2−𝑛3

2

        (8) 

where vi is an electronic absorption frequency at maximum absorbance peak in UV spectra of 

corresponding dielectric materials; for the conducting material vi is a plasma frequency ( e.g. v2 in 

eq. 8).  

At distances shorter than 𝑟𝑐, the short-range core potential 𝑈𝑖,𝑐
nb(ℎ𝑖(𝑑𝑖, 𝜃, 𝜙))  should be corrected  

to avoid double counting of the non-bonded interactions encoded in the potential mean force 

(PMF) along the surface separation distance (SSD)35 computed by atomistic MD simulations: 

𝑈𝑖,𝑐
𝑛𝑏(𝑅𝑁𝑃, 𝑅𝐴𝐴, 𝑑𝑖(𝜃, 𝜙) < 𝑟𝑐) =

𝐴132

12
(

4π2𝑅𝐴𝐴
3

3𝑑𝑖(𝜃,𝜙)
(

𝑑𝑖(𝜃,𝜙)−3𝑅𝑁𝑃

(𝑑𝑖(𝜃,𝜙)−𝑅𝑁𝑃)3
+

−6𝑟𝑐
2+8𝑟𝑐𝑑𝑖(𝜃,𝜙)−3ℎ(𝑑𝑖(𝜃,𝜙)+𝑅𝑁𝑃)

𝑟𝑐
4 ))        (9) 

The final summation of all terms described above over all the AAs yields the interaction energy 

for a given (𝜃𝑘, 𝜙𝑙) orientation of the whole protein located at a given 𝑧-distance between COM 



of NP and COM of the protein. Sampling over all possible protein orientations defined by 

rotational angles (𝜃𝑘, 𝜙𝑙) at all 𝑧-distances produces a set of 𝑈𝑃−𝑁𝑃(𝑧, 𝜃𝑘, 𝜙𝑙) potentials 

corresponding to a multitude of configurations for an NP-protein complex. The mean interaction 

energy for a particular orientation (𝜃𝑘 , 𝜙𝑙) within a corresponding distance interval 0 ≤ 𝑧 ≤

𝑎 (𝜃𝑘, 𝜙𝑙) can be evaluated as: 

− for the protein interacting with a flat slab: 

𝐸(𝜃𝑘 , 𝜙𝑙) = −𝑘𝐵𝑇 ln (
1

𝑎 (𝜃𝑘,𝜙𝑙)
∫ exp [

−𝑈𝑝−𝑁𝑃(𝑧,𝜃𝑘,𝜙𝑙) 

𝑘𝐵𝑇
]

𝑎 (𝜃𝑘,𝜙𝑙)

0
𝑑𝑧)   (10) 

− for the protein interacting with a spherical NP: 

𝐸(𝜃𝑘 , 𝜙𝑙) = −𝑘𝐵𝑇 ln (
3

(𝑅𝑁𝑃+𝑎 (𝜃𝑘,𝜙𝑙))3−𝑅𝑁𝑃
3 ∫ exp [

−𝑈𝑝−𝑁𝑃(𝑧,𝜃𝑘,𝜙𝑙) 

𝑘𝐵𝑇
]

𝑅𝑁𝑃+𝑎 (𝜃𝑘,𝜙𝑙)

𝑅𝑁𝑃
𝑧2𝑑𝑧) (11) 

Averaging the mean interaction energies 𝐸(𝜃𝑘, 𝜙𝑙) over all possible configurations (𝜃𝑘, 𝜙𝑙)  yields 

the final mean adsorption energy 𝐸𝑎𝑑𝑠
𝐴  (arithmetic mean of the values obtained at all the sampled 

protein orientations)36. Alternatively, an average adsorption energy 𝐸𝑎𝑑𝑠
𝐵  is evaluated via canonical 

averaging with Boltzmann weighting factors 𝑃𝑘𝑙: 

𝐸𝑎𝑑𝑠
𝐵 =  

∑ ∑ 𝑃𝑘𝑙𝑙𝑘 𝐸(𝜃𝑘,𝜙𝑙)

∑ ∑ 𝑃𝑘𝑙𝑙𝑘
         (12) 

𝑃𝑘𝑙 = sin(𝜃𝑘) exp [−
𝐸(𝜃𝑘,𝜙𝑙)

𝑘𝐵𝑇
]        (13) 

Reconstruction of a short-range NP-AA surface potential 𝑼𝒊,𝒔  

𝐧𝐛(𝒉𝒊(𝒅𝒊, 𝜽, 𝝓)) from the 

potential of mean force. Various techniques exist for an accurate evaluation of the binding free 

energy for molecules37–40. Recently, an adaptive well-tempered metadynamics41 has become 

popular to obtain the free energy of interaction as it provides accurate energy estimates based on 

an enhanced sampling of configurational space at a reasonable computational cost. The application 

of this method to study interfacial systems was previously described in Ref.35 for the adsorption 

of biomolecules on the TiO2 (100) surface. The reported protocol was closely followed in the 



current work with some adjustments related to the use of a different force field. All MD simulations 

in the present work were performed in GROMACS42. 

