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ABSTRACT 

 
Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that can induce the ubiquitination of targeted proteins 
via the formation of ternary complexes between an E3 ubiquitin ligase and a target protein. The poly-ubiquitinated target 
protein will be escorted to the proteasome for degradation. Rational design of PROTACs require knowledge of an accurate 
configuration of the PROTAC induced ternary complex. This study demonstrates that native ternary poses can be 
distinguished by scoring candidate poses based on the pose residence time. The scoring is essentially heat-and-dissociate 
trials of candidate poses sampled by MD and pre-ranked by the classic MM/GBSA method. It is practical, simple to use and 
self-intuitive, relying on the observation that the assumed more stable native crystal ternary poses maintained a longer 
residence time than non-native ones at both room and higher temperatures. A time score and temperature score were 
generated from multiple replicate trajectories. These scores were able to correctly identify the native pose from non-native 
ones in all the systems examined. The absolute numbers were comparable across different systems in all currently available 
VHL and CRBN-containing ternary crystal structures. Therefore, it is also possible to provide an empirical criteria for 
unresolved ternary structures that under the conditions of this study. If a ternary pose is stable up to over a certain threshold 
score, it is likely a native pose. The success of the method is in part attributed to the dynamic nature of the pose change analysis 
which naturally involves entropic effects, one that is intrinsically unavailable with faster static scoring methods that consider 
molecular mechanical energy only. Protein-protein binding entropy is much more significant than in protein-ligands binding. 
The success is also attributed to the fact that the protein structures themselves were all stable in the short heating trials. 
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1. INTRODUCTION 

 

Since the discovery of cell-permeable small molecule ligands of E3 ubiquitin ligases, such as Von Hippel-Lindau 

(VHL) and  cereblon (CRBN), for targeted protein degradation,1, 2 proteolysis targeting chimeras (PROTACs) have 

become valuable tools for dissecting cell biology3 and also promising therapeutics4-7. PROTACs are bifunctional 

molecules having two ligands connected by a linker. One ligand binds to an E3 ubiquitin ligase, while the other 

ligand binds to the protein target. In the context of PROTACs, the “ligand” terminology usually only refers to the 

ligand warhead and not the whole small molecule. Throughout this report we use the terms “ligand warhead” to 

refer to part of the PROTAC, and simply PROTAC when mentioning the whole small molecule. The formation of 

target protein-PROTAC-E3 ligase ternary complex promotes ubiquitination of the protein target. Polyubiquitination 

marks the target protein for degradation in the proteasome. Unlike traditional small-molecule ligands that usually 

modulate target protein function in bound state, PROTACs only need to bind to the protein target transiently. Being 

able to degrade a target protein by transient association, PROTACs disrupt target function through a catalytic 

mechanism and may require lower dosing. The removal of the target protein may also achieve more sustained 

activity. 

One of the pre-requisites for PROTAC to work is the formation of target protein-PROTAC-E3 ligase ternary 

complexes. After a suitable ligand is developed for the target protein, it needs to be linked to an E3 ligase ligand 

appropriately to promote a competent ternary binding arrangement for subsequent ubiquitination of the target 

protein. It is therefore important to characterize and understand how the ternary complexes are formed. Accurate 

knowledge of ternary complexes configurations is essential to structure-based PROTAC design and comparison of 

different PROTACs.  

Computational approaches to PROTAC systems. In addition to obtaining a co-crystal structure from experiments, 

which is generally time-consuming, computational structure prediction methods have shown some potential for 

understanding the ternary complexes. A pioneering study in 2019 started with protein-protein docking as the first 

step, using the holo form protein+ligand of the ternary crystal. It is assumed that the two protein-ligand binary 

structures are known, and they are the same as in the ternary crystal. The docking is followed by independent 

PROTAC conformation sampling, and alignment of the ligand warheads from the sampled PROTAC onto the 

protein docking poses.8 Energy minimization of the aligned PROTAC was an important filter here. If the adjustment 

of PROTAC poses due to minimization was sufficiently small, an indication of less PROTAC linker strain generated 

during alignment, the whole ternary pose is predicted as a native crystal-like pose. A 40% hit rate could be achieved 

for obtaining crystal-like poses with the BRD4BD2-PROTAC-VHL ternary system (PDB: 5T35) (Figure 1 left, blue 

bar). However, it was also concluded that without prior knowledge of the crystal structures, it would be difficult to 

know which 40% are the correct poses given that there was no attempt to score the candidate poses. A 2020 update 

on this study used better filters and clustering to greatly improve the results for finding the native 5T35 pose.9 The 

largest cluster of ternary poses almost completely corresponded to the native pose (Figure 1 left, green bar). 

However, the overall success rate for different systems is relatively low (Figure 1) and no other scoring was 

employed.  
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Figure 1. Previous search efforts from 2 studies combined, by Drummond et. al. 

Another effort to determine ternary complex structures by Zaidman et. al used Rosetta-based modelling and 

provided improvements in accuracy and scope (Figure 2).10 Their method, named PRosettaC, involves two rounds 

of protein docking at the beginning. Later, another two rounds of Rosetta-based scoring is applied to the possible 

ternary complexes generated. The results are clustered with the population rank being the final scoring criteria.  

  

Figure 2. Reported results with the PRosettaC method. The population rank of the near-native cluster for each 

system is labeled. More green indicates a ranking closer to top, which is the ideal situation. More red indicates a 

ranking more deviated from top. 

Indeed, these docking-based methods performed very well in terms of conformation space search and the native 

pose was almost always included in the results. However, the filtering or scoring so far have not been able to identify 

the native pose as the top in many systems. In an ideal situation, the native pose should be ranked at the top across 

many different systems. If this issue is resolved, then low hit rates (or low cluster population of the near-native pose) 

as seen above would not be a concern anymore.  
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In the present study, we focus on being able to distinguish native against non-native poses by our MD-based scoring 

method. The poses are generated by a selective local MD conformation sampling that found the native pose in the 

sampling results. The scoring is successfully demonstrated not only on our own conformation search results, but 

also on poses independently generated from other sources. Briefly, one can start with a classic MMGBSA enthalpy 

only prescore, and it is followed by heating-accelerated pose change scoring. It can be performed in a practical 

manner by medicinal chemists without extensive MD knowledge. 

