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Embedding theory is a powerful computational chemistry approach to exploring the electronic structure and
dynamics of complex systems, with QM/MM being the prime example. A challenge arises when trying to
apply embedding methodology to systems with diffusible particles, e.g. solvents, if some of them must be
included in the QM region, for example in the description of solvent-supported electronic states or reactions
involving proton transfer or charge-transfer-to-solvent: without a special treatment, inter-diffusion of QM and
MM particles will lead eventually to a loss of QM/MM separation. We have developed a new method called
Flexible Boundary Layer using Exchange (FlexiBLE) that solves the problem by adding a biasing potential to
the system that closely maintains QM/MM separation. The method rigorously preserves ensemble averages by
leveraging their invariance to exchange of identical particles. With a careful choice of the biasing potential,
and the use of a tree algorithm to include only important QM and MM exchanges, we find the method
has an MM-forcefield-like computational cost and thus adds negligible overhead to a QM/MM simulation.
Furthermore, we show that molecular dynamics with the FlexiBLE bias conserves total energy and remarkably,
sub-diffusional dynamical quantities in the inner QM region are unaffected by the applied bias. FlexiBLE
thus widens the range of chemistry that can be studied with embedding theory.

I. INTRODUCTION

A common strategy to modelling reactions in com-
plex systems is to use an embedding approach, in which
a chemically active region is treated with a high level
of theory (e.g. ab initio electronic structure) and the
remainder of the system is treated at a lower level of
theory. The most widely used embedding method, and
the subject of our first application, is QM/MM, which
invokes a Quantum Mechanical (QM) treatment of the
active region with the remainder of the system treated
with Molecular Mechanics (MM) forcefields;1–22 however,
QM-in-QM embedding has also seen significant interest
in recent years.23–26

QM/MM has found broad applications ranging from
enzymology, structural biology, materials science, and
spectroscopy, among others.21,27–33 Another impor-
tant use of QM/MM is in describing solution-phase
chemistry,29,34,35 since a solvent environment lends it-
self naturally to an MM description, with the solute
treated at a QM level. This approach can be com-
bined powerfully with ab initio molecular dynamics for
a first-principles description of reactivity in complex
systems.6,29,32,36,37 However, a problem arises when ap-
plying embedding theory to a system of diffusible parti-
cles, such as a solvent, if some of them are treated at the
QM level: a QM/MM boundary must be made between
identical molecules, and without special techniques, the
QM and MM molecules will inter-diffuse, leading to a loss
of QM/MM partitioning. Of course, one straightforward
way to avoid this issue is to treat the solvent entirely at
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the MM level; however, this is not always possible, for ex-
ample if the chemical process of interest involves proton
or charge transfer with the solvent. Other solvated sys-
tems that pose a challenge for traditional QM/MM ap-
proaches are solvent-supported electronic states, a prime
example of which are solvated electrons, which are excess
electrons embedded in a liquid solvent.38–41

There are two broad classes of approaches to solving
the boundary issue in QM/MM with diffusible particles:
Adaptive QM/MM and Constrained QM/MM. In the for-
mer approach, the treatment of particles changes dynam-
ically between QM and MM descriptions as the molecule
traverses the boundary. This is usually accomplished by
an interpolation of QM and MM energies and/or forces
between the regions, and several such methods have been
developed, differing in how the boundary is defined and
how the interpolation is achieved.3,7–9,11,15,17,19,22 Adap-
tive methods have the advantages that the number of
QM molecules need not be conserved and diffusional dy-
namics are captured. However, it is known that cur-
rent adaptive QM/MM methods suffer from structural
and dynamical artefacts at the boundary due to a mis-
match of QM and MM interactions, which must some-
how be corrected.22 High quality MM forcefields, such as
MBPol, show promise at overcoming this QM/MM mis-
match issue.42

In contrast to Adaptive QM/MM, Constrained
QM/MM methods use a fixed definition of QM and MM
atoms and apply some form of bias to the system to main-
tain their separation. Several methods fall under this
category, including the method we develop below. To
our knowledge, the first Constrained QM/MM method
was Flexible Inner Region Ensemble Separator (FIRES),
introduced by Rowley and Roux.10 Based on a rigorous



