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Abstract

The combined first and second law of thermodynamics for a closed system is written

as dE = TdS−PdV , where E is the internal energy, S is the entropy, V is the volume,

T is the temperature, and P is the pressure of the system. This equation forms the basis

for understanding physical phenomena ranging from heat engines to chemical reactors

to biological systems. In this work, we present a pedagogical approach to obtain the

combined first and second law of thermodynamics beginning with the principles of

classical statistical mechanics, thereby establishing a fundamental link between energy

conservation, heat, work, and entropy. We start with Boltzmann’s entropy formula and

use differential calculus to establish this link. Some new aspects of this work include the

use of the microcanonical ensemble, which is typically considered to be intractable, to

write the partition function for a general system of matter; deriving the average of the

inverse kinetic energy, which appears in the microcanonical formulation of the combined

first and second law, and showing that it is equal to the inverse of the average kinetic

energy; obtaining an expression for the pressure of a system involving many-body
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interactions; and introducing the system pressure in the combined first and second law

via Clausius’s virial theorem. Overall, this work informs the derivation of fundamental

thermodynamic relations from an understanding of classical statistical mechanics. The

material presented herein could be incorporated into senior undergraduate/graduate-

level courses in statistical thermodynamics and/or molecular simulations.

Introduction

Thermodynamics and statistical mechanics are important branches of science that enable

the description of physical,1,2 chemical,3–5 and biological6,7 phenomena occurring around us.

Moreover, statistical mechanics forms the basis for molecular and atomic-scale simulations of

physicochemical systems using computers.8,9 Thermodynamics has even pervaded fields such

as information theory10 and networks.11 Therefore, the teaching and learning of thermody-

namics and statistical mechanics form an important component of the senior undergraduate

and graduate curriculum in chemistry and chemical engineering. The basis for thermody-

namics are three laws dealing with quantities such as internal energy, entropy, heat, and

work that have been formulated and refined over the course of many centuries.12 The first

law is, simply stated, the conservation of energy, but when written in a differential form

and combined with the second law, it conveys more information than that by introducing

concepts such as temperature, entropy, pressure, and volume in the description of energy

conservation.

The development of statistical mechanics by Gibbs, Boltzmann, Maxwell, Planck, and

many other researchers led to a link between the microscopic realm of atoms and molecules,

and the macroscopic realm of temperature, pressure, and volume. The three original statistical-

mechanical “ensembles” introduced by Gibbs—canonical, microcanonical, and grand-canonical—

are still used today to understand thermodynamic systems.13 Over the years, there has been

much interest in rationalizing and teaching the laws of thermodynamics via an understanding

of statistical mechanics.14 Such an understanding would help improve learning outcomes for
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students by presenting an innate link between the microscopic and macroscopic realm. In

terms of previous research in this area, Lieb and Yngvason discussed the mathematical and

physical foundations of the second law of thermodynamics.15 Later, Gemmer et al. derived

a version of the second law of thermodynamics for quantum systems,16 an aspect which was

also explored by Tasaki some years ago.17 In other work, Masanes and Oppenheim provided

a derivation of the third law of thermodynamics using the principles of quantum and statis-

tical mechanics.18 Very recently, Strasberg and Winter derived the first and second law of

thermodynamics for quantum systems.19 With respect to the thermodynamics of classical

fluids, Swaney and Bird obtained the first and second laws starting from the continuity and

momentum conservation equations.20 Nevertheless, a derivation of the combined first and

second law of classical thermodynamics, using the basic principles of statistical mechanics

is lacking, although authors have shown that statistical mechanics is consistent with the

former, via the canonical ensemble.21,22 Such a derivation would be particularly useful in the

teaching and learning of statistical thermodynamics.

To this end, in this work, we present a pedagogical approach to obtain the combined first

and second law of thermodynamics starting from the microcanonical partition function of

matter. Although some parts of the derivation presented here may be found in the widely

used books of the field,13,21–23 some new aspects of this work are:

• Use of the microcanonical ensemble, which is typically considered to be intractable, to

write the partition function for a general system of matter.

• Deriving the average of the inverse kinetic energy, which appears in the microcanonical

formulation of the combined first and second law, and showing that it is equal to the

inverse of the average kinetic energy.

• Obtaining an expression for the pressure of a system involving many-body interactions.

• Introducing the system pressure in the combined first and second law via Clausius’s

virial theorem.
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We hope that the new understanding synthesized here can aid the use of the microcanonical

ensemble to derive thermodynamic and statistical-mechanical relations, and elucidate the

link between statistical mechanics and the combined first and second law of thermodynamics.

The combined first and second law of thermodynamics

The first law of thermodynamics is essentially a statement of energy conservation, and es-

tablishes the equivalence between work and heat in terms of bringing about energy changes

in a specified system. In mathematical terms, the first law for a closed system (i.e., one that

cannot exchange mass) is written as:

dE = δQ+ δW, (1)

where E is the internal energy of the system and δQ and δW represent, respectively, the

heat added to and work done on, the system. The symbol δ is used to indicate infinitesimal

quantities of heat and work, instead of d, because heat and work are not necessarily state

functions, i.e., they depend on the path taken by the system during a thermodynamic trans-

formation. The second law of thermodynamics states that for any process, dS ≥ δQ
T
, where

S is the entropy and T is the temperature of the system, and the equality only holds for

reversible, i.e., quasi-static processes. For reversible processes, one can thus write δQ = TdS

and δW = −PdV , so that:

dE = TdS − PdV, (2)

where V is the volume and P is the pressure of the system. This expression is called the

combined first and second law of thermodynamics. Although written for a reversible process,

the above equation is valid for any process, because E, T , S, P , and V are state functions. In

this work, our objective is to establish the above mathematical expression using the principles

of statistical mechanics.