Three different FCC configurations of a silver slab (100, 110, 111) were constructed by 

CHARMM-GUI/Nanomaterial Modeler43 tool. The slab thickness for each configuration varied 

from 1.012 to 1.180 nm. The simulation boxes for PMF runs were constructed in the following 

way: the biomolecule fragment was placed above the silver slab 1.5 nm away from the surface, the 

system was solvated by TIP3P water and neutralized by 0.15 KCl. The final dimensions of starting 

simulation boxes were approximately 2.4 nm  2.4 nm  8.5 nm. 

The simulation systems were subject to two subsequent preliminary unbiased equilibrations for 30 

ns each under NPT and NVT ensemble conditions. The temperature was kept constant at 300 K. 

The ambient pressure was set at 1 bar. The relaxation time constant for the Nose–Hoover 

thermostat for the NVT ensemble was 5 ps, while Berendsen's weak coupling thermostat and 

barostat were invoked for NPT simulations. Periodic boundary conditions were invoked for all 

MD simulations. 

Pre-equilibrated systems underwent biased adaptive well-tempered metadynamics simulations 

under NVT conditions for at least 600 ns to obtain an adequate sampling yielding PMF profiles. 

The AWT-metadynamics simulations were performed by GROMACS42 coupled with PLUMED44 

software. The collective variable (CV) ℎ𝑖 for one-dimensional adsorption PMFs, the surface 

separation distance (SSD), was defined as in work35 and was sampled in a range between 0.0 and 

2.0 nm. The temperature for biased simulations was set at 300 K. Gaussian hills were added every 

0.5 ps starting with an initial height of 2.5 kJ/mol. The bias factor was f = 20.  



Particle Mesh Ewald (PME) scheme was used for long-range electrostatics treatment in all 

simulations. The recommended42 for CHARMM force field parameters cut-off distance (1.2 nm) 

was used for treating for short-range van der Waals interactions and long-range electrostatics. 

The convergence of AWT-metadynamics runs was controlled via the evolution of three parameters 

during the simulation: (1) the collective variable SSD, (2) the heights of hills, and (3) the free 

energy difference between minimum located on PMFs and the global minimum (the lowest state). 

The Metadynminer R package45 was utilized for this purpose.  

Nanomaterial hydrophobicity descriptor as a function of the heat of immersion. To 

understand the driving forces behind biomolecular adsorption onto inorganic nanomaterials it is 

instructive to quantify the adsorbent’s interaction with the solvent. The enthalpy of wetting (often 

presented as the heat of immersion) is the enthalpy change associated with immersing a solid in a 

wetting liquid, and it can be considered as a measure of hydrophobicity/hydrophilicity of the 

nanomaterial. The enthalpy of immersion can be measured experimentally by calorimetry or 

predicted computationally. A convenient computational method46 includes an estimation of 

enthalpy difference between three systems: solid slab immersed in a liquid, the same solid in a 

vacuum, a box of the same number of molecules of liquid as in the slab-liquid system. The 

immersion enthalpy then can be calculated as: 

∆𝐻𝑖𝑚𝑚 =
1

2𝐴
(𝐻𝑠𝑙𝑎𝑏−𝑙𝑖𝑞𝑢𝑖𝑑 − 𝐻𝑙𝑖𝑞𝑢𝑖𝑑 − 𝐻𝑠𝑙𝑎𝑏),      (14) 

where 𝐴 is the area of the interface in the slab-liquid system.  

When characterizing a nanomaterial for biomedical applications (e.g. implant or dental filling 

biocompatibility), it is essential to understand the relative affinity of the material to physiological 

aqueous liquids vs. lipid bilayer. In vHTS/QSAR studies on draggability of the small molecules, 

the comparative hydrophobicity/lipophilicity of a compound is usually described via the octanol-



water partitioning coefficient logP 47,48, which is a logarithm of the ratio between solute (drug) 

concentrations in a biphasic system of n-octanol and water, and can be evaluated computationally 

via an alchemical thermodynamic cycle based on relevant solvation free energies49,50 : 

log 𝑃 =  log (
[𝑠𝑜𝑙𝑢𝑡𝑒]𝑜𝑐𝑡𝑎𝑛𝑜𝑙

[𝑠𝑜𝑙𝑢𝑡𝑒]𝑤𝑎𝑡𝑒𝑟
) =

∆𝐺𝑤𝑎𝑡𝑒𝑟−∆𝐺𝑜𝑐𝑡𝑎𝑛𝑜𝑙

𝑅𝑇 ln(10)
      (15) 

Based on this idea, we propose to quantify relative hydrophilicity/hydrophobicity of a solid 

crystalline nanomaterial as a function of relative enthalpy of immersion of a well-defined periodic 