Shen and Glover 2

partitioning of the system’s configurational integral into
an inner and outer region,43 FIRES adds a half-harmonic
repulsion potential to MM molecules at the boundary,
whose location dynamically adjusts based on the out-
ermost QM molecule. The magnitude of bias required
to maintain QM/MM separation and preserve ensemble-
averaged structural quantities was however found to be
large, and the authors cautioned against using FIRES
with a large QM region or for the prediction of dynamical
quantities.10 Shiga and Masia developed the Boundary
based on Exchange Symmetry Theory (BEST) method
which uses a carefully chosen bias potential to achieve
QM/MM separation while preserving ensemble average
quantities.13,14 However, similar to FIRES, a large mag-
nitude of bias was required to maintain QM/MM sepa-
ration, necessitating the use of small timesteps of 0.25
fs. These authors later developed Quasi-boundary based
on Exchange Symmetry Theory (QUEST), which cor-
rects for violations of exchange symmetry due to dif-
ferences in the QM and MM potentials, at the expense
of additional QM calculations on the exchanged particle
configurations.44 They found these corrections improved
the predictions of dynamical properties for a toy system
compared to BEST; however, a QM/MM implemention
of QUEST has not yet been described. The Boundary
Constraint with Correction (BCC) method, developed by
Takahashi and co-workers, applies a post-processing cor-
rection to constrained QM/MM simulations to remove
effects of the bias from equilibrium properties, when the
bias potential itself is not constructed to preserve equilib-
rium properties;20 however, no correction for dynamical
properties was developed.

Based on the current status of constrained QM/MM
methods, it is evident that there is room for improve-
ment, in particular with respect to reducing the mag-
nitude of required bias so that longer timesteps can be
used and dynamical quantities are minimally affected.
We propose that any new constrained QM/MM method
should ideally posses the following five qualities: 1)
closely maintain QM/MM separation (some small vio-
lations of separation, such as found in FIRES and BEST
are acceptable). 2) Rigorously preserve ensemble aver-
aged quantities, at least in the limit that the QM and
MM potentials are identical. 3) Not introduce poten-
tial energy surface discontinuities or large bias forces so
that molecular dynamics can be propagated with a 1.0
fs timestep for liquid water while conserving total en-
ergy. 4) Introduce bias forces that are localized only to
molecules close to the QM/MM boundary, thereby min-
imally perturbing dynamical quantities in the inner QM
region, at least on sub-diffusional timescales. 5) Con-
tribute negligible computational overhead compared to
the cost of QM/MM electronic structure calculations.

Building on the formalism introduced in BEST,13 in
this work we develop the Flexible Boundary Layer us-
ing Exchange (FlexiBLE) method. The key idea is a
construction of the biasing force that acts, in princi-
ple, on every QM and MM pair and all their possible

combinatorial exchanges, allowing for ensemble averages
to be rigorously maintained, even with some degree of
QM/MM mixing. With a careful choice of biasing poten-
tial, however, the biasing forces can be truncated outside
a narrow boundary layer of QM and MM molecules, and
the surviving terms can be efficiently enumerated with
a tree algorithm. As a result, the influence of the bias
is highly localized to the boundary region. Using one-
electron mixed/quantum classical (MQC) simulations of
the aqueous solvated electron, e−(aq),

45,46 as a benchmark,

we demonstrate that FlexiBLE satisfies the five qualities
set forth above. In the companion paper, we use Flexi-
BLE to build an ab initio many-electron QM/MM model
of e−(aq) to explore its structural, electronic, and dynami-

cal properties.
The remainder of the paper is as follows. In section

II A, we briefly review the formalism of FIRES to pro-
vide context for other constrained QM/MM methods. In
section II B, we then describe BEST and its relation to
FIRES. Our FlexiBLE method is introduced in section
II C. In section III, we benchmark the methods on equi-
librium and dynamical properties of a MQC description
of the hydrated electron. Finally, conclusions are drawn
in Section IV.

II. THEORY

A. FIRES

To provide the context for our development of Flexi-
BLE, we first briefly review the FIRES method of Row-
ley and Roux,10 since we shall see connections to the
BEST and FlexiBLE methods discussed later. We start
by considering the classical configurational integral of a
homogeneous solvent of N molecules:

Z =
1

N !