4



The microcanonical ensemble

Since the combined first and second law for a closed system involves the differentials dE,

dS, and dV at constant N , the microcanonical (NV E) ensemble involving fixed N , V ,

and E is well suited for use in the current work. However, historically, the microcanonical

ensemble has been avoided because it is mathematically inconvenient as compared to the

canonical ensemble (i.e., when the system is at constant NV T ).22 In this work, apart from

concepts from classical mechanics, such as, the kinetic energy, potential energy, and the

system Hamiltonian, we start with two other postulates:

• The Boltzmann entropy formula

• The principle of entropy maximization

According to the Boltzmann entropy formula,24 the entropy S of a system is given as

S = kB lnΩ, (3)

where kB is the Boltzmann constant and Ω, which is referred to as the “partition function”,

is the number of “microstates” in the “phase space” formed by the momenta (pN) and

positions (rN) of the particles, corresponding to a fixed value of N , V , and E. Note that

Swendsen argued that it is more appropriate for Ω to represent the area of a constant energy

surface, thereby resulting in the Boltzmann surface entropy,24 rather than the volume of

a constant energy surface, resulting in Gibbs’s volume entropy.25 Accordingly, we use the

former definition of the partition function in this work, an argument also supported by

Frenkel and Warren.26 Further, the principle of entropy maximization states that absent any

internal restraints on a system, the system always tends to the state of maximum entropy.

Here, we show that these two postulates, along with the principles of classical mechanics,

can be used to obtain the combined first and second law of thermodynamics.
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The canonical ensemble and the concept of temperature

To define the concept of temperature, we consider a composite, isolated system made of

the system of interest (I) and a large thermal reservoir (R), as represented schematically

in Figure 1. We adapt the discussion outlined in Pathria and Beale,27 Reif,28 and other

books. Although the link between temperature and statistical mechanics is well known, it is

instructive to reiterate it, to understand that the Boltzmann entropy formula, along with the

principle of entropy maximization, contains all information required to derive the combined

first and second law of thermodynamics.

The energies of the system of interest and the reservoir are denoted as EI and ER,

respectively. Similarly, the number of their microstates are denoted as ΩI and ΩR. When

any internal restraints (e.g., those preventing the free transfer of energy) are removed, the

composite system will tend to a state of maximum entropy, subject to the constraint EI +

ER = E, where E, the total energy of the composite system is a constant, as the latter is

isolated. Since the number of microstates are multiplicative, Ω = ΩIΩR. It follows that the

entropy, S, of the composite system is given as:

S = kB ln(ΩIΩR) = kB(lnΩI + lnΩR). (4)

We will work with dimensionless quantities. Thus, we consider:

S

kB
= lnΩI + lnΩR. (5)

Now, at equilibrium, in the absence of any internal restraints, the entropy of the composite

system will tend to its maximum allowable value. Thus, we need to maximize S/kB subject

to the constraint EI + ER = E. Using the method of Lagrange multipliers, we can define

the Lagrangian as:

L = lnΩI + lnΩR + β (E − EI − ER) , (6)

6



<latexit sha1_base64="HyIgB+Bh4kF48CSwW9ufcBur8uE=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9kVUcFL0YveKtoP6C4lm2bb0CS7JFmhLP0bXjwo4tU/481/Y9ruQVsfDDzem2FmXphwpo3rfjtLyyura+uFjeLm1vbObmlvv6njVBHaIDGPVTvEmnImacMww2k7URSLkNNWOLyZ+K0nqjSL5aMZJTQQuC9ZxAg2VvIfRtpQ4V+hyt1Jt1R2q+4UaJF4OSlDjnq39OX3YpIKKg3hWOuO5yYmyLAyjHA6LvqppgkmQ9ynHUslFlQH2fTmMTq2Sg9FsbIlDZqqvycyLLQeidB2CmwGet6biP95ndREl0HGZJIaKslsUZRyZGI0CQD1mKLE8JElmChmb0VkgBUmxsZUtCF48y8vkuZp1Tuvevdn5dp1HkcBDuEIKuDBBdTgFurQAAIJPMMrvDmp8+K8Ox+z1iUnnzmAP3A+fwCyRJDO</latexit>

System (I)