NP slab in water and octanol, representing physiological aqueous and lipid phases: 

log 𝑃𝑁𝑀 =
∆𝐻𝑖𝑚𝑚

𝑤𝑎𝑡𝑒𝑟−∆𝐻𝑖𝑚𝑚
𝑜𝑐𝑡𝑎𝑛𝑜𝑙

𝑅𝑇
log (𝑒)        (16) 

This interfacial descriptor can be useful for predicting cell adhesion properties of materials, known 

to correlate with biocompatibility. A negative value of log 𝑃𝑁𝑀 indicates that the material will 

have a higher affinity for the aqueous phases (hydrophilic), while a positive one should be 

indicative of the material with an affinity to hydrophobic (e.g. protein corona) and lipophilic (e.g. 

cell membrane) environments. The log 𝑃𝑁𝑀 descriptor does not include entropic terms 

corresponding to structural reorganization in slab/biphasic systems which may occur upon mutual 

interaction. Thus, althouth this approach has certain limitations in characterizing 

hydrophobicity/lipophilicity of nanomaterials, it should be useful for comparative nanoinformatics 

studies.  

To obtain the ∆𝐻𝑖𝑚𝑚 values for all FCC configurations of silver, the corresponding systems (NP 

slab, octanol and water boxes, NP slab in water and octanol) were pre-equilibrated for 30 ns and 

simulated further for 350 ns under NPT conditions to ensure proper statistics for collected energies. 

All other parameters for these runs were similar to those in biased simulations. The energy files 

corresponding to collected trajectories were analyzed to obtain enthalpy averages and error 

estimates using block averaging (gmx energy and gmx analyze modules).  



Selection of force field parameters for MD simulations of processes occurring at the bio-nano 

interface. Various force fields, polarizable and non-polarizable, were proposed to model noble 

metal nanoparticles and their interactions with biomolecules.51–56 In the current work, the non-

polarizable INTERFACE force field by Heinz et al.54,57 was used for the metallic “nano” part of 

the system, while CHARMM36 force field parameters58 were invoked for the remaining “bio” 

part. Inclusion of polarization effects implicitly via rigorous parametrization in additive 

INTERFACE/CHARMM36 FFs may result in some inconsistencies when they are applied to 

model the bio-nano interface phenomena59. The use of polarizable FFs might be more beneficial. 

Yet, not many existing polarizable force fields cover a large number of inorganic materials and 

biomolecules and are suitable for consistent parametrization of further materials with the 

UnitedAtom method. In principle, accurate treatment of the image charge interactions at the metal 

interface can be achieved by a posteriori inclusion of the polarization effects60, although at a 

significant computational cost. For our current study, the exclusion of polarizable effects for 

calculation of short-range potentials for adsorption of single AA did not substantially impact the 

outcome – the relative adsorption affinities ranking of proteins (protein abundancies) calculated 

by the multiscale UA approach, especially for the proteins with a low net charge.  

The CHARMM36 FF topology files for AAs were adapted to simulate only the side-chain 

fragment: atoms in the backbone group in corresponding AAs were replaced by a neutrally charged 

hydrogen atom (Figure 3). The short-range potential for GLY amino acid was not calculated. 

Instead, it was replaced by silver – ALA potential for UA calculations. INTERFACE FF and 

CHARMM topology and parameters files then were converted to GROMACS format with the 

TopoTools61 plugin in VMD. 



Three-dimensional structures for proteins. The structures of proteins studied in this work were 

obtained from Protein Data Bank (PDB) and prepared for further modeling by CHARMM-

GUI/PDB Reader62. No additional structural refinement by molecular dynamics was done. The 

protein was considered a “rigid body”. As we have shown32 previously, an RMSD change in 

position of Cα atoms of AA residue up to 0.1 nm does not alter the mean binding energy for protein 

significantly. Although, because the protein can undergo a partial unfolding upon binding to the 

NP, representing the protein as a set of rigid structures with perturbed coordinates might be more 

accurate where the strong unfolding of protein is observed. Proteins selected for the current study 

were characterized with a moderate structural change associated with binding to the silver surface, 

without losing their biological functions. And thus, a single protein structure with coordinates 

preserved from the PDB file was utilized for calculations of binding energy. The protonation state 

of the proteins was the one corresponding to the neutral pH. 

  



Figure 3. Sidechain analogs of amino acids, carbohydrates, and lipid fragments. 

Sidechains of amino acids 

      

ALA ARG ASN ASP ASPP CYS 

      

CYM GLN GLU GLUP GLY HSE/HSD 

      

HSP ILE LEU LYS MET PHE 

      

PRO SER THR TRP TYR VAL 

 

Lipid fragments 

   

MAS 

(methylacetate) 

NC4 

(tetramethylammonium) 

DMEP 

(dimethylphosphate) 

 

Carbohydrates 

     

AFUC 

(α-L-fucose) 

AMAN 

(α-D-mannose) 

BGLCNA 

(2-acetyl-2- 

deoxy-β-D- 

glucosamine) 

BGLC 

(β-D-glucose) 

BGALNA 

(2-acetyl-2- 

deoxy-β -D 

galactosamine) 

 



Results. 