∫
dR1

∫
dR2 · · ·

∫
dRN exp(−βV (R)), (1)

where V (R) is the system’s total potential energy, β =
1/kBT is the inverse of the temperature multiplied by
Boltzmann’s constant, Ri is a configuration of solvent i’s
atomic positions, and R = (· · · ,Ri, · · · ,Rj , · · · ) collects
the entire system’s atomic positions. The N ! denomina-
tor accounts for the indistinguishability of the solvent
molecules. Additional integrals over solute degrees of
freedom can be included without loss of generality.10

Next, the solvent molecules are partitioned into “in-
ner” and “outer” regions, where the inner solvents are
defined as the n closest molecules to a particular coordi-
nate, which could be a solute atom, or a collective coor-
dinate such as the system’s center of mass. The remain-
ing N − n solvent molecules are considered to be in the
outer region (see Fig. 1 of Ref. 10). With this partition-
ing, and building on formalism introduced in the mixed
explicit-implicit simulation method called Spherical Sol-
vent Boundary Potential,43 Rowley and Roux showed
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that the configurational integral could be re-expressed
as:

Z =
1

n!

∫
dR1

∫
dR2 · · ·

∫
dRn

1

(N − n)!∫ ′
dRn+1 · · ·

∫ ′
dRN exp(−βV (R)), (2)

where the prime indicates that the integral is performed
over the region of space outside the outermost of the
n inner solvent molecules. This implies that a simula-
tion can sample Eq. 2 by enforcing the constraint that
the inner and outer solvent molecules are not allowed
to exchange and swap. The exact equivalence between
Eq. 1 and 2 then guarantees that correct thermody-
namic averages will be obtained from such a constrained
simulation. The potential energy function can then be
computed by treating the inner solvent molecules with
QM electronic structure, and the outer solvent molecules
with MM forcefields. Eq. 2 provides the theoretical sup-
port for computing ensemble averages while maintaining
QM/MM separation.10

To render practical the sampling of Eq. 2 in a Molecu-
lar Dynamics (MD) simulation, Rowley and Roux added
to the system Hamiltonian a repulsive half-harmonic re-
straining potential:

V FIRES =
1

2
kFIRES

N∑
i=n+1

(Rinner−ri)2Θ(Rinner−ri), (3)

where ri is the radial distance of outer solvent molecule
i from the center of the inner region (taken with respect
to one of solvent i’s atoms, or its center of mass), kFIRES

is the force constant of the half-harmonic restraint, Θ(x)
is the Heaviside step function, and Rinner represents the
radial distance of the outermost inner solvent molecule:

Rinner = max(r1, r2, · · · , rn). (4)

The potential of Eq. 3 allows the constraint of no mixing
between inner and outer solvent molecules to be (approx-
imately) satisfied in an MD simulation,10 without the
complication of enforcing hard-wall reflecting boundary
conditions between the outer and inner molecules.47

FIRES has some very attractive features: the theoreti-
cal foundation provided by Eq. 2 is particularly transpar-
ent, and the restraining potential of Eq. 3 is straightfor-
ward to implement in an MD package. However, Eqs. 3
and 4 introduce two possible issues: 1) for finite kFIRES

and non-zero temperature, the outer (MM) solvent par-
ticles will, to some extent, cross the boundary defined by
the outermost inner (QM) solvent particle, since they
experience only a linear restoring force upon entering
the QM region. This (small amount of) QM/MM ex-
change then violates Eq. 2, and Jónsson and co-workers
showed very recently that this gives rise to artifacts at
the QM/MM boundary,47 explaining similar structural
problems observed earlier by Bulo and co-workers.12 2)

Eq. 4 introduces derivative discontinuities in the poten-
tial when the outermost QM particle’s identity changes
simultaneously with an MM particle being inside the QM
region. Although one should expect this to be a rela-
tively rare occurrence, the introduction of potential en-
ergy derivative discontinuities means that FIRES will vi-
olate energy conservation. The extent of the problem will
increase with the surface area of the QM/MM boundary,
and therefore with the number of QM particles.

Both problems of violation of QM/MM separation and
derivative discontinuities can be minimized by choosing
a sufficiently large value of kFIRES; however, what “suf-
ficiently large” means is expected to be system and QM
size specific. Furthermore, increasing kFIRES comes at
the cost of introducing larger QM/MM restoring forces,
necessitating a smaller MD timestep. Whether a bal-
ance can be found, with a kFIRES large enough to avoid
boundary artifacts, but small enough to allow a 1.0-fs
timestep is an open question. Unfortunately, for the hy-
drated electron system described below, we were unable
to find such a balance. This motivated us to consider
other constrained QM/MM methods.