<latexit sha1_base64="m+XGHXVE40H+b06bFTiGkU4LQKU=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEI9VISERW8FL14rMV+QBvKZjtpl242YXdTqKG/xIsHRbz6U7z5b9y2OWjrg4HHezPMzPNjzpR2nG8rt7a+sbmV3y7s7O7tF+2Dw6aKEkmhQSMeybZPFHAmoKGZ5tCOJZDQ59DyR3czvzUGqVgkHvUkBi8kA8ECRok2Us8u1kGBHEdMdm9wuX7Ws0tOxZkDrxI3IyWUodazv7r9iCYhCE05UarjOrH2UiI1oxymhW6iICZ0RAbQMVSQEJSXzg+f4lOj9HEQSVNC47n6eyIloVKT0DedIdFDtezNxP+8TqKDay9lIk40CLpYFCQc6wjPUsB9JoFqPjGEUMnMrZgOiSRUm6wKJgR3+eVV0jyvuJcV9+GiVL3N4sijY3SCyshFV6iK7lENNRBFCXpGr+jNerJerHfrY9Gas7KZI/QH1ucPlWWSYg==</latexit>

Reservoir (R)
<latexit sha1_base64="jbKq+htHVUZ+SmHsDo4EI3rv8Fo=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8lUREPRa9eLOK/YA2lM120i7d3cTdjVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXJpxp43nfztLyyuraemGjuLm1vbNb2ttv6DhVFOs05rFqhUQjZxLrhhmOrUQhESHHZji8nvjNJ1SaxfLBjBIMBOlLFjFKjJVanVuBfdK975bKXsWbwl0kfk7KkKPWLX11ejFNBUpDOdG67XuJCTKiDKMcx8VOqjEhdEj62LZUEoE6yKb3jt1jq/TcKFa2pHGn6u+JjAitRyK0nYKYgZ73JuJ/Xjs10WWQMZmkBiWdLYpS7prYnTzv9phCavjIEkIVs7e6dEAUocZGVLQh+PMvL5LGacU/r/h3Z+XqVR5HAQ7hCE7Ahwuowg3UoA4UODzDK7w5j86L8+58zFqXnHzmAP7A+fwBvEOPxg==</latexit>

⌦R
<latexit sha1_base64="alKYkXy27IzTh8ul8hWkqWYex2Q=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegCB7jIw9IljA76U2GzM4uM7NCWPIJXjwo4tUv8ubfOEn2oNGChqKqm+6uIBFcG9f9cgpLyyura8X10sbm1vZOeXevqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR1dRvPaLSPJYPZpygH9GB5CFn1Fjp/rp31ytX3Ko7A/lLvJxUIEe9V/7s9mOWRigNE1Trjucmxs+oMpwJnJS6qcaEshEdYMdSSSPUfjY7dUKOrNInYaxsSUNm6s+JjEZaj6PAdkbUDPWiNxX/8zqpCS/8jMskNSjZfFGYCmJiMv2b9LlCZsTYEsoUt7cSNqSKMmPTKdkQvMWX/5LmSdU7q3q3p5XaZR5HEQ7gEI7Bg3OowQ3UoQEMBvAEL/DqCOfZeXPe560FJ5/Zh19wPr4B8euNlA==</latexit>

ER

<latexit sha1_base64="HA/aoFMEsGjNgqPOg5tHn/+iOmo=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8lUREPRa96MkK9gPaUDbbSbt0dxN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZemHCmjed9O0vLK6tr64WN4ubW9s5uaW+/oeNUUazTmMeqFRKNnEmsG2Y4thKFRIQcm+HweuI3n1BpFssHM0owEKQvWcQoMVZqde4E9kn3tlsqexVvCneR+DkpQ45at/TV6cU0FSgN5UTrtu8lJsiIMoxyHBc7qcaE0CHpY9tSSQTqIJveO3aPrdJzo1jZksadqr8nMiK0HonQdgpiBnrem4j/ee3URJdBxmSSGpR0tihKuWtid/K822MKqeEjSwhVzN7q0gFRhBobUdGG4M+/vEgapxX/vOLfn5WrV3kcBTiEIzgBHy6gCjdQgzpQ4PAMr/DmPDovzrvzMWtdcvKZA/gD5/MHrp+PvQ==</latexit>

⌦I
<latexit sha1_base64="NOMdPwMzrYEnd74Z3QUL8PjY9SY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNRBL1VtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgpLyyura8X10sbm1vZOeXevqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR1dRvPaLSPJYPZpygH9GB5CFn1Fjp/rp32ytX3Ko7A/lLvJxUIEe9V/7s9mOWRigNE1Trjucmxs+oMpwJnJS6qcaEshEdYMdSSSPUfjY7dUKOrNInYaxsSUNm6s+JjEZaj6PAdkbUDPWiNxX/8zqpCS/8jMskNSjZfFGYCmJiMv2b9LlCZsTYEsoUt7cSNqSKMmPTKdkQvMWX/5LmSdU7q3p3p5XaZR5HEQ7gEI7Bg3OowQ3UoQEMBvAEL/DqCOfZeXPe560FJ5/Zh19wPr4B5EeNiw==</latexit>

EI

<latexit sha1_base64="kLyEO6IVgsZUrQ2DblAgsovoqcw="></latexit>

� =
1

kB

✓
@S

@E

◆
= const.