Short-range surface adsorption potentials of carbohydrates, lipid fragments, and amino acid 

side chains. In total, 96 PMF profiles for adsorption of biomolecules were calculated to reconstruct 

the short-range surface potential, 𝑈𝑖,𝑠  

nb(ℎ𝑖(𝑑𝑖, 𝜃, 𝜙)) for three metallic silver faces (Figure 4 and 

Figures S1a,b in Supporting material). The majority of PMFs converged within 400 ns of 

production run (the example of convergence criteria for Arg-Ag(110) system is shown in Figures 

S2a-c, in Supporting material). However, larger molecules required slightly longer simulation (up 

to 600 ns) to obtain reasonable configurational sampling.  

Values of adsorption energy ΔFads, calculated by numerical integration of PMF curves, are 

collected in Table S1 in Supporting material. In general, biomolecules prefer to be adsorbed onto 

(111) or (110) facets of AgNPs: the calculated mean values of adsorption energy ΔFads per SCA 

were -1.94kBT, -5.83kBT, and -6.03kBT for Ag(100), Ag(110), and Ag(111) slabs, respectively. 

Aromatic residues were predicted to bind stronger to all silver surfaces as compared to aliphatic 

SCAs (Figure 5). This trend was particularly evident for Ag(111) surface. The preference of 

aromatic molecules to be bound to (111) noble metal surfaces were previously explained57 by the 

better match between atoms of the hexagonal ring and epitaxial sites on the metallic plane. A 

strong interaction between Au(111) epitaxial sites and polarizable atoms (O, N, C) resulted in soft 

epitaxial adsorption. 

The general binding prevalence of aromatic AAs was also observed experimentally for the 

interaction of various di- and three-peptides with colloidal silver63, where Phe, Tyr, and Trp sites 

demonstrated a stronger adsorption affinity. The authors in this work ruled out the π-bonding as a 

driving force for adsorption of Tyr and Phe residues and noted a high affinity of the amino group 

for the silver surface which resulted in peptides’ adsorption via N-terminus. This binding pattern 



was explained by the attraction between two polarizable dipoles, associated with an electron 

density of AgNP outer layer on one side, and a delocalized π-system on aromatic rings or a charged 

terminus on the other side64,65. 

A binding preference for linear molecules for (110) surfaces was reported57 and explained by better 

geometric alignment of polarizable atoms with epitaxial sites on an inorganic surface. Calculated 

binding energies for SCA support this observation: Lys was predicted to bind stronger to Ag(110) 

surface than Phe SCA. Arginine and methionine aliphatic residues were calculated to be common 

strong binders for all three facets (Figure 5). 

At the same time, heteroatom-rich biomolecules, such as carbohydrates and dimethyl phosphate, 

were also predicted to have a strong interaction with AgNP: N-acetyl hexosamines (eg. BGALNA) 

and carbohydrates (eg. AMAN) were the strongest adsorption determinants among all 

biomolecules considered in the current study. The mean adsorption free energy ΔFads for this 

molecular class was calculated at -9.35kBT, -15.12kBT, and -19.86kBT for Ag(100), Ag(110), and 

Ag(111) crystal planes (Table S1, Supporting material). 

Predicted strong binding of carbohydrates to the silver surface can be related to antimicrobial 

potency of colloidal silver66, as sugars are important in maintaining the integrity of viruses and 

bacteria by supporting their membrane functions. In viruses, glycans are located on their outer 

surface and responsible for the attachment of the virus to the cell membrane of the infected host67. 

Thus, trapping glycans by AgNP should counteract host-virus association. For bacteria, the 

interaction of colloidal silver with peptidoglycans, composing bacterial cell walls, should also 

impact bacterial functions68, as glycans play a crucial role in cellular pathways present in microbes. 

  



Figure 4. Short-range surface adsorption potential profiles for Ag(100) surface as a function of 

the surface separation distance (SSD) for carbohydrates, lipid fragments, and SCAs. 

The profiles were obtained with adaptive well-tempered metadynamics (AWT-MetaD) 

simulations. Emin – the energy of the lowest minimum. Magenta and green vertical dashed lines 

show the positions of maxima of the density profile for the first and the second water shells around 

the AgNP. 



Figure 5. Adsorption energies for biomolecules ΔFads as calculated by numerical integration of PMF curves. 

Caption: Aromatic SCA (in blue) has a slight preference for adsorption onto silver surfaces. The distinct preference for aromatic SCA 

was predicted for Ag(111) surface. On average, SCAs have a preference to bind Ag(110) facet, followed by Ag(111) and Ag(100). 

SCAs names highlighted in red color (left axis) can permeate through the second water shell around AgNPs. The least binding 

preference for Ag(100) facet correlates with the inability of the majority of SCA to permeate through the second water layer.  