In our MD studies on PROTAC ternary systems, we have observed the native crystal ternary pose exist stably in 

our simulations (of up to ~100 ns long single trials), while non-native poses may or may not be stable during this 

time, a well-expected observation. We adapt this finding and convert the observed pose residence time into general 

scoring for ternary pose stability. It is a novel, effective and easy-to-use way of virtually evaluating the stability of 

each given ternary pose. To make the scoring method practical enough, the simulation wall time needs to be short 

enough. The method is essentially heating-accelerated pose change trials in MD. Our scoring was effective for all 

4 of the systems we studied and the native pose was identified in all cases. It was also effective on systems we did 

not generate poses ourselves.  

In a general process of RL ⇌ R + L, where R is receptor, L is ligand and RL is the bound complex, there are 2 

effects of heating. 1) In simulation, it decreases the residence time of the bound complex. 2. On a macroscopic level, 

it increases the unbound-bound equilibrium constant 𝐾 =
[𝑅][𝐿]

[𝑅𝐿]
 to favor the unbound state more. Dissociation of 

ligands have standard reaction enthalpy 𝛥𝐻° > 0 and standard reaction entropy 𝛥𝑆° >0. From the Van 't Hoff 

equation as in (1) (assuming 𝛥𝐻° and 𝛥𝑆° do not change with temperature), 

𝑙𝑛𝐾 = −
𝛥𝐻° − 𝑇𝛥𝑆°  

𝑅𝑇
= −

𝛥𝐻°

𝑅𝑇
+

𝛥𝑆°

𝑅
   (1) 

one can see the increase of K with temperature. 

However, true observation of thermodynamic equilibrium can only be achieved with an ensemble of molecules, 

while simulation usually studies one complex. A ligand unbound from its pocket will be very unlikely to rebind in 

simulation, and when it does the unbound/bound population or time does not reflect any real K.11, 12 So here in this 

study it is by no means relying on the observation of equilibrium shift of our ternary poses.  

Fortunately, the greatly decreased bound residence time can be easily observed. Heated temperatures have been 

demonstrated to accelerate protein unfolding simulations.13-16 While in our case we are not unfolding the protein 

but even avoiding it, the ternary pose change is clearly observed and accelerated. The protein structure itself is 

stable within our short MD trials, while ternary pose residence time was quite different for native vs non-native 

poses. At room temperature all candidate ternary poses are stable within the short tens of ns. With the pose residence 

time decreased to less than short tens of ns, one can easily compare different poses, as successfully demonstrated 

in this study.  

While there are other techniques 17-22 capable of accelerating kinetics which potentially includes ternary complex 

pose changes, the heating is simplest for the user and indeed worked very well in this specific PROTAC study. Here 

we are only using heating for its increased kinetics. We are not concerned about the accuracy of any pathways or 

new structures in this stage. One may have worried about false negatives-i.e. a good pose changing away too soon 

and that would mean in the results the native pose would score lower than non-natives. However, we did not see 

such result. Notably, part of its success may be attributed to the fact that the protein structure themselves were all 

stable during our short trials. The short run times and not too high heating ceiling (410 K) may have also helped, 

keeping the water molecules all liquid. 

Additionally, there are at least two more advantages of this method. 1) It is performed in explicit solvent, avoiding 

the introduction and choice of a new set of parameters needed for the commonly used GBSA measurements. 2) This 

method inherently includes any entropic effects to the evaluation of binding since one is looking at a dynamic 
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process being run multiple times, instead of static molecular-mechanical (MM) energy values only, when the very 

costly entropy calculations are not performed.  

 

2. METHODS 

The overall workflow (Scheme 1) of this study is as follows. We first demonstrate that it is possible to reach and 

maintain the native crystal pose (among other non-native poses) by conformational sampling from MD. Based on 

the score of the poses, the native one is ranked at the very top. Although MD relaxations are involved in stage 1, 

the scoring in stage 2 does not rely on a specific sampling method and can be used independently as long as there 

are poses generated. 

 

Scheme 1. Overall workflow 

2.1 Structure Preparation and Pretest 

Protein docking. Protein-protein docking poses were first obtained using ClusPro,23-25 which is very accessible as 

a free online server and simple to use. For the design of most PROTACs, the two ligand warheads and their binding 

pockets are already known from crystal structures. For docking input, we used the holo form protein structures from 

independent protein-ligand binary crystals or the ternary crystal. The ligands were not included in the docking input 

since they are not recognized by ClusPro. Residues around each ligand pocket were defined as attractive regions to 

favor the known binding sites being closer together (Table 1). The docking results may still give some poses that 

had the two pockets too far for linker attachment, even with the defined attractions. These poses were excluded for 

further use. The top two ClusPro “balanced” scoring poses were then selected. 

Table 1. Attraction residues defined in ClusPro. The residues were chosen around where the linker extends out. 

The smaller protein was defined as “receptor” because this would allow the larger protein to be relaxed more as the 

“ligand”. Cluspro gives both the backbone and sides chains some relaxation in the ligand, but the backbone is held 

rigid in the receptor. 

System Receptor Ligand Input PDB when independent binary crystal 

was used instead of cut-out from ternary 

5T3526 BRD4BD2 a-433, 385, 432 VHL c-67, 91, 69 4W9H (VHL-ligand), independent 

BRD4BD2-ligand unavailable 
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6SIS27 BRD4BD2 a-433, 385, 432 VHL c-112, 109, 98, 

90 

4W9H (VHL-ligand), independent 

BRD4BD2-ligand unavailable 

6BOY28 BRD4BD1 c-87, 146, 140, 83  CRBN b-357, 386, 

352 

- 

6HAX29 SMARCA2BD a-1413, 1463, 

1470 

VHL c-98, 99, 108, 

110 

5NVX (VHL-ligand) and 6HAZ 

(SMARCA2BD-ligand) 

 

PROTAC insertion. The linkers were cut as indicated (Figure 3). To regenerate the linker in 3D, either conversion 

from its SMILES string by omega230, 31 or visual building was used. 