<latexit sha1_base64="B8A63/TdoIjKpU1RuyVpM3gUmxw=">AAACEXicbVDLSgMxFM3UV62vqks3wSKMC8uMiLosiqC7CvYBnVIy6Z02NDMTkoxYhv6CG3/FjQtF3Lpz59+YabvQ1gOBwzn3knuOLzhT2nG+rdzC4tLySn61sLa+sblV3N6pqziRFGo05rFs+kQBZxHUNNMcmkICCX0ODX9wmfmNe5CKxdGdHgpoh6QXsYBRoo3UKdpeSHSfEp5WR/ZV5+bQEzIWOsYePAj7yPNBE5zpnWLJKTtj4HniTkkJTVHtFL+8bkyTECJNOVGq5TpCt1MiNaMcRgUvUSAIHZAetAyNSAiqnY4TjfCBUbo4iKV5kcZj9fdGSkKlhqFvJrP71ayXif95rUQH5+2URSLRENHJR0HCsUmc1YO7TALVfGgIoZKZWzHtE0moNiUWTAnubOR5Uj8uu6dl9/akVLmY1pFHe2gf2chFZ6iCrlEV1RBFj+gZvaI368l6sd6tj8lozpru7KI/sD5/ALdwnEk=</latexit>P(EI) / exp(��EI)

Figure 1: The concept of temperature in statistical mechanics. The system of interest
(I) and a large thermal reservoir (R) form a composite system that is isolated (indicated
by a purple border). The number of microstates of the two are denoted by ΩI and ΩR and
their energies by EI and ER, respectively. At equilibrium, β = 1

kBT
equalizes after exchange

of energy (indicated by the red arrow) and the probability of the system of interest having
energy EI is proportional to the Boltzmann factor exp(−βEI).

where β is a Lagrange multiplier with units of inverse energy for the equation to be dimen-

sionally consistent. For satisfying the maximum condition, we can write:

∂L
∂EI

= 0 ⇒ ∂ lnΩI

∂EI

− β = 0, (7)

∂L
∂ER

= 0 ⇒ ∂ lnΩR

∂ER

− β = 0. (8)

Thus, at equilibrium (see Figure 1), we have:

β =
∂ lnΩ

∂E
=

1

kB

∂S

∂E
= constant. (9)

Since, empirically, the temperature of two systems equalize at equilibrium, we infer that

β is a quantity related to the temperature of the system. Although we have obtained

this relation via entropy maximization, we find later that this relation also falls out of the

microcanonical partition function for any kind of matter composed of atoms (see Eq. (50)).
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Next, we consider the probability, P(EI), that the system of interest has energy EI :

P(EI) = CΩI(EI), (10)

where C is a normalization constant. The number of microstates with the system of interest

having energy EI is the same as those with the reservoir having energy (E − EI). Thus,

P(EI) = CΩR(E − EI). (11)

Taking the logarithm on both sides, we have:

lnP(EI) = lnC + lnΩR(E − EI). (12)

Since the thermal reservoir, i.e., heat bath, is much larger than the system of interest,

EI << E, whence we can use a Taylor expansion to first order to get:

lnP(EI) = lnC +

[
lnΩR(E)− EI

∂ lnΩR

∂ER

]
. (13)

Recognizing that β = ∂ lnΩR

∂ER
and exponentiating both sides, we obtain:

P(EI) = CΩR(E) exp (−βEI) . (14)

Thus,

P(EI) ∝ exp (−βEI) , (15)

which is the defining equation for the Boltzmann distribution that is followed by systems in

the canonical ensemble (see Figure 1). We note that the Boltzmann distribution can also

be obtained via a combinatorial approach, by maximizing the number of ways of arranging

the particles among the system’s available energy levels given a fixed amount of energy, as
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illustrated by Tolman29 and Hill.22

Finally, the link between β and temperature can be made via the ideal gas law (PV =

NkBT ), which can be derived using statistical mechanics to be PV = N
β
, so that β = 1

kBT
.29,30

The partition function in the microcanonical ensemble

We consider a monoatomic system of N atoms having equal mass inside a cuboidal box of

dimensions Lx × Ly × Lz (see Figure 2). The Hamiltonian of this system can be expressed

as:

H =
N∑

i=1

p2
i

2m
+ U(rN), (16)

where pi denotes the momentum of atom i, m denotes the mass of each particle, and U

denotes the potential energy of the system, which is a function of the atomic coordinates,

rN . Note that, if required, the assumption of equal atomic masses may be relaxed by

redefining p√
mi

(where mi is the mass of atom i) to be the variable of integration over the

phase space in Eq. (17) below.

In classical statistical mechanics, Ω is calculated as an integral over the phase space as

Ω =
1

h3NN !

∫
dpNdrNδ(E −H)∆E, (17)

where h is the Planck constant (the factor h3N was introduced a posteriori to account for

the discretization of the phase space), N ! accounts for the particles (atoms in our case) being

indistinguishable, δ is the Dirac delta function, and ∆E is the allowable spread in the energy,

E, in the microcanonical ensemble, which is taken to be infinitesimally small.

Using H from Eq. (16), we have

Ω =
1

h3NN !

∫
dpNdrNδ

(
E −

N∑

i=1

p2
i

2m
− U

)
∆E, (18)
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Figure 2: The system of interest. We consider matter consisting of monoatomic species
of mass m present inside a cuboidal system of dimensions Lx × Ly × Lz. The number of
particles is denoted by N and the volume of the system by V . The collisions of the particles
result in a pressure P in the bulk and at the boundary of the system.

where U ≡ U(rN). It follows that:

Ω =
1

h3NN !