  



The structured hydration shell around silver nanoparticles and hydrophobicity of 

nanomaterial. The shape of computed PMFs for SCAs was impacted by the character of 

interfacial interaction occurring between the NP with the solvent. The water density profiles for 

the interfacial water layer obtained from MD simulations of the “slab-water” system suggest the 

existence of two regions with elevated water density found 0.15-0.20 nm and 0.45-0.49 nm away 

from the silver surface. Two permeable water regions were located at 0.26-0.27 nm and 0.55-0.68 

nm. Analysis of MD trajectories shows that water molecules in the first structured layer have the 

direction of their dipole moments aligned with the positive direction of the normal to the metal 

surface, as the cosine of the angle between these two vectors remains positive (Figures S4a-f in 

Supporting material) at approx. 0.25 nm and 0.6 nm (so the angle is −90° ≤ 𝛽 ≤ 90°). Such 

orientation of water dipoles is in line with existing experimental data on a solvent organization for 

various colloidal NPs69. The presence of two layers, weakly linked to AgNP, at an interfacial 

hydration shell was confirmed experimentally by Raman spectroscopy70. Authors have shown, that 

water molecules surround almost spherical silver particles and have their hydrogen atoms revolved 

towards the metal surface.  

Computed PMF profiles (shown in Figure 4 and Figures S1a,b in Supporting material) had no 

adsorption minima next to the NP surface (SSD < 0.15 nm), suggesting that adsorbates were not 

able to expel water molecules from the first hydration shell around AgNP. Although, they were 

able to penetrate through the second interfacial water layer. The adsorption of protonated Asp 

residue onto Ag(110) surface was the only exception, as two equal minima were located before 

and after the position of the first hydration shell. 

In the case of the Ag(100) surface, an additional adsorption minimum appeared at ca. 0.5-0.6 

nm, suggesting that biomolecules may also remain in the bulk of the solvent without passing 



through the second hydration layer (Figure 4). This behavior resulted in the weaker binding of 

biomolecules to Ag(100) surface (Figure 5) and can be linked to the higher hydrophilicity of 

Ag(100) surface, as compared to Ag(110) and Ag(111) surfaces. 

Various quantities have been used in literature to characterize engineered nanoparticles by their 

hydrophilicity/hydrophobicity71–73, e.g. contact angles, surface free energies, the heat of 

immersion74, or octanol-water affinity coefficients (KAOW). Nonetheless, their applicability for the 

characterization of a large dataset of engineered materials can be a daunting task not only due to 

time-consuming analytical technics but also due to the inconsistency of measured results (e.g. 

surface energies for AgNPs75). In silico tools predicting those characteristics are available, but also 

susceptible to the same issues. For example, inconsistent estimates for the surface free energies for 

silver slabs in vacuum obtained at a different level of DFT approximation have been published76–

78 (Table 1). 

We used MD simulations with Eq. 14 to evaluate the immersion enthalpies for three silver 

surfaces as described above. The calculated immersion enthalpies for silver slabs (Table 1) indicate 

a slightly more hydrophilic character of the Ag(100) facet as compared to Ag(110) or Ag(111). 

Thus, hydrophobic molecules (e.g. proteins) will be less likely to replace water molecules from 

the water shells of the Ag(100) surface, and they will rather adsorb on (110) or (111) facets. At the 

same time, the immersion enthalpies calculated for “slab-octanol” systems point out a stronger 

interaction of AgNPs with hydrophobic/lipophilic matter, rather than with aqueous environments 

(log 𝑃𝑁𝑀 > 0). 

 

 

 



Table 1. Surface descriptors of hydrophobicity/hydrophilicity for FCC Ag. 

 

Surface descriptors Ag(100) Ag(110) Ag(111) 

Surface Energy* (J/m2)76 1.290 1.420 1.140 

Surface Energy* (J/m2)77 0.820 0.870 0.760 

Surface Energy* (J/m2)78 1.206 1.057 0.881 

Immersion enthalpy** in pure water (kJ/mol nm2) -276.70±1.0 -206.7±0.5 -204.6±0.5 

Immersion enthalpy** in octanol (kJ/mol nm2) -287.0±3.0 -289.0±5.0 -308.0±5.0 

log 𝑃𝑁𝑀*** 6.04 14.49 18.13 

 

*Previously reported computed values of surface energies. Surface energy can serve as a measure of 

hydrophobicity. The lower the surface energy, the stronger the surface repels the water. 

**Immersion enthalpies computed in the current work. The lower the enthalpy, the higher the preference for the 

material to be wetted with the selected solvent. The immersion enthalpy in water provides the measure of 

hydrophobicity/hydrophilicity. The immersion enthalpy in octanol provides estimates of lipophilicity. 