As discussed above, structural artifacts observed in
FIRES arise from violations of the formal constraint of
no exchanges between QM and MM particles (Eq. 2).
One approach to avoid artifacts is to then rigorously en-
force QM/MM separation by imposing boundary con-
ditions between the QM and MM particles to prevent
them from exchanging. Shortly after the initial sub-
mission of our manuscript, a method that achieves this
was published: the scattering-adapted (SAFIRES) ap-
proach of Jónsson and co-workers.47 This method re-
places the half-harmonic repulsion potential of FIRES
with binary elastic collisions between QM and MM parti-
cles at the boundary, using a variable timestep algorithm.
Hard-wall reflective boundary conditions were also shown
to work but required a larger number of timesteps.47

SAFIRES is a very promising approach to solving the
QM/MM boundary issue, although so far it has been
demonstrated only on test systems with both “QM” and
MM particles treated at an identical MM level, rather
than a full QM/MM potential. Furthermore, the vari-
able timestep algorithm introduces significant complex-
ity in the MD integrator that complicates SAFIRES’s
incorporation into MD packages.

A simpler approach to avoiding artifacts at the
QM/MM boundary is to incorporate a bias potential
that allows some exchanges between QM and MM solvent
molecules, but in a way that closely maintains QM/MM
separation while leaving ensemble averages rigorously un-
changed. This is precisely what the BEST method seeks
to achieve,13 so we consider it next.

B. BEST

The starting point of BEST is the recognition that an
ensemble average is invariant to exchanges of like parti-
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cles. Thus, by treating QM and MM solvent particles as
identical (necessarily an approximation unless the MM
potential perfectly mimics the QM potential), one can
perform a weighted ensemble average wherein configu-
rations that have MM and QM mixing (exchanges) are
included with a low weight, whereas configurations that
have MM and QM separation are included with high
weight. In particular, consider the canonical ensemble
average of observable X:

〈X〉 =

∫
X(R) exp(−βV (R)) dR∫

exp(−βV (R)) dR
. (5)

In Eq. 5, configurations with an exchange of QM and
MM particles are averaged with equal weights. We could
instead add their contributions to the ensemble average
with different weights by introducing a normalized bias
function with the following properties:

fijk··· ≡ f(· · · ,Ri, · · · ,Rj , · · · ,Rk, · · · ) ≥ 0 (6)∑
L

P̂L(fijk···) = 1, (7)

where P̂L is an operator that permutes the indices ijk · · ·
and the second equality above ensures that f is normal-
ized after summing over all possible QM and MM ex-
changes. Shiga and Masia showed that with a bias func-
tion that satisfies Eqs. 6 and 7, and using the permuta-
tional symmetry of X and V , the ensemble average is for-
mally unaffected by the inclusion of the bias function:13

〈X〉 =

∫
X exp(−βV )fijk··· dR∫
exp(−βV )fijk··· dR

(8)

=

∫
X exp(−βṼ ) dR∫
exp(−βṼ ) dR

(9)

where the second equality results from incorporating the
bias function with an added bias potential:

Ṽijk··· = V + V bias
ijk··· (10)

V bias
ijk··· = −kBT log fijk··· (11)

To ensure normalization, the bias function can be written
as:

fijk··· =
hijk···∑

L P̂L(hijk···)
, (12)

where hijk··· is an unnormalized penalty function, and the
denominator of Eq. 12 is a normalization factor that sums
the penalty function over all possible QM and MM parti-
cle exchanges, resulting in (NQM +NMM)!/(NQM!NMM!)
unique terms.

Eq. 9 holds true for any bias function satisfying Eqs. 6
and 12, and this provides a great deal of flexibility in
the choice of penalty, h, in Eq. 12, which we will take
advantage of below in our formulation of FlexiBLE. To
maintain QM/MM separation, h should be non-zero for

configurations with QM/MM separation and vanishingly
small for configurations with QM/MM mixing. In this
work, following FIRES10 and BEST,13 we take the QM
region to be a sphere centered around the origin of the
system, with MM particles outside the sphere. Gener-
alizations to other QM geometries are possible.13 Per-
fect QM/MM separation is then achieved when the ra-
dial distance from the origin to any QM particle is al-
ways less than the radial distance from the origin to any
MM particle. Shiga and Masia proposed the following
penalty function to bias the ensemble towards QM/MM
separation:13

hij··· ,kl··· =

NQM∏
m=i,j,···

NMM∏
n=k,l,···

gmn (13)

gik =

{
1, xi < xk

exp(−α(xi − xk)), xi ≥ xk,
(14)

where xi and xk are the radial distances from the ori-
gin of the QM and MM particles respectively, and gik is
a pair function of QM and MM distances that is unity
for QM particles closer to the origin than MM particles
(thus favoring QM/MM separation), and decays expo-
nentially to zero with the distance of any QM particle
further from the origin than an MM particle (thus biasing
against QM/MM mixing). The exponent parameter, α,
controls the rate of decay of bias with QM-MM distance:
larger values of α achieve better QM/MM separation, al-
though as we show below, at the expense of requiring a
small MD timestep.