∫
dpNdrNδ

(
2m(E − U)−∑N

i=1 p
2
i

2m

)
∆E. (19)

Using the properties δ
(
x
a

)
= |a|δ(x) and δ(−x) = δ(x), we obtain:

Ω =
1

h3NN !

∫
dpNdrNδ

(
N∑

i=1

p2
i − 2m(E − U)

)
2m∆E, (20)

Note that the constant of motion

N∑

i=1

p2
i −

√
2m(E − U)

2
= 0 (21)

represents the equation of a “hypersphere” of radius rE =
√
2m(E − U) in 3N dimensional

space. Note that a hypersphere is the extension of the concept of a sphere from three

dimensions to 3N dimensions. Thus,
∫
dpNδ

(∑N
i=1 p

2
i −

√
2m(E − U)

2
)
2m∆E represents
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2⇡

3N
2�

3N
2 � 1

�
!
r3N�1

Figure 3: The concept of the momentum hypersphere. The momenta of the particles
in the three Cartesian directions (px1, py1, pz1, px2, py2, pz2, ..., pxN , pyN , pzN) form a 3N
dimensional hypersphere of radius r in momentum space. The expressions for the volume

(Vhyp) and the surface area
(
Ahyp =

dVhyp

dr

)
of the hypersphere in terms of the radius are

indicated. One may check that these equations reduce to the well-known expressions Vsphere =
4
3
πr3 and Asphere = 4πr2 for spheres. The area of the hypersphere is used in determining the

microcanonical partition function and the average inverse kinetic energy of the system.

a volume element of that hypersphere (see Figure 3), and is given as:

Ahypdp =
2π

3N
2(

3N
2
− 1
)
!
r3N−1
E dp, (22)

where p2 =
∑N

i=1 p
2
i = 2m(E − U), so that dp = 2m∆E

2
√

2m(E−U)
.

It follows that:

Ω =
1

h3NN !

∫
drN

(2πm)
3N
2(

3N
2
− 1
)
!
(E − U)

3N
2

−1∆E, (23)

which is dimensionally consistent. Defining

κ =
1

h3NN !

(2πm)
3N
2(

3N
2
− 1
)
!
∆E, (24)
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we have

Ω = κ

∫
drN(E − U)

3N
2

−1. (25)

We now convert the positional coordinates of the particles, ri, to their fractional forms,

si (see, e.g., McQuarrie21). This step is essential to be able to differentiate the partition

function with respect to the volume of the system. To this end, we proceed by normalizing

the Cartesian coordinates of the particles (rxi, ryi, rzi) with the respective dimension of the

system (Lx or Ly or Lz), such that: sxi =
rxi
Lx

, syi =
ryi
Ly
, and szi =

rzi
Lz
. The partition function

thus reduces to

Ω = κ

∫
dsN(LxLyLz)

N(E − U)
3N
2

−1. (26)

Recognizing that LxLyLz is the volume of the system, V , we have:

Ω = κV N

∫
dsN(E − U)

3N
2

−1. (27)

The physical meaning of this equation can be understood in terms of both interparticle in-

teractions and external forces. For fixed N , V , and E, Ω is highest when U < 0, followed

by when U = 0, and is the least when U > 0. This makes physical sense, because attractive

interactions between particles (U < 0) increase entropy by promoting mixing while repul-

sive interactions (U > 0) reduce entropy by seeking to prevent the particles from mixing.

Similarly, external forces that stablize the system (U < 0) lead to an increase in entropy by

increasing the kinetic energy of the particles for fixed E. Put another way, any destabilizing

interactions or external forces (leading to U > 0) seek to act as a constraint, and reduce

the entropy of the system from its maximum value. Thus, we have shown the postulate

of entropy maximization to naturally follow from the Boltzmann entropy formula and the

principles of classical mechanics. One can write the above equation as:

Ω =

∫
dsNΩ′(sN), (28)
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where Ω′ = κV N(E − U)
3N
2

−1. It follows that the weighted average of any quantity A over

the phase space can be defined as:

⟨A⟩ =
∫
dsNA(sN)Ω′(sN)∫

dsNΩ′(sN)
=

∫
dsNA(sN)Ω′(sN)

Ω
. (29)

The internal energy differential

To write the first law of thermodynamics in differential form, we turn to differential cal-

culus. Given that one needs two variables to characterize the state of a single-component,

single-phase, closed system (because N is fixed), and that we have chosen to work in the

microcanonical ensemble, we have that

E ≡ E(S, V ). (30)

Thus, we can write

dE =

(
∂E

∂S

)

V

dS +

(
∂E

∂V

)

S

dV. (31)

To establish Eq. (2), we need to evaluate the partial derivatives
(
∂E
∂S

)
V
and

(
∂E
∂V

)
S
. However,

since the microcanonical ensemble only directly affords the calculation of entropy, we cast

these partial derivatives in a form that is amenable to evaluate using the Boltzmann entropy

formula, i.e., S = kB lnΩ. Firstly, one can write

(
∂E

∂S

)

V

=
1(

∂S
∂E

)
V

. (32)