***Relative measure of hydrophobicity/lipophilicity. 

 

Multiscale CG modeling of protein adsorption on a silver nanoparticle. Thermodynamics and 

kinetics of protein adsorption process onto pristine AgNP have been previously addressed for 

various blood plasma, milk, and other dietary proteins79,80,89,90,81–88: e.g. bovine (BSA, PDBID: 

3V03) and human (HSA, PDBID:1AO6) serum albumins, bovine (BHb, PDBID: 1FSX) and 

human (HHb, PDBID: 1GZX) hemoglobin, papain (PDBID: 9PAP), bromelain (PDBID:1W0Q), 

lysozyme (PDBID: 1AKI), and bovine lactoferrin (BLf, PDBID:1BLF). Reported experimental 

metrics for listed proteins were used to assess the predictive power of the UA method. The 

adsorption of all proteins was reported to be exothermic, associated with negative free Gibbs 



energy values (Table 2). According to the circular dichroism (CD) spectra, these proteins 

experience relatively small changes in globular structure upon interaction with AgNPs: observed 

loss of α-helical content was ~3-10 %83,84,87–91. Based on that, the “rigid body” approximation 

applied in the UA scheme should not cause a significant error in adsorption energy estimates, 

arising from inaccurate information on protein coordinates. 

 

Table 2. Experimentally measured free energy of adsorption ΔGads vs. calculated Eads for 

selected proteins. 

 

PDB ID 
Total charge, 

e 

R(NP), 

nm 

ζ-potential, 

mV 

ΔGads, 

kJ/mol 

Eads, kJ/mol 

𝐄𝐚𝐝𝐬
𝐀  𝐄𝐚𝐝𝐬

𝐁  

1BLF90 13 18.0 −28.1 -81.59 -34.47 -275.63 

1W0Q85 5 40.0 −6.092 -72.85 -27.61 -204.78 

9PAP85 9 40.0 −6.092 -59.76 -37.40 -213.71 

3V0391 -32 40.0 −6.092 -39.49 -30.89 -175.01 

1AKI86 8 40.0 −6.092 -28.71 -32.33 -169.79 

1AO687 -30 43.0 −6.092 -22.14 -27.87 -154.70 

1FSX84 2 10.0 −12.593 -19.10 -23.54 -111.46 

1GZX83 2 15.0 −15.5 -14.43 -24.54 -112.36 

 

The experimental parameters for NP sizes and ζ-potentials were invoked in the UA scheme 

to calculate average adsorption energies (𝐸𝑎𝑑𝑠
𝐴  and 𝐸𝑎𝑑𝑠

𝐵 ), and to predict the lowest energy 

configurations of adsorption complexes. The inconsistency in reporting experimental parameters 

of NPs for protein adsorption experiments should be specially mentioned94. For example, no 

information was available for ζ-potential of 40-43 nm-sized AgNPs used in studies85–87,91. For 



these instances, the ζ-potential reported92 for the 40-70 nm distribution of spherical AgNPs 

synthesized in presence of poly(N-vinylpyrrolidone) (PVP), was used (−6 mV). Although the 

polymeric capping should alter the ζ-potential of pristine NPs, the authors of the study suggested, 

that impact of the PVP layer on particles’ properties should be minimal. Similarly, no ζ-potential 

was reported in the study of BHb adsorption84. For this case, measured value93 for 4–12 nm 

distribution of biosynthesized AgNPs was applied (-12.5 mV). 

AgNPs used in experiments exhibit various types of crystal facets (see Supporting Material). 

Assuming that all facets equally contribute to protein adsorption, the final values for predicted 

absorption energies 𝐸𝑎𝑑𝑠
𝐴  and 𝐸𝑎𝑑𝑠

𝐵  were calculated as an arithmetic mean over the three facets 

(100), (110), (111) (Table 2). 

The resulting heatmaps for protein adsorption onto three facets of AgNPs are shown in Figure S5 

in Supporting Materials. The calculated adsorption footprint of the same proteins on the metallic 

NP facets remains similar, with minor differences corresponding to the appearance/disappearance 

of alternative orientations of the protein. Even though the values of mean adsorption energy per 

single amino acid calculated from PMF profiles were almost equal for (110) and (111) facets (-

5.83kBT vs. -6.03kBT), a distinct preference for Ag(110) binding emerged, as a result of cooperative 

binding of amino acids composing protein (Table S2).  