 

 

Figure 3. PROTAC chemical structures and cutting points during 3D model building. 

Using Chimera,32 in each of the two selected protein dock poses, placing the ligand warheads into their pockets 

were based on the known crystal of each. Since the PROTAC was not in the docking stage, some minor translational 

adjustment of the protein (mainly perpendicular to the protein contact plane) was applied visually to provide just 

enough space for the PROTAC linker to avoid clashes with the 2 proteins structures. The linker was then attached 

visually. To remove distorted bond lengths and angles of the visually attached linker, we proceeded first without 

considering the proteins. To this end, 100 steps steepest descent + 10 steps conjugate gradient minimization was 

performed 10 times on the linker. When the proteins are included, another 100 steps steepest descent + 10 steps 

conjugate gradient minimization steps were performed 10 times. Only linker atoms and on one occasion a single 

protein side chain that is too close to the linker were allowed to move. More detailed step-by-step model building 

procedures which were performed in Chimera are provided in the SI. 

Preparation for MD. AM1-BCC charges were assigned to the PROTACs.33 In tleap, the gaff2 forcefield was used 

for the PROTAC. The ff19SB force field was used for proteins.34  An octahedral box of OPC water extending at 

least 10 Å from solute atoms were generated.35 Na+ and Cl- counterions were added to neutralize the system.36 

Hydrogen-mass-repartitioning (HMR) assigning solute hydrogens a mass of 3.024 was used to enable a 0.004 ps 

timestep, or 0.002 ps at higher temperatures.37  

In our pretest stage when the newer ff19SB was not yet released, gaff for PROTAC, ff14SB for proteins,38 and 

TIP3P water was used.39 There were no differences in the results with either setup. All final results reported here 

are with the newer ff19SB setup.  

For implicit solvent simulations (6BOY) and MMGBSA energy calculations, mbondi2 radii set and GBOBC2 (igb=5) 

model was used.40 HMR was not applied. 

Pretest. One advantage of MD search is that only poses belonging to a local energy minimum will remain stable, 

thus eliminating the majority of exhaustive poses. Though at the onset of this study, there were very few MD 

simulations on PROTAC systems. To first examine the capability of MD simulation being able to recapitulate and 
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stabilize a PROTAC ternary system at an experimental crystal pose, VHL-PROTAC-BRD4 (PDB: 5T35) was used 

for a pretest starting with a single GTX 1070Ti graphics card on a local workstation. After a short routine 

minimization and equilibration stage, 110 ns of MD relaxation at 310 K was applied to the two constructed starting 

poses (Table 1 row 2, when using cut-out binary crystals from known ternary), each given 5 replicates. Another 

control run was performed using the crystal ternary as the starting pose to examine pose stability and for subsequent 

energy scoring. 

2.2 Conformation Sampling 

The sampling was explorative and the number of runs is expected to be increased accordingly based on the scoring 

results. Based on our pretest experience, hardware limits and literature reports on multiple short runs41 being better 

than a single long run, we decided to start with at least 10 relatively short runs for each starting pose. The GPU 

version of AMBER was used in all simulations reported in this study.42-45 

Table 2. Sampling amount for production runs 

System No. of starting 

poses  

Simulation time for each 

single replicate 

Actual replicates for each start pose 

5T35 2 50 ns  x10 

6BOY 2 20 ns (GBOBC2 (igb=5))  x30 

6SIS 2 50 ns  x10 for pose 1, x20 for pose 2 

6HAX 1+1 50 ns  x20 

For each system, we wanted to observe the pose with the most favored MMGBSA prescore stabilized in the last 10 

ns occurring from at least two trajectories. Starting from 10 (or 30 for implicit solvent 6BOY), we increased the 

number of replicates initiated from each starting pose if the lowest MMGBSA prescore trajectory only showed up 

once. This is to best mimic the situation without prior knowledge of the crystal pose. Additionally, the final heating 

rescore later in this study can be the guide to further increase sampling both in terms of starting pose numbers and 

simulation trials, if no pose has reached a >17.5 time and >380 temperature score, empirically drawn from 

examining all the currently available CRBN and VHL ternary crystals. 

Explicit solvent MD trials. A short minimization and equilibration stage was performed proceeding the production 

stage, with 5,000 steps of steepest descent minimization (ntmin=2) with heavy atoms restrained, followed by MD 

equilibration in the NPT ensemble (ntb=2, ntp=1, Montecarlo barostat, barostat=2, taup=0.5, Langevin thermostat, 

ntt=3, gamma_ln=2) at 310 K of 150,000 steps (0.001 ps timestep), gradually releasing the heavy atom restraints. 

Complete force evaluation was applied (ntf=1, ntc=1). The minimization and equilibration conditions were initially 

adapted from the works of the Rizzo group46 and gradually modified throughout the course of this study. The 

production stage of 50 ns was run in the NVT ensemble (Langevin thermostat, ntt=3, gamma_ln=0.01). The long-

distance cutoff was set to 8 Å. The SHAKE algorithm was used to restrict hydrogen bond length changes, and no 

forces are calculated for bonds with hydrogens (ntc=2, ntf=2). The timestep was set to 0.004 ps, and snapshots were 

recorded every 0.1 ns. 

 

Implicit solvent MD trials. This applies to the 6BOY search. GBOBC2 was used(igb=5, ntb=0, ntp=0). After 

allowing hydrogens to fully minimize while heavy atoms restrained at 5 kcal/mol/Å for 5,000 steps steepest descent 

(ntmin=2), CRBN and its ligand warhead were held mostly rigid by weight restraints of 10 kcal/mol/Å on all atoms. 