Secondly, using the triple product rule of partial derivatives, we have

(
∂E

∂V

)

S

=
−1(

∂V
∂S

)
E

(
∂S
∂E

)
V

=
−
(
∂S
∂V

)
E(

∂S
∂E

)
V

. (33)
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Thus, to obtain the total internal energy differential dE, one needs to evaluate the partial

derivatives
(
∂S
∂E

)
V
and

(
∂S
∂V

)
E
. Firstly

(
∂S

∂E

)

V

=

[
∂

∂E
(kB lnΩ)

]

V

, (34)

or, (
∂S

∂E

)

V

=
kB
Ω

(
∂Ω

∂E

)

V

. (35)

Using Ω from Eq. (27), we have:

(
∂S

∂E

)

V

=
kB
Ω

[
∂

∂E

(
κV N

∫
dsN(E − U)

3N
2

−1

)]

V

. (36)

Moving the partial derivative inside the integral, it follows that

(
∂S

∂E

)

V

=

(
3N

2
− 1

)
kB

∫
dsN 1

E−U
κV N(E − U)

3N
2

−1

Ω
. (37)

Note that K = E − U . Further, as per Eq. (29), the fraction that appears in the above

equation defines the average of 1
E−U

over the phase space, so that:

(
∂S

∂E

)

V

=

(
3N

2
− 1

)
kB

〈
1

K

〉
, (38)

which for large N becomes: (
∂S

∂E

)

V

=
3NkB

2

〈
1

K

〉
. (39)

Next, we evaluate
(
∂S
∂V

)
E
as follows:

(
∂S

∂V

)

E

=
kB
Ω

(
∂Ω

∂V

)

E

. (40)

14



Again, using Ω from Eq. (27), we have:

(
∂S

∂V

)

E

=
kB
Ω

[
∂

∂V

(
κV N

∫
dsN(E − U)

3N
2

−1

)]

E

. (41)

We now use the product rule for differentiation to obtain

(
∂S

∂V

)

E

=
kBκ

Ω
NV N−1

∫
dsN(E − U)

3N
2

−1

−kBκ

Ω
V N

∫
dsN

(
3N

2
− 1

)
(E − U)

3N
2

−2

(
∂U

∂V

)

E

.

(42)

Note that the first term on the right-hand side is simply NkB
V

, using the expression for Ω

from Eq. (27). To simplify the second term on the right, we recognize the average over the

phase space and that K = E − U , to obtain, for large N :

(
∂S

∂V

)

E

=
NkB
V

− 3NkB
2

〈
1

K

(
∂U

∂V

)〉
. (43)

Obtaining averages from the canonical ensemble

We now focus on obtaining the averages
〈

1
K

〉
and

〈
1
K

(
∂U
∂V

)〉
, which appear in Eqs. (39) and

(43), from the canonical ensemble, to introduce the notion of temperature. Note that, in

the thermodynamic limit, all ensembles give similar results (see, e.g., refs.31 and32). More-

over, our use of the canonical ensemble to obtain the average quantities mentioned above is

consistent with Gao et al.’s recent assertion that the Boltzmann distribution is the only one

for which thermodynamic entropy equals statistical-mechanical entropy.33 We consider the

same system as in the above section, i.e., N particles of equal mass m. We seek to calculate

the mean value of 1
K

in the canonical ensemble. Accordingly,

〈
1

K

〉
=

∫
exp(−βE) 1

K
drNdpN

∫
exp(−βE)drNdpN

. (44)
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Since E = K + U , we can write:

〈
1

K

〉
=

∫
exp(−β(K + U)) 1

K
drNdpN

∫
exp(−β(K + U))drNdpN

, (45)

which, by canceling out the U term (because U only depends on rN) and usingK =
∑N

i=1
p2
i

2m
,

simplifies to:
〈

1

K

〉
=

∫
exp

(
−β

∑N
i=1 p

2
i

2m

)
2m∑N
i=1 p

2
i

dpN

∫
exp

(
−β

∑N
i=1 p

2
i

2m

)
dpN

. (46)

Defining p2 =
∑N

i=1 p
2
i and recognizing that dpN = 2π

3N
2

Γ( 3N
2 )

p3N−1dp, based on the surface area

of a 3N dimensional hypersphere (see Figure 3), we have:

〈
1

K

〉
=

∫
exp

(
−β p2

2m

)
2m
p2

2π
3N
2

Γ( 3N
2 )

p3N−1dp

∫
exp

(
−β p2

2m

)
2π

3N
2

Γ( 3N
2 )

p3N−1dp
. (47)

Using the standard Gaussian integral
∫∞
0

xn exp(−ax2)dx =
Γ(n+1

2 )
2a

n+1
2

, where Γ denotes the

Gamma function in mathematics, this can be evaluated to:

〈
1

K

〉
=

β
3N
2
− 1

. (48)

For large N , one can write the above expression as:

〈
1

K

〉
=

2β

3N
=

2

3NkBT
, (49)

so that: (
∂E

∂S

)

V

=
1

kBβ
. (50)

The above derivation showing
〈

1
K

〉
= 2

3NkBT
is surprising because it is well known that

⟨K⟩ = 3NkBT
2

, but one would not expect typically that the average of the reciprocal of a

quantity would be equal to the reciprocal of the average of that quantity, i.e.,
〈

1
K

〉
= 1

⟨K⟩ .
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In this regard, it may be useful for students to recall that the harmonic mean of a collection

of numbers does not, in general, equal the arithmetic mean of the same numbers. Further,

it is gratifying that although we have assumed that N is large, the same factor of
(
3N
2
− 1
)

appears in both Eqs. (38) and (48), which implies they will cancel while calculating
(
∂E
∂S

)
V
.