While Eq. 13 formally applies a biasing force to ev-
ery QM and MM particle, and therefore one might worry
that their dynamics are strongly influenced by the bias,
the product-of-exponentials form of the penalty function
means that for a large enough α, the dominant bias forces
will be imposed only on a single pair corresponding to the
furthest QM and closest MM particles. This motivated
Shiga and Masia to develop a Single Exchange (SE) ap-
proximation to the bias function, wherein Eq. 13 involves
only the pair function between the furthest QM and clos-
est MM particles, which after normalization via Eq. 12
leads to the following bias function:13,14

fSEi,k =
gik

gik + gki

=
1

1 + exp(+α(xi − xk))
, (15)

where i and k index the furthest QM and closest MM
particles respectively.

The pair function and resulting bias potential of BEST
in the SE approximation are shown as the black and red
curves respectively in Fig. 1(a). Here it is seen that in the
limit of large QM and MM separation, the bias potential
tends to a linear increasing function of distance, meaning
a constant bias force is applied to the furthest QM and
closest MM particles to restore QM/MM separation. The
magnitude of the restoring force is proportional to α,
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which explains why BEST in the SE approximation can
fail to maintain QM/MM separation for small α.13
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FIG. 1. Pair functions (black curves, left axis) and bias po-
tentials (red curves, right axis) for a single QM and MM pair
as a function of their displacement difference, ∆x = xi − xk.
Panel (a) BEST (Eq. 14) with α = 30 Å−1, panel (b) Flexi-
BLE (Eq. 18) with α = 15 Å−1.

The SE approximation has the advantage that it avoids
the formally factorially scaling number of exchanges re-
quired by Eq. 12, and the approximation can be made
better by increasing the value of α in Eq. 15. α can
thus be related to kFIRES of Eq. 3. In fact, in the limits
α→∞ and kFIRES →∞, SE-BEST and FIRES (and the
FlexiBLE method we develop below) become equivalent
to SAFIRES,47 and rigorously achieve QM/MM separa-
tion. However, unlike FIRES, SE-BEST allows a finite
α to be used while rigorously preserving ensemble aver-
ages, if α is large enough. As in FIRES, a balance must
be found: we would like α to be small enough to allow a
1.0-fs timestep, but large enough to make the SE approx-
imation sufficiently accurate. The balance, if achievable,
is again expected to be system and QM-size specific. Un-
fortunately, for our hydrated electron system described
below, we were unable to find such a balance.

Another issue with SE-BEST is that while Eq. 15 is an
analytic function for a given QM and MM pair, since it is

defined in terms of the furthest QM and closest MM par-
ticles, whose identities can change discontinuously in the
course of a dynamics simulation, similar to the issue with
FIRES discussed in Section II A, fSE is a non-analytic
function of the particles’ coordinates, and therefore us-
ing it as a biasing function in molecular dynamics leads
to energy non-conservation, as we show below.

Instead of increasing α at the expense of a small
timestep, another approach to improving accuracy in
BEST with a small α would be to go beyond the SE
approximation and account for multiple QM and MM
exchanges in the denominator of Eq. 12. A step up in
complexity from the SE approximation is the Double Ex-
change (DE) approximation, which considers pair func-
tions involving the furthest two QM and closest two MM
particles.13 Then, following Eq. 13, the penalty function
becomes the product of four pair functions:

hij,kl = gik × gil × gjk × gjl, (16)

and the bias function is normalized by a sum of (2 +
2)!/(2!× 2!) = 6 terms:

fDE
ij,kl =

hij,kl
hij,kl + hkj,il + hlj,ki + hik,jl + hil,kj + hkl,ij

,

(17)
where ij and kl index the two furthest QM and two clos-
est MM particles respectively. While the DE approx-
imation might be expected to improve over the SE ap-
proximation, we find below that it exhibits poorer energy
conservation than the SE approximation. This results
from the derivative discontinuity of the pair function in
Eq. 14 at xi = xk, shown as the kink in the black curve
in Fig. 1(a). This derivative discontinuity happens to
cancel in the SE approximation (Eq. 15), but not when
multiple exchanges are included.