Proteins containing glycosylated amino acids in their structure, e.g. bromelain and bovine 

lactoferrin, were predicted to be the strongest interfacial adsorbates (Table 2), yet the contact 

between the NP surface and these proteins occurred through the charged residues, rather than 

carbohydrate fragments (Supporting Material, cases 6 and 8). Positively and negatively charged 

residues (Arg, Lys, Glu, Asp) were the most frequent contact fragments in protein complexes with 

NM, found in the proximity (0.3 -0.4 nm) of metallic silver (Figure 6). On the contrary, aromatic 



residues, e.g. Trp and Thr, did not make direct contact with Ag atoms. This forecast does not 

contradict the experimental data from synchronous fluorescent spectrometry (SFS) for protein 

adsorption which suggested the change of microenvironment for aromatic residues upon protein 

adsorption in the case of BSA, HSA, bromelain, papain, lysozyme, and lactoferrin. A slightly 

different behavior has been shown for hemoglobins in the SFS experiment, as tryptophane was 

observed to act as a binding site (see Supporting Materials, cases 3 and 4). However, it should be 

noted that the change of microenvironment occurring near aromatic residues observed in SFS 

experiments can be also linked to protein adsorption in its partially unfolded state. Thus, future 

developments of the UA model are required to improve the current resolution level for a description 

of protein adsorption. A detailed report on predicted structures for metal-protein adsorption 

complexes and on their alignment with available experimental data can be found in the Supporting 

Materials, Cases 1-8.  



Figure 6. Lowest energy conformations of adsorption complexes at Ag(110) surface for selected proteins: 

BSA (a), HSA (b), BHb (c), HHb (d), bromelain (e), papain (f), lysozyme (g), and BLf (h). 



Discussion 

Adsorption of proteins on metallic surfaces is a complex phenomenon that proceeds 

through several common stages95: (1) protein diffusion from the bulk of solvent to the interface, 

(2) protein anchoring to the second surface-bound water layer, (3) protein conformational 

rearrangement96 to achieve a better position and orientation within the second layer until (4) a 

lockdown state is reached, and final (5) protein self-diffusion at the water/solid interface to 

complete the adsorption. Modeling the details of such processes at the atomistic level for large 

proteins is currently unfeasible, so one needs multiscale approaches involving coarse-graining of 

the bio-nano interface. In addition, one can attempt a data-driven approach for predicting such 

interaction, where large sets of data are available. To describe properly the interaction of 

biomolecules with inorganic materials, nanoQSAR models should include descriptors for proteins, 

nanomaterials, and descriptors corresponding to processes occurring at the solid/liquid interface 

(interfacial descriptors). Protein adsorption energies and quantitative measures of 

hydrophobicity/hydrophilicity, e.g. enthalpies of wetting, can serve as interfacial descriptors for 

nanoQSAR models and in principle can be estimated computationally through molecular dynamics 

and multiscale simulations. However, some considerations should be taken into account. 

For example, as existing force fields usually do not provide a full set of parameters for 

many inorganic materials59, the calculated values of wetting enthalpies for different materials 

obtained from different force fields cannot be compared directly. As a result, the 

hydrophilicity/hydrophobicity ranking of nanomaterials based on these values might be 

inconsistent. In this scenario, the relative measure of hydrophilicity/hydrophobicity calculated 

within the same force field, such as log 𝑃𝑁𝑀 can perform better as an interfacial descriptor for the 



nanoQSAR models providing the comparison between a range of nanomaterials x (e.g. prediction 

of cell adhesion responses for different NPs). 

Computed values for the energy of adsorption Eads, either via the canonical averaging or 

simple averaging, showed an adsorption ranking similar to one predicted experimentally (Table 

2). It should be noted that the exact mapping between ΔGads and the energy of adsorption Eads is 

not possible for several reasons. First of all, the rigid body approximation of protein29–31 

implemented in the UnitedAtom model does not include energy terms related to structural 

rearrangements occurring at the bio-nano interface during the adsorption process (e.g. protein 

unfolding). However, for proteins exhibiting insignificant changes in the globular structure upon 

adsorption, these increments are expected to be small. The structure of interfacial water does also 

undergoes changes associated with cavity formation and protein insertion97 which takes place 

during the experiment. Solvent reorganization effects related to the changes associated with a 

whole protein structure cannot be directly captured by the UnitedAtom approach as a result of rigid 

body approximation and the implicit description of the solvent. Yet, these effects are partially 

included for individual side chains in the short-range surface potential 𝑈𝑖,𝑠  

nb(ℎ𝑖(𝑑𝑖, 𝜃, 𝜙)) obtained 

via explicit all-atoms MD simulations. 

The implicit modeling of the environmental factors (e.g. variation in ionic strength and pH) 

for the bio-nano interface may also lead to inaccurate estimates for electrostatic interactions 

between proteins and charges surfaces98 occurring at experimental conditions. Additional errors 

can be also inflicted by the neglect of image charge interactions between the charged residues and 

metallic surfaces existing in the current formulation of the United Atom model. The missing 

polarization energy contribution can be recovered either by using polarizable force fields at the 

atomistic MD level during the calculation of the PMFs60 or later at the CG level modeling by 



invoking a mean-field Poisson-Boltzmann theory99. Based on the obtained results, the overall 

effect of not including these increments was relatively small as there were no large discrepancies 

between predicted and observed adsorption affinity rankings for highly negatively charged 

proteins (e.g. 3V03 and 1AO6, see Table 2).  