We now move to calculate the mean value of 1
K

(
∂U
∂V

)
in the canonical ensemble:

〈
1

K

(
∂U

∂V

)〉
=

∫
exp(−βE) 1

K

(
∂U
∂V

)
drNdpN

∫
exp(−βE)drNdpN

. (51)

Using E = K + U , we can write:

〈
1

K

(
∂U

∂V

)〉
=

∫
exp(−βK) 1

K
dpN

∫
exp(−βK)dpN

∫
exp(−βU)

(
∂U
∂V

)
drN∫

exp(−βU)drN
, (52)

or, 〈
1

K

(
∂U

∂V

)〉
=

〈
1

K

〉〈
∂U

∂V

〉
. (53)

We have already shown above that
〈

1
K

〉
= 2β

3N
. We now focus our attention on

〈
∂U
∂V

〉

and write the internal energy as a sum of two-body (u(2)), three-body (u(3)), and higher

contributions:

〈
∂U

∂V

〉
=

〈
∂

∂V

(∑

i<j

u(2)(ri, rj) +
∑

i<j<k

u(3)(ri, rj, rk) + ...

)〉
. (54)

Note that derivations in the literature usually assume pairwise additive two-body inter-

actions,34,35 and do not evaluate
〈
∂U
∂V

〉
in the general manner as shown here, including

higher-order interaction terms. Higher-order terms are particularly important for molecular

systems, where atoms may be involved in bonded (two-body), angular (three-body), and

dihedral (four-body) interactions with other atoms. In this regard, another derivation that

is well-suited for interatomic potentials and periodic boundary conditions used in molecular

17



simulations, is provided by Thompson et al.36 It follows that:

〈
∂U

∂V

〉
=

〈∑

i<j

∂u(2)(ri, rj)

∂V
+
∑

i<j<k

∂u(3)(ri, rj, rk)

∂V
+ ...

〉
, (55)

which can also be written as:

〈
∂U

∂V

〉
=

〈
1

2!

∑

i ̸=j

∂u(2)

∂V
+

1

3!

∑

i ̸=j ̸=k

∂u(3)

∂V
+ ...

〉
. (56)

Thus, 〈
∂U

∂V

〉
=

1

2

〈∑

i ̸=j

∂u(2)

∂ri
· ∂ri
∂V

+
∂u(2)

∂rj
· ∂rj
∂V

〉

+
1

6

〈∑

i ̸=j ̸=k

∂u(3)

∂ri
· ∂ri
∂V

+
∂u(3)

∂rj
· ∂rj
∂V

+
∂u(3)

∂rk
· ∂rk
∂V

〉

+ ⟨...⟩ .

(57)

Recognizing that ∂u(m)

∂ri
= −F

(m)
i , we can write:

〈
∂U

∂V

〉
= −1

2

〈∑

i ̸=j

F
(2)
i · ∂ri

∂V
+ F

(2)
j · ∂rj

∂V

〉

−1

6

〈∑

i ̸=j ̸=k

F
(3)
i · ∂ri

∂V
+ F

(3)
j · ∂rj

∂V
+ F

(3)
k · ∂rk

∂V

〉

+ ⟨...⟩ .

(58)

Now, two simplifications can be made. First, the sums inside the angular brackets are

identical and cancel out the respective fractional term (1/2, 1/6, ...). Second, using scaled

coordinates, one can show that ∂ri
∂V

= ri
3V

. It follows that:

〈
∂U

∂V

〉
= − 1

3V

〈∑

i

F
(2)
i · ri

〉
− 1

3V

〈∑

i

F
(3)
i · ri

〉
+ ⟨...⟩ , (59)
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or, 〈
∂U

∂V

〉
= − 1

3V

〈∑

i

(
F

(2)
i + F

(3)
i + ...

)
· ri
〉
. (60)

Since
(
F

(2)
i + F

(3)
i + ...

)
equals the total force acting on atom i due to all other particles, we

have: 〈
∂U

∂V

〉
= − 1

3V

〈∑

i

Fi · ri
〉
. (61)

Putting the two averages together, we obtain:

〈
1

K

(
∂U

∂V

)〉
= − 2β

9NV

〈∑

i

Fi · ri
〉
. (62)

Using Eq. (62) in Eq. (43), we obtain

(
∂S

∂V

)

E

=
NkB
V

+
βkB
3V

〈∑

i

Fi · ri
〉
. (63)

The virial theorem

One can link
(
∂S
∂V

)
E
obtained above to the system pressure via Clausius’s virial theorem.27,37,38

Physically, this amounts to equating the “thermodynamic” and “mechanical” pressures in

the system, with the former arising from statistical mechanics and the latter arising from

the virial theorem. We adapt the derivation for the virial theorem presented by Landau and