BRD4 was held by internal distance restraints of all C-α atoms to a single C-α based on the starting pose. The BRD4 

ligand warhead was held in its pocket by distance restraints. Based on the starting pose atom distances, the distance 

restraints were a parabola well generated in cpptraj 1 Å wide and extending up linearly outside the parabolic well 

region. The force constant for restraint was 10 kcal/mol/Å. MD equilibration at 310 K for 250,000 steps (0.001 ps 
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timestep) with complete force evaluation was applied (ntf=1, ntc=1). The production stage was run for 20 ns. The 

SHAKE algorithm was used to restrict hydrogen bond length changes, and no forces are calculated for bonds with 

hydrogens (ntc=2, ntf=2). The Langevin thermostat (ntt=3, gamma_ln=2) was used. No long-distance cut-off was 

applied. The timestep was set to 0.002 ps, and snapshots were recorded every 0.1 ns. 

 

Combined clustering of frames. For each system, all frames from the last 10 ns of each MD run were combined 

and clustered. For each cluster, one representative pose with the lowest cumulative distance to all other frames in 

cluster was extracted. A cluster may span 1 or more trajectories of final 10 ns. When more than one trajectory 

corresponded to a cluster, only the 10 ns from the trajectory with the lowest enthalpy was used to rank this 

cluster/pose. The top 5 poses extracted from the top 5 clusters based on MMGBSA energy of the trajectory was 

used for rescoring by heating. Using the best consecutive 10 ns is the unified selection criteria we have established 

for prescoring, which also streamlines the process to perform with many trajectories. Clusters that are significantly 

smaller than 10 ns indicate pose instability. Their corresponding trajectories generally had poor MMGBSA energies 

and they were therefore eliminated in this stage. Even occasionally when a trajectory with a poorly formed cluster 

was within the top 5 in energy (i.e. Figure 6, 5T35 1.1 and Figure S8, 6HAX 1.20), we maintained the same 

prescoring criteria. 

In cpptraj, the DBScan algorithm was used.47 Prior to clustering, in each trajectory the smaller BRD4 (or BD) was 

aligned to its crystal. Coordinates of the other protein’s C-α (excluding the region bound to the deleted anchor 

proteins) and its ligand warhead heavy atoms were measured for clustering. Aligning the smaller protein helped 

make the movements and differences more prominent in the analysis. The Epsilon was set to 1.5 Å and minpoints 

set to 1. No sieving was used so all frames were used to cluster. 

2.3 MMGBSA Prescore 

We take advantage of the well-established and commonly applied MMGBSA energy calculation method as the first 

round of scoring,48-50 which are usually for ligand-receptor binary systems. We expand its application to the 

PROTAC ternary system here. 

 

Scheme 2. In-aqueous binding energy scheme for calculating ternary binding energy ΔHbind,tern and cooperativity 

binding energy ΔΔH in equations (2)-(4). 

∆𝐻𝑏𝑖𝑛𝑑,𝑡𝑒𝑟𝑛 = 𝐻𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝐻𝑝𝑟𝑜𝑡𝑒𝑖𝑛1 − 𝐻𝑃𝑅𝑂𝑇𝐴𝐶 − 𝐻𝑝𝑟𝑜𝑡𝑒𝑖𝑛2 (2) 

∆𝐻𝑏𝑖𝑛𝑑,𝑐𝑜𝑜𝑝(∆∆𝐻) = ∆𝐻𝑏𝑖𝑛𝑑,𝑡𝑒𝑟𝑛 − ∆𝐻𝑏𝑖𝑛𝑑,𝑏𝑖1 − ∆𝐻𝑏𝑖𝑛𝑑,𝑏𝑖2 (3) 
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= (𝐻𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝐻𝑝𝑟𝑜𝑡𝑒𝑖𝑛1 − 𝐻𝑃𝑅𝑂𝑇𝐴𝐶 − 𝐻𝑝𝑟𝑜𝑡𝑒𝑖𝑛2) − (𝐻𝑏𝑖1 − 𝐻𝑝𝑟𝑜𝑡𝑒𝑖𝑛1 − 𝐻𝑃𝑅𝑂𝑇𝐴𝐶) −  (𝐻𝑏𝑖2 − 𝐻𝑝𝑟𝑜𝑡𝑒𝑖𝑛2

− 𝐻𝑃𝑅𝑂𝑇𝐴𝐶) 

= 𝐻𝑐𝑜𝑚𝑝𝑙𝑒𝑥 + 𝐻𝑃𝑅𝑂𝑇𝐴𝐶 − 𝐻𝑏𝑖1 −𝐻𝑏𝑖2 (4) 

Using the GBOBC2 (igb=5) model with mbondi2 radii,51 the last 10 ns of each trajectory was subject to MM/GBSA 

scoring of ternary binding energies, as in eq. (2). With MMPBSA.py,52 for each single trajectory the program was 

run 3 times, each time having the PROTAC, protein1 or protein2 defined as the ligand, and the remaining two 

components as the receptor. The required parameter-topology files for each run were stripped from that of the 

complex by cpptraj. 

In addition to ternary binding energy, cooperativity binding energy is a common parameter for PROTAC ternary 

binding systems.28, 53 The ternary binding energy may be very favorable if a single ligand warhead happens to be 

very strong, but it does not completely reflect the stability of the ternary system. Therefore, we want to separately 

subtract all PROTAC-single protein binding energies from the total ternary binding energy as a second measure, 

ΔΔH, as in eq. (3) or simplified as eq. (4). This is the same energy as defined and measured by Roy and Ciulli et al. 

by SPR.53 When comparing poses for ranking, both ΔH and ΔΔH were considered by simply summing up of the 

two. 

2.4 Final Rescore by Heating-Accelerated Pose Change Trials (HAPOC) 

Heating runs. To perform our heating-accelerated pose change (HAPOC) analysis for PROTAC ternary poses, the 

clustering and MMGBSA served as the first round of scoring (Table 3). For each system, a minimum of top 5 poses 

based on their corresponding H score are then taken for the final rescoring. 