The issues of derivative discontinuities in the BEST
bias potential motivated us to explore alternative func-
tional forms for the pair potential, and led to the devel-
opment of the FlexiBLE method described in the next
section.

C. FlexiBLE

Our FlexiBLE method involves two key differences to
BEST. The first modification we make is to the pair func-
tion, gik, to ensure it applies an increasing bias force
with QM and MM distance while also having continu-
ous first and second derivatives. This guarantees that
QM/MM separation is (approximately) achieved for any
choice of α > 0 and that total energy is conserved in
MD simulations. The second modification is to include
all non-negligible permuted penalty functions, hij··· ,kl···,
by truncating the denominator of the bias function in
Eq. 12 using a tree algorithm. By including all impor-
tant QM/MM exchanges in the bias function, we can use
a much smaller value of α than SE-BEST required, with-
out introducing errors in ensemble averages. This allows
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us to achieve energy-conserving dynamics with a 1.0-fs
timestep. We provide details of these developments be-
low.

1. Pair function

As noted above, the BEST pair function, gik, in Eq. 14
leads to a constant bias force (being proportional to the
derivative of the pair function) between a pair of QM and
MM particles with large QM and MM separation (see
Fig. 1). The magnitude of the bias force that restores
QM and MM separation is furthermore proportional to
the exponent parameter, α, so if this parameter is too
small, QM and MM separation is not maintained (see for
example Fig. 4 of Ref. 13). Although this issue can be
resolved by choosing a sufficiently large value of α, we
find below that the resulting large bias forces require a
small timestep of 0.25 fs for a stable MD simulation, and
this incurs a significant computational overhead unless a
multiple timestep algorithm is used.14 To allow the use
of a smaller α parameter, it would be preferable to have
a bias force that increases with QM and MM separation,
as in FIRES.10 This can be achieved by replacing the ex-
ponent in Eq. 14 with a function that has a quadratic
decay at large QM and MM separation. Although a sim-
ple half-Gaussian function for xi ≥ xk would satisfy this
property, the second derivative of such a pair function
would be discontinuous at xi = xk and this would likely
cause convergence problems in geometry optimizations.
After some experimentation, we opted for the following
rational form of the pair function’s exponent:

gFlexiBLE
ik =


1, xi < xk

exp(− α3(xi − xk)3

1 + α(xi − xk)
), xi ≥ xk

(18)

The FlexiBLE pair function of Eq. 18 and the resulting
bias potential for a pair of QM and MM particles are
shown Fig. 1(b), where we see our choice of a rational
function exponent yields a smooth pair function (contin-
uous first and second derivatives) while also exhibiting
a quadratically increasing bias potential in the limit of
large QM and MM separation.

It is interesting to explore the behavior of the bias
potential for a pair of QM and MM particles with ∆x =
xi−xk ≤ 0. In this regime, the QM and MM particles are
not mixed, yet the bias potential is non-zero. This results
from the normalization condition on the bias function
(Eq. 12): as QM and MM particles approach each other
from ∆x < 0, the bias function with exchanged QM and
MM indices becomes non-negligible, so the magnitude of
the bias function is reduced from unity. Contributions
to the bias potential from QM and MM pairs that have
xi ≤ xk must therefore be considered. FIRES neglects
these contributions, and sets the bias potential to zero
for any configuration with QM/MM separation.10 This
can be understood as the cause of the structural artifacts

at the boundary observed in FIRES when kFIRES is not
large enough.12,47 However, in spite of the requirement
in FlexiBLE of including a bias even for configurations
with QM/MM separation, the bias potential is seen to
decay rapidly to zero for xi � xk suggesting a trunca-
tion of terms involving exchanges between QM and MM
particles with large negative displacement differences is
possible. Furthermore, the rapid increase of V bias with
xi � xk strongly biases against a large number of QM
and MM pairs having ∆x > 0, which always contribute
to the bias potential, again suggesting a truncation of
terms is possible. Indeed, we show below that the Flexi-
BLE bias function can be aggressively truncated. Never-
theless, the form of the bias function does permit a small
degree of deviation from perfect QM/MM separation in
a region around ∆x = 0 close to the QM/MM boundary.
This is true for any choice of pair function, including the
form used in BEST. The width of this region is controlled
by how rapidly the pair function decays with QM/MM
separation, and can thus be made negligibly small with
a suitably large value of α.