Lifshitz.39 Consider Clausius’s virial function defined as:

W (rN ,FN) =
N∑

i=1

ri · Ftot
i , (64)

where N denotes the number of particles in the system, r the position vector of particle i,

and Ftot
i the total force (internal plus external) acting on particle i. If we average the virial
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over time, we get:

⟨W ⟩ = lim
t→∞

1

t

∫ t

0

dτ

N∑

i=1

ri · Ftot
i . (65)

Using Ftot
i = mir̈i, we get:

⟨W ⟩ = lim
t→∞

1

t

∫ t

0

dτ
N∑

i=1

ri ·mir̈i. (66)

Now, note that at long times, the temporal average of the derivative of a bounded function

is zero. For example, the average velocity of a particle moving around in the system is zero

over a long period of time, because the displacement of the particle is very small, whereas

the averaging time period can be made infinitely large. Formally, this can be written as:

〈
dri
dt

〉
= lim

t→∞

1

t

∫ t

0

dri(τ)

dτ
dτ = lim

t→∞

ri(t)− ri(0)

t
= 0. (67)

Since the position and velocity of each particle are bounded, it follows that:

〈
d(ri · ṙi)

dt

〉
= 0, (68)

or,
〈
ri · r̈i + |ṙi|2

〉
= 0. (69)

Hence,

⟨ri · r̈i⟩ = −
〈
|ṙi|2

〉
, (70)

so that,

⟨W ⟩ =
〈

N∑

i=1

ri ·mir̈i

〉
= −

〈
N∑

i=1

mi|ṙi|2
〉
. (71)

Now, mi|ṙi|2 = 2Ki, where Ki denotes the kinetic energy of particle i, so that:

⟨W ⟩ =
〈

N∑

i=1

ri · Ftot
i

〉
= −2N⟨Ki⟩. (72)
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Using the equipartition theorem of statistical mechanics,40 ⟨Ki⟩ = 3
2β

and thus:

⟨W ⟩ =
〈

N∑

i=1

ri · Ftot
i

〉
= −3N

β
. (73)

Now, Ftot
i = Fext

i +Fint
i , where Fext

i arises due to the forces exerted by the walls of the system

with volume V . Analogously, one can write: W tot = W ext + W int. If r denotes the vector

connecting the origin to a boundary element dA, one can write:

W ext =
N∑

i=1

ri · Fext
i =

∫
r · (−PdA)n, (74)

where n denotes the unit vector normal to the wall and pointing outside the system boundary.

Using the divergence theorem, we obtain:

W ext = −P

∫
div(r)dV = −3PV. (75)

One could also have shown the above equality for the cuboidal system that we have considered

as W ext = Lx(−PLyLz) + Ly(−PLxLz) + Lz(−PLxLy) = −3PV , where V = LxLyLz. It

follows that:

⟨W ⟩ =
〈

N∑

i=1

ri · Fint
i

〉
− 3PV = −3N

β
, (76)

or,

P =
N

βV
+

1

3V

〈
N∑

i=1

ri · Fint
i

〉
. (77)

Putting it all together

At this point, we can go back to the total differential for the internal energy as specified by

Eqs. (31)–(33):

dE =
dS(
∂S
∂E

)
V

−
dV
(
∂S
∂V

)
E(

∂S
∂E

)
V

. (78)
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Using
(
∂S
∂E

)
V

from Eq. (50) and
(
∂S
∂V

)
E
from Eq. (63), and recognizing that β = 1

kBT
, as

mentioned in Section IV, we have:

dE = TdS −
(
NkBT

V
+

1

3V

〈∑

i

Fi · ri
〉)

dV. (79)

Further, in Eq. (77), which is a statement of Clausius’ virial theorem, we have showed

that
(
NkBT

V
+ 1

3V
⟨∑i Fi · ri⟩

)
is equal to the pressure, P , of the system. It follows that

dE = TdS − PdV is the equation that relates small changes in the system internal energy,

its entropy, and its volume, via the temperature and pressure. It may be appealing to

students that this equation falls out of a systematic mathematical analysis based on classical

and statistical mechanics.

Conclusions

In this work, we have used the principles of classical statistical mechanics to obtain the

combined first and second law of thermodynamics. Specifically, we used the microcanonical

(NV E) ensemble to write down the partition function for a monoatomic system of matter and

used differential calculus to establish the result. Some new aspects of this derivation include:

(i) showing the average of the inverse kinetic energy of the system to be equal to the inverse

of the average kinetic energy; (ii) providing physical interpretation of the entropy expression

in the microcanionical ensemble in terms of interparticle interactions/external forces; (iii)

establishing an expression for the system pressure including many-body interactions, and (iv)

introducing pressure in the statistical-mechanical description via Clausius’s virial theorem.

We hope that learners and educators benefit from the self-contained nature of this exposition

linking thermodynamics and statistical mechanics. This proof may also be extended to

molecular systems and to systems of particles with unequal masses, as desired. Such exercises

could be assigned to the students to improve their understanding of the subject. Students

could also be encouraged to re-work parts of the derivation presented herein by themselves.
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To conclude, our work provides a new way of teaching students the use of the microcanonical

formulation of statistical mechanics to derive fundamental thermodynamic relationships.
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