Each extracted candidate pose was used as the starting frame in the heating. Only the two proteins and PROTAC 

were retained in the pose. Any pose from any method of sampling can be fed into this step. When starting directly 

from the known crystal, no conformation search or prescoring was needed. 

Before heating, all poses were reassigned AM1-BCC partial charges for the PROTAC and prepared with the same 

tleap workflow as for the MD relaxations. HMR was applied. A short minimization and equilibration stage was 

performed proceeding the actual heating stage, with 5,000 steps of steepest descent minimization (ntmin=2) with 

heavy atoms restrained, followed by MD equilibration in the NPT ensemble (Langevin thermostat, gamma_ln=2, 

Montecarlo barostat, ntb=2, ntp=1, barostat=2, taup=0.5) at 310 K of 150,000 steps (0.001 ps timestep), gradually 

releasing the heavy atom restraints. The production stage of 50 ns was run in the NPT ensemble (Langevin 

thermostat, ntt=3, gamma_ln=0.01, Montecarlo barostat, ntb=2, ntp=1, barostat=2, taup=0.5). The long-distance 

cutoff was set to 8 Å. The SHAKE algorithm was used to restrict hydrogen bond length changes, and no forces are 

calculated for bonds with hydrogens (ntc=2, ntf=2). The timestep was set to 0.002 ps, and snapshots recorded every 

0.05 ns. 

Generating scores from the trajectories. With the smaller protein (BRD4 or BD) and its ligand warhead aligned 

to the starting pose, the RMSD of the other side to its start was measured as an indicator of movement and stability. 

One could either measure the core regions of the other protein or the other ligand warhead, where they moved in 

correlation with each other. We measured the other ligand warhead. One example is shown in Figure 4. 
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Figure 4. One example taken from 5T35 heating rescore trails. Representative heavy atoms on the unaligned ligand 

warhead (dark blue) were measured to the candidate pose (start) in terms of per-frame RMSD. 

To convert the RMSDs into a final score indicating ternary pose stability, we evaluated it in two ways, and generated 

a time score (τ score) and temperature score (T score). The τ score represents the simulation time (in ns) of the 

moving PROTAC end being within 3.5 Å of the starting pose. With 500 frames in total for 25 ns, the total number 

of frames that had a 10-frame moving average of < 3.5 Å RMSD to the start are counted and divided by 20. For the 

T score, when this same moving average RMSD increased to ≥ 4 Å, the thermostat temperature is recorded. If the 

RMSD falls back to moving average < 3 Å later in the trajectory, the thermostat temperature is recorded again when 

the next time it crosses to ≥ 4 Å. If by the end of the heating scheme, the RMSD has never crossed over 4 Å, or fell 

back to less than 3 Å and have not crossed over 4 Å yet, then a 420 thermostat temperature is recorded for this 

instance. For each trajectory, all recorded thermostat temperatures are averaged to give a single T score. The 10 T 

scores from the 10 replicates are then averaged again, as well as the 10 τ scores. There are two reasons why the 

heating is not performed at temperatures higher than 410K. 1) The non-native poses rarely reached 410K and still 

remained bound. Only some crystal poses could be heated to 410 K without the pose change occurring. The 

difference is already obvious. 2) The increased likelihood of protein unfolding at high temperature may tend to 

make all poses look like negative ones. When actually performing the RMSD measurements, in addition to the 

indicated region in Figure 4, the aligned protein, unaligned protein, aligned ligand warhead and linker were all 

plotted as control measures to monitor potential abnormalities and other signs of instability, such as protein 

unfolding and ligand dissociation from pocket. Fortunately, these events were rarely seen, which indicated that the 

situation was not complicated by these factors. 

Evaluating poses generated independently from other sources. Ternary docking poses from other sources can 

also be fed into the heating step for final rescoring. To demonstrate independent usage, systems and poses generated 

and reported by the PRosettaC study10, 54 were taken for rescoring with our heating-accelerated pose change method. 

In the reported study, ternary poses were clustered, and their scoring criteria was cluster population rank. Of the 10 

PDB systems studied with the reported method in literature, two systems had the near-native pose as the top cluster, 

and four systems had it ranked 2 or 3 (Figure 2). Both MMGBSA binding energy and heating scores were evaluated 

for their top poses generated for 6BOY and 6HAY, each representing a good but not perfect, and poorer but not 

worst system. For the non-native poses, a single pose was chosen from each cluster. For the native pose control, 

6BOY poses from the found near-native cluster (no.2) were compared to the crystal native pose and the one closest 

to the crystal was used. In 6HAY the near-native cluster (no.20) was only a singleton and was used directly. The 

native crystal itself as the starting point was also used in both systems. The τ score and T score were generated in 

the same way as previously described.  

To obtain MMGBSA binding energies of these independent poses, a short minimization and equilibration stage was 

first performed, which is the same as in the explicit solvent conformation sampling and heating rescore steps. The 

production stage was run at 310 K for 20 ns with the Langevin thermostat (gamma_ln=2) in the NVT ensemble 
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with snapshots collected every 0.1 ns (25,000 steps). HMR was applied to enable a 0.004 ps timestep. This 

procedure was done at least 3 times for each pose.  

Since we are scoring a given pose instead of looking for new poses, we had to make sure the frames were pertaining 

to that pose in terms of RMSD to start with BD or BRD4 aligned for every frame. The generated trajectories were 

carefully examined to use either the 0-10, 5-15 or 10-20 ns portion with the lowest CRBN or VHL warhead RMSD. 

At the same time it had to satisfy the condition that this consecutive 10 ns portion had the RMSD < 3.5 Å in 90 or 

more frames out of 100. If no portion satisfied, the trajectory was not used. Ultimately each pose had three 

trajectories maintaining around the local minima of itself. 

2.5 Wall Time Considerations. 

For each of the 25 ns heating runs under the conditions reported here, the smaller VHL systems will take about 3-4 

hours, and the larger CRBN systems will take about 6-7 hours on an NVIDIA GeForce RTX 2080Ti GPU. This is 

well suited for parallel running. 
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3.Results and Discussion 

3.1 Pretest Results 

We are delighted to find that two of each of the five runs converged onto the crystal pose. In the control run the 

crystal pose was stable over 110 ns. 