It is also important to note that the UA method may overestimate the protein adsorption 

energies, as it includes the contributions from optimized arrangements of individual SCAs at the 

surface. However, in a real protein, where the translations and rotations of the side chains are 

constrained, not all arrangements of SCAs at the metal surface are reachable. This can explain the 

relatively high values of adsorption energies, obtained by the ensemble averaging scheme (𝐸𝑎𝑑𝑠
𝐵 ) 

where all configurations of NP-protein adsorption complex are included (eq. 12). At the same time, 

the NP coatings commonly present in experiments as dispersion stabilizers may significantly 

reduce the observed adsorption energies, as the layer of ligands is usually less dense than the bulk 

silver and it increases the distance between the residues and the AgNP surface100. The attractive 

Van der Waals terms in the overall interaction energy are very short-ranged, and thus, are 

extremely sensitive to such changes in distances.  

Despite all the mentioned limitations of the UnitedAtom approach, we found a good 

statistical correlation between experimental ΔGads and predicted ensemble-averaged 𝐸𝑎𝑑𝑠
𝐵   values: 

the calculated correlation coefficient was r=0.93 (p<0.005, Figure 7). A weaker, statistically less 

relevant correlation (r=0.62, p>0.005) was calculated for 𝐸𝑎𝑑𝑠
𝐴  values. As a result, we propose that 

the Eads, calculated with the canonical Boltzmann average approximation (𝐸𝑎𝑑𝑠
𝐵 ) can serve as a 

better interfacial descriptor for nanoQSAR models. Although, further investigations are required 

to validate the statistical performance of this descriptor with a larger dataset of proteins (e.g. by 

predicting corona composition).  



Figure 7. Correlation between the experimentally measured free energy of adsorption ΔGads and 

Eads predicted by the UA method. 

 

Previously, it was also proposed to use the adsorption affinity ranking32 as a predictive interfacial 

descriptor of protein adsorption for in silico protein corona composition predictions instead of Eads. 

For the present set of proteins, a very good match between experimental and calculated adsorption 

affinity ranking was observed for values obtained with the ensemble average (Table 3). The correct 

predicted ranking may be the main advantage of the UA approach, as it allows us to model the 

NP’s biological activity via NanoQSARs101. It has been previously demonstrated, that the statistics 

of the NP protein corona (e.g. weighted relative counts of AA types in the adsorbed proteins) can 

be quantitatively related to the association of gold or silver NPs with cells102. A relative abundance 

of the proteins in the corona for a specific material reflects the importance of different 

contributions to the adsorption energy and should be less sensitive to the absolute values of energy, 

but more sensitive to the affinity ranking. 



Experimental adsorption energy ranking for selected proteins suggests that glycoproteins 

(bromelain and bovine lactoferrin) have the highest affinity toward AgNPs. A similar trend for 

glycoproteins is also confirmed by affinity ranking obtained by the ensemble average UA 

approximation. In line with this trend, our calculations have shown that glycosylation should 

improve overall adsorption on AgNPs, yet the direct contact with the surface is not necessarily 

maintained through the carbohydrate moiety (Figure 6e,h).  

 

Table 3. Comparison of binding affinity ranking obtained by two averaging approximations for 

adsorption of proteins onto silver NP ordered by the binding strength. 

 

 

 

 

 

 

 

 

 

 

 

Conclusions.  

In this work, we presented the results of multiscale modeling of adsorption of biomolecules on 

zero-valent AgNPs using the all-atom MD and the UnitedAtom algorithm. The low computational 

Ranking Experimental Simple average 

approximation  

Canonical average 

approximation 

1 1BLF 9PAP 1BLF 

2 1W0Q 1BLF 9PAP 

3 9PAP 1AKI 1W0Q 

4 3V03 3V03 3V03 

5 1AKI 1AO6 1AKI 

6 1AO6 1W0Q 1AO6 

7 1FSX 1GZX 1GZX 

8 1GZX 1FSX 1FSX 



cost of the UA method for predicting protein adsorption energies makes this approach relevant for 

high-throughput in silico probing for binding affinities of various proteins (including glycoproteins 

and lipoproteins) to inorganic nanomaterials. The UA method can be applied for computational 

pre-screening of biomolecules in the development of bioassays and drug nanocarriers, for 

predicting NP protein corona composition, or for evaluation of nanotoxicity. The method provides 

not only the energy of adsorption, calculated as a function of NP size, shape, and ζ-potential, but 

it is also capable of predicting the specific three-dimensional structure of NP-protein complexes 

(nano-docking). The current distribution of the software103 is parameterized to predict the energy 

of physisorption for the range of metal oxides (TiO2, SiO2, Fe2O3), metallic surfaces (Au, Ag), 

organic NPs (CNT, carbon black, graphene), nanodots (CdSe) and can be accessed through 

NanoCommons Knowledge Base104. The presented multiscale methodology can be further 

extended to evaluate adsorption energies at various pH regimes and salt concentrations, which will 

broaden its applicability for the pharmaceutical and food industries. 
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