2. Truncating the bias function

The second modification to BEST we make is to in-
clude all non-negligible QM and MM exchanges in the
calculation of the denominator of the bias function in
Eq. 12. Since the total number of exchanges increases
factorially as (NQM+NMM)!/(NQM!NMM!), which would
introduce a computational bottleneck for QM regions of
more than a few particles, to make FlexiBLE practical,
we must aggressively truncate the sum over exchanges
in Eq. 12. The key to making this possible is a product
of pair function form of the penalty function, which we
retain from the BEST formalism:

hFlexiBLE
i′′j′′··· ,k′′l′′··· =

N imp
QM∏

m=i′′,j′′,···

N imp
MM∏

n=k′′,l′′,···

gFlexiBLE
ImIn , (19)

where i′′, j′′, · · · index important QM particles (to be de-

fined below) of which there areN imp
QM , and k′′, l′′, · · · index

important MM particles of which there are N imp
MM. Im is

the original index of the m-th important particle. Since
the bias potential favors QM/MM separation, most of
the QM and MM pairs give gFlexiBLE

mn = 1 and their con-
tributions therefore do not need to be included in the
penalty function. Furthermore, given the exponential
form of the pair function in Eq. 18, the magnitude of the
penalty function in Eq. 19 is dominated by the smallest
value of gFlexiBLE

mn , which comes from the pair involving
the furthest QM and closest MM particles after a par-
ticular exchange pattern. When the distance difference
between the furthest QM and closest MM particle is large
following exchange, the value of gFlexiBLE

mn , and therefore
also hFlexiBLE, for that exchange pattern can be safely
neglected from the denominator of Eq. 12.
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The observations above imply two levels of trunca-
tion in forming the bias function: Firstly, most QM and
MM particles do not contribute to the denominator of
the bias potential, because they give gFlexiBLE

mn = 1 (and
therefore could be neglected in the evaluation of Eq. 19)
and gFlexiBLE

mn ≈ 0 when exchanged (and therefore yield
a value of hFlexiBLE that can be neglected from the de-
nominator of Eq. 12). Secondly, most exchange patterns
in the denominator of Eq. 12 can be neglected because
they involve multiple exchanges of QM and MM particles
that result in a negligibly small hFlexiBLE. The denom-
inator of the bias function can therefore be aggressively
truncated and the FlexiBLE bias function is thus:

fFlexiBLE =
hFlexiBLE
ij··· ,kl···∑

L∈Limp P̂L

(
hFlexiBLE
i′′j′′··· ,k′′l′′···

) , (20)

where Limp is the set of important QM/MM exchanges
which lead to a non-negligible contribution to the de-
nominator, i.e. for which P̂L (hi′′j′′··· ,k′′l′′···) > hthre,
where hthre is a threshold parameter. Note: the nu-
merator penalty function is evaluated for all QM and
MM pairs, without truncation (indicated by unprimed
indices). This is because the numerator could have a
value below the threshold parameter, but must not be
approximated as zero, or else the bias potential would
diverge.

The first type of truncation of the FlexiBLE bias func-
tion involves a pre-screening of important QM and MM
atoms that have at least one exchange resulting in a non-
negligible value of hFlexiBLE > hthre in the denominator
of Eq. 20. To find the important QM and MM particles
we start by reordering their indices based on the parti-
cle’s distance from the QM origin. Note: this reordering
might involve exchanges of QM and MM particles, but
as explained below, this is an exchange pattern that will
always be retained in the denominator of Eq. 20. Then,
as we show in Appendix C, a rigorous upper bound to
hFlexiBLE resulting from any exchange pattern (following
reordering) that exchanges the p′th particle from QM to
MM, and no closer QM particles, is given by the value
of the ordered penalty function with a single exchange of
the p′th particle with the innermost MM particle (with
index k′), i.e.:

hQM bound
p′ = hFlexiBLE

i′j′···k′··· ,p′l′···, (21)

where the primed indices indicate they have been re-
ordered. Likewise, an upper bound to hFlexiBLE resulting
from any exchange pattern that exchanges the q′th par-
ticle from MM to QM, and no further MM particles, is
given by its exchange with the outermost QM particle
(having index NQM):

hMM bound
q′ = hFlexiBLE

i′j′···q′,k′l′···NQM···. (22)

Furthermore, it is clear that the bounds decay mono-
tonically with increasing distance from the QM/MM
boundary, so that important QM and MM atoms can

be quickly pre-screened to satisfy hQM bound
p′ > hthre and

hMM bound
q′ > hthre.