 

Figure 5. MD relaxation (1 example trial, 2-MD3 in Table 3) reaching convergence onto native crystal pose from 

built near-dock starting pose in the VHL-PROTAC-BRD4 (PDB: 5T35) system. The BRD4 C-α were aligned to 

the crystal pose for every frame. PROTAC plotted based on VHL ligand warhead side. VHL was plotted based on 

its C-α.  

The last 10 ns of the 10 total replicates + 1 control run was measured for MM/GBSA ternary binding ΔH and 

cooperativity binding ΔΔH. The 4 runs that converged onto the crystal pose, along with the control crystal start run, 

had the 5 highest cooperativity binding ΔΔH and occupied 5 out of the top 6 scores for ternary binding ΔH (Table 

3). This encouraging result suggested that a local MD refinement is potentially capable of finding stabilized ternary 

poses, and a classic MM/GBSA binding score may be able to rank the native pose as the most energetically favorable 

one. Therefore, we expanded our scope of prediction to more ternary systems, including ones that failed from 

previously reported methods. Additionally, we also used independent ligand-bound protein structures to better 

mimic the situation where no ternary crystal was available. The use of independent binary structures was not 

demonstrated in any of the previous work on PROTAC ternary pose prediction published previously.8-10, 55 During 

the preparation of this manuscript, the first method starting from independent binary structures and also apo protein 

structures was reported for the modeling of PROTAC-mediated ternary complex poses.53 

Table 3. For the pretest using 5T35, four out of ten MD relaxations found and stabilized at the native crystal pose 

and the corresponding MMGBSA enthalpy energy calculations give a very good ranking. Error margin shown in 

s.e.m. All units in kcal/mol. 2-MD3 is the example trial shown in Figure 5. 
Near-Docked 

Complex and 

Trial No. 

Native state 

convergence 

Ternary binding 

enthalpy 

 (ΔHbind, tern) rank 

Coop. enthalpy  

of ternary 

complex (ΔΔH)   rank 

crystal starting 

pose control -117.5 ± 0.6 5.5 
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2-MD3 YES -122.1 ± 0.9 3 -30.2 ± 1.5 3 

2-MD4 YES -122.3 ± 0.8 2 -32.7 ± 1.1 1 

1-MD2 No -112.6 ± 0.8 8 -14.5 ± 1.1 9 

1-MD3 No -105.3 ± 0.7 10 -11.7 ± 0.7 10 

1-MD5 No -127.4 ± 0.8 1 -21.1 ± 1.1 7 

2-MD1 No -113.9 ± 0.8 7 -21.7 ± 0.9 6 

2-MD2 No -105.8 ± 1.0 9 -15.7 ± 1.2 8 

2-MD5 No -115.7 ± 0.9 6 -22.4 ± 1.1 5 

 

3.2 Sampling, Clustering and MMGBSA Prescoring Results  

The sampled frames from the MD trajectories were analyzed by MMGBSA and clustering in the same stage. With 

the clustering, one can easily see 1) whether a run has mostly or fully converged onto a single pose, and 2) if 

convergence to a single pose is reoccurring from independent starts. It quickly provides an overall picture without 

the need to visualize every trajectory. Figure 6 shows clustering analysis from 5T35. Clustering for 6SIS, 6BOY, 

6HAX are shown in SI, Figures S6-S8. In the graphs, the trials are denoted as numbers x.y, where x indicates the 

starting pose number and y indicates the MD trial number for that start pose. 

The searches for 5T35 and 6SIS involving VHL from an independent crystal found the native ternary relatively 

easily. Based on the criteria of having the lowest MMGBSA scoring trajectory showing up more than once, 6SIS 

was given an additional 10 runs for the second starting pose. 

6BOY being larger than the rest was observed to move slower than desired when first ran in explicit solvent. To 

speed up sampling, implicit solvent was used. Even though the nominal simulation speed may not always be faster 

for larger systems due to not employing a cutoff while PME (particle mesh Ewald method) is employed for explicit 

solvent, the conformation search in implicit solvent is still faster due to the lack of solvent viscosity.56, 57 With the 

increased flexibility, we need to do the following to restrain internal degrees of freedom. 1) CRBN was held rigid 

at all atoms. 2) PROTAC warheads were held in the binding pocket. 3) BRD4 was internally restrained at C-α. If 

the restraints were released, the MD relaxations did not reach the crystal pose within the search we did. This also 

meant that only the cut-out binary from 6BOY ternary found the crystal. The available independent binary of human 

CRBN-ligand (i.e. PDB: 4TZ4) was still somewhat different than the 6BOY CRBN. It could not be held rigid for 

the purpose of searching for the 6BOY pose. 

While 6HAX with independent binary starting from docking also didn’t reach the crystal pose within the search we 

did, the cut-out binary with start pose artificially modified from the ternary did. In the first 10 runs the lowest 

enthalpy score trajectory (not comparing the independent binary starts from docking) showed up twice, but we still 

gave it another 10 runs just to sample more because the lowest enthalpy trajectory moved away from the clustered 

pose in the final few ns (SI Figure S8 run 1.5, visually confirmed). In the next 10 runs, this same pose showed up 

in 2 stabilized trajectories (Figure S8, runs 1.17, 1.18), and no more runs were done. It was also the crystal pose. 

Poses found from both starting versions (last row, Table 2) were later jointly compared with their MMGBSA scores. 

Since two poses from the independent binary starting version had an even lower enthalpy score than the found 

native, they were good candidates to test our final rescoring. 
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Figure 6. Clustering analysis of the last 10 ns from all 20 runs for 5T35 search. 1.x are trials starting from pose 1 

and 2.x are trials starting from pose 2. The corresponding MMGBSA energy for each run is shown below. For every 

cluster, if it only spanned a single trajectory (e.g. cluster no.2), its representative pose is corresponded to the 

MMGBSA H score of this trajectory (-128.8). If more than one trajectory converged onto that cluster (e.g. cluster 

no.0), the most favorable H score of the two or more corresponding trajectories will be used (-121.2 from trial 2.9). 

Table 4. MMGBSA prescoring results. 6BOY and 6HAX were two of the four systems that found lower enthalpy 

score poses. Statistics calculated from the last 10 ns of the trajectory (or best scoring trajectory if more than 1) 

corresponding to each candidate pose. 
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While MMGBSA enthalpies gave 5T35 a good ranking by placing the crystal pose corresponding trajectory at the 

top, it failed to do the same for 6BOY. An RMSD-energy funnel plot (Figure S9) further corroborated that there 

were other configurations with lower binding enthalpy than the found crystal corresponding pose.  

It is known that protein-protein bindings have large entropy contributions.58 Entropy calculations were done on the 

6BOY system (Table S2) on a different set of earlier results, and it did improve the rankings. In these earlier results 

the same pose (Table S2, trajectories 0.4 and 0.8) as in Table 4c pose0 was found, and it was lower in binding 

enthalpy than the found native pose. However, the entropy was extremely costly to calculate. The entropy 

calculation was by nmode in MMGBSA.py with a subset of frames. A pruned protein was used by partially adapting 

the method reported by Ryde et. al.59 While adding the entropy improved the binding score of the found native 

poses somewhat, at the same time the size of the system made the calculations only marginally practical to perform, 

even with pruning. 

Since entropy is essentially related to the probability of an energy configuration being reached, direct accurate 

calculation of entropy can only be obtained macroscopically via eq. (1). To work around this and focus on a single 

complex, thermodynamic integration (TI) and normal mode vibrational analysis (as in nmode) are some of the few 

approximations available. Deriving from the Gibbs equation, at constant temperature the entropic term disappears 

as in basic equation (5), where V is volume and P is pressure, a simplest case for TI. 

 dG =  VdP  (5) 

Practically, in TI for ligand binding free energy calculations, the situation is a bit more complicated and pressure is 

not the quantity being perturbed. Instead, a gradual alchemical perturbation is performed from ligand A to ligand B 

and the potential energy changes is integrated to obtain ΔG.60, 61 Nmode analysis obtains absolute vibrational entropy 

via 

𝑆𝑣𝑖𝑏 = −𝑅𝑙𝑛 (1 − 𝑒−
ℎ𝑣0
𝑘𝑇 ) +

𝑁𝐴ℎ𝑣0𝑒−
ℎ𝑣0
𝑘𝑇

𝑇 (1 − 𝑒−
ℎ𝑣0
𝑘𝑇 )

 (6) 

where νo is the frequency of each normal mode of the solute.62 Nonetheless, they are still limited in various ways. 

TI needs to be a slow process for small changes between two states, which is not suitable for large conformation 

changes. Calculating of normal mode vibrational frequency is extremely computationally demanding with a large 

margin of error, and it is more accurate for gas phase than solution phase.63 So it is not surprising that entropy 

calculations are often neglected for in-silico drug discovery. 

Whether due to inaccuracy in the MMGBSA itself or lack of entropy calculations, merely relying on the MMGBSA 

enthalpy score is not enough to identify the native ternary pose from non-native in some systems. But it is useful as 

a prescore since the native pose is still generally favored. Tables 4a-d show the top scoring poses. The full 

MMGBSA enthalpy results are listed at the bottom of the clustering results, Figure 6 bottom, and Figure S6-S8 

bottom. 

3.3 Final Rescoring by Heating-Accelerated Pose Change Trials (HAPOC) 

One way of running heating studies for examining pose stabilities was simply running the system at a given higher 

temperature (e.g. 350K or 400K), which was attempted first. One inconvenience was that the stable pose should 

still be mostly bound at the chosen temperature, while non-stable poses mostly moved away, all within the short 

tens of ns. This would then involve testing a series of elevated temperatures (e.g. 310, 350, 380 K each etc.) with 

different MD trials, and this optimal temperature is expected to be different for each PROTAC ternary system. If 

directly evaluating the results from the same series of elevated temperatures across all ternary systems, this will 

help skip the optimal temperature determination step, and total residence time across the whole temperature series 

can then be a score for each pose. However, weighing the scores for different temperatures should be included, 

which would introduce an extra parameter. So eventually, we decided to cover the whole temperature range in 1 



18 
 

MD trial by heating the system from 310K to 410K, as presented. Since the residence time fluctuates among runs, 

multiple repeats were attempted. With only 10 short replicates for each pose, it was sufficient for ranking the poses 

and making the results of native vs non-native statistically significant in most systems. 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

Figure 7. Heating rescore results of top MMGBSA scoring poses. Left bar shows time score (τ), right bar shows 

temperature score (T). Error bars show s.e.m. Corresponding MMGBSA energy scores for each pose shown at 

bottom of each graph, the same values as in Tables 4a-d. 

Both the τ and T scores gave very similar results as expected, with the τ score marginally better. The T score was 

included so that we can estimate at what temperatures the pose changes are occurring. Even though the heated 

simulation trials already returned good results, we still wanted to briefly investigate some behaviors of the OPC 

water at this somewhat elevated temperature by looking at its density. From one of the heating trials, the system 

density over temperature was plotted and compared to the density of real-world water over temperature. Their trends 

matched very well (Figure S10). At temperatures above the real-world boiling temperature, the density continued 

the same smooth trend with no surges, indicating the water still solvating the solute. 