The ability to pre-screen important QM and MM par-
ticles demonstrates that the FlexiBLE bias potential in-
curs non-negligible bias forces only on QM and MM par-
ticles within a thin layer at the QM/MM boundary. The
boundary layer’s radius depends on the instantaneous lo-
cation of the outermost QM and innermost MM parti-
cles (following reordering), and the width of the layer
depends on the bounds in Eq. 21 & 22. The boundary
layer is therefore flexible and allows for density fluctua-
tions in both the QM, MM, and their boundary regions.
A schematic of the boundary layer is shown in Fig. 2.

FIG. 2. Schematic of the FlexiBLE boundary layer. Parti-
cles are indicated by small circles (QM: red shade, MM: blue
shade). Important QM and MM particles that experience
bias forces are indicated by dark-shaded colors and form a
boundary layer (shaded in green).

While pre-screening the important QM and MM par-
ticles is vital to an efficient implementation of FlexiBLE,
used alone it does not avoid a steeply scaling computa-
tional cost with number of QM particles (confirmed nu-
merically in Fig. 10 below). This can be understood from
Fig. 2: as the total number of QM particles grows, so too
does the number of important particles in the bound-
ary layer, which scales as the ratio of the QM region’s
surface area to its volume (NQM)2/3 for the spherical
QM/MM partitioning of interest. Thus, to reduce the
scaling, a second type of truncation must be performed:
to neglect small values of the exchanged penalty function,
P̂L (hi′′j′′··· ,k′′l′′···) in the denominator of Eq. 20, which
we achieve with a tree algorithm.

We initiate the tree by noting that the one exchange
pattern of QM and MM indices that is guaranteed to
have the largest contribution to the denominator of the
bias function is the exchange that results in an ordering
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of QM and MM distances, i.e. perfect QM/MM separa-
tion, with a penalty function equal to 1. This exchange
pattern must always be included, and since the penalty
function from all other exchange patterns must be less
than or equal to the ordered penalty function, we take
this to be the root of the tree structure. The tree is then
traversed as follows: taking each node on the previous
level as a parent, we generate child nodes on the next
level by performing a single exchange between each QM
particle and the next immediate outer particle if it is
an MM particle. We avoid duplication of children with
each other by comparison against a growing list of vis-
ited child nodes on each level. Without truncation, the
tree would terminate on a single node corresponding to
complete MM and QM exchange, although of course this
would ordinarily correspond to a negligibly small penalty
function, and the tree could have been truncated many
levels before this.

We generate the tree in the above way for two reasons:
1) without any truncation, the procedure is guaranteed
to visit every unique QM and MM exchange, as proved
in Appendix A. 2) The penalty functions for child nodes
constructed as a single exchange between a QM and the
next outer particle (if MM) are guaranteed to be less than
or equal to the penalty function of their parent node, as
we prove in Appendix B. Thus, once a parent node is
below the penalty function threshold, hthre, no children
need to be generated and that branch of the tree can
be truncated: this is the key to avoiding strict factorial
scaling in the number of denominator terms.

In Fig. 3, we show a schematic of our tree algorithm
applied to a hypothetical system of 3 important QM and
3 important MM particles. As in this example, the zeroth
level always contains a single root node corresponding to
the ordered indices. In addition, the root node always
gives rise to a single child on the first level corresponding
to an exchange of the outermost QM and innermost MM
particle indices (3 and 4 respectively in this example). If
the displacement difference between the outermost QM
and innermost MM particle was sufficiently large com-
pared to α−1, the tree could be truncated at this level
(we do find this to occur occasionally during the MD tra-
jectories described below). In the hypothetical example
considered in Fig. 3 however, this is not the case, and
the second level thus has two children from exchanging
QM particle 2 with MM particle 3, and QM particle 4
with MM particle 5. These nodes then generate three
children on level 3 (note, one child is shared between the
two parents of level 2). At this level, our algorithm de-
tects that the node corresponding to hFlexiBLE

126,345 falls below
the threshold (indicated by the change of color to red),
and therefore no children are generated from this node.
At level 4, only a single child meets the threshold crite-
rion, while at level 5 no children are above the threshold,
and therefore the algorithm stops. All surviving nodes
are summed to give the denominator of