Another more important concern is protein structure stability during the heating. If the protein structure itself is 

changing during the heating trials,  results collected in those scenarios may include false negatives. One of the easily 

observable signs for the change of protein structure during heating is whether or not the RMSD of the aligned 

protein is increasing (to > 3 Å). Modifications in those scenarios may include protein structure restraints during the 

heating, however that is not within the scope of this current study. Fortunately, the protein structures were stable 

without restraints for all the poses we tested. 
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We then seek to provide a method to address one of the most important questions on the PROTAC-ternary pose 

prediction. In the absence of a known ternary crystal structure, how do we know the correct ternary pose has been 

reached? A relative score is insufficient because it may vary across different systems like the MMGBSA scores in 

Table 4, even if the relative score is accurate within each ternary system. Results of the scoring by heating-

accelerated pose change within the same ternary system and across different systems indicated that the four crystal 

ternary poses were all observed to be stable up to at least 17.5 in terms of the τ score and 380 in terms of the T score, 

while non-native poses generally were not. We then decided to measure the τ and T scores for all the available VHL 

and CRBN-containing ternary crystal structures.64  

 

Figure 8. Scores of all resolved crystal structures. 5T35, 6SIS, 6BOY, and 6HAX scores from found native pose in 

our study. 6BN7, 6HAY, 6HR2 and 7KHH scores measured from crystal PDB pose. Error bars show s.e.m. 

All the different crystal poses were observed to be stable with at least a 17.5 τ score and 380 T score (Figure 8). 

From these results we provide an empirical criteria. For the evaluation of a given PROTAC-mediated ternary pose 

using the heating-accelerated pose change (HAPOC) method and conditions in this study, the pose that is stable to 

at least 17.5 τ score and 380 T score over an average of 10 or more runs is very likely the correct native pose. The 

non-native poses generally moved away much sooner. One can constantly search for more candidate poses for 

heating reevaluation until this empirical criteria is reached. Run conditions are described in the methods part and 

input scripts along with all structures are available on Zenodo65. 

3.4 Testing on independently generated poses 

The conformation search used in this study only covers a limited scope and is far from a global search. The process 

of reaching the native within a short amount of time is quite dependent on docking to get a good starting point, 

though partial success was obtained even with independent binary crystals as the inputs. The final HAPOC scoring 

is exceptionally successful in distinguishing native from non-native ternary poses and can be used independently 

from our MD-based pose sampling. Just like using the crystal coordinates as inputs as demonstrated above, 

PRosettaC poses were evaluated.10, 54 
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Figure 9. HAPOC rescore of top candidate poses from PRosettaC. Pose no. indicate cluster population rank. Error 

bars of τ and T score show s.e.m. over 10 trajectories. Error bars of MMGBSA enthalpies show s.e.m. from the 3 

averages of 3 trajectories. 

In the 310 K trajectories for MMGBSA evaluations, for 6BOY pose 1, the BRD4 ligand warhead was observed to 

partially dissociate from its pocket in some runs unexpectedly. This unexpected dissociation was not observed for 

pose 2 or the crystal one. It could be possible that in a poor pose, strain is pulling the ligand out of its pocket (while 

remaining interactions are stronger than the ligand-BRD4 interactions). Even though this observation by itself 

should be sufficient to consider 6BOY pose 1 as a poor, non-native one, the MMGBSA energies from runs with the 

ligand properly bound were still collected for comparing with the native and near-native. 

Originally, the near-native pose for 6BOY was ranked 2nd (out of 22), and 6HAY was ranked 20th (out of 35). 

Applying MMGBSA enthalpy calculations to the poses, we observed some improvement, though some of these top 

poses may simply be enthalpically favored ones. In such case, it will not be surprising that they will rank ahead of 

the native pose based on static energy techniques to distinguish favorable poses. The HAPOC method shown here 

mostly corrected the pose ranks. From the results based on HAPOC (Figure 9), one can see that all of the non-

native poses originally ranked at the top scored less favorable than the near-native pose based on the τ score, 

excluding two statistical ties not distinguished within 10 runs. The native crystal pose clearly scored the best. We 

noticed the scoring difference between the near-native and the crystal. Even though the structure of their near-native 

poses had a reasonable C-α RMSD to the crystal pose, there were actually less protein-protein and protein-PROTAC 

contacts in the near-native pose (Table 5). This seemingly subtle difference is well reflected in the HAPOC scoring 

as expected. A pose isn’t ideal enough if the side chains are not within proper intermolecular contacts. The crystal 

structure is one example of having good contacts.  

Table 5. Number of contact pairs in crystal structures and found natives, defined by a Van der Waals radii overlap 

of > -0.4 Å. 

Molecule Pair CRBN-BRD4 BRD4-PROTAC PROTAC-CRBN 

6BOY Crystal 84 61 83 

6BOY near-native (pose 2, Figure 9) 65 29 69 

6BOY found native from own study with MD search 63 44 61 

Molecule Pair VHL-BD VHL-PROTAC PROTAC-BD 

6HAY Crystal 45 85 125 

6HAY near-native (pose 20, Figure 9) 43 84 103 

 

4. Conclusion 

The prediction of an accurate ternary pose is essential for structure-based PROTAC design when the structure of 

the ternary complex is not available. This study is intended to predict PROTAC ternary structures in silico in the 

absence of a known ternary co-crystal structure. We have developed a novel way to score the PROTAC-mediated 

ternary complexes by running heating-accelerated pose change trials of candidate poses with explicit solvent MD, 

and measure its average pose-residence time. It is highly successful in the systems available for testing. While the 

candidate poses in this study were generated by a selective local MD conformation search, the scoring is not limited 

to MD generated poses. Instead, they can be used independently as we have successfully demonstrated. The results 

generated from this study represent a substantial improvement over the limited number of previous attempts on 

PROTAC ternary complex predictions, which do not provide scoring or only indirectly rely on enthalpy-based static 

scoring techniques. 
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Our method presented here considered both enthalpic and entropic effects. Entropy is especially important when 

protein-protein interactions are involved. It therefore provides a much more complete picture based on the success 

in all the systems we examined here. The process is relatively straightforward, self-intuitive, and easy to use for 

medicinal chemists without extensive knowledge in MD. Even with repeated heating replicates, the calculations are 

much faster than normal mode entropy calculations for systems of this size with a huge interface. While MMGBSA 

enthalpy is still used for prescoring, the final HAPOC rescore is run in explicit solvent without involving a choice 

of another set of GB parameters.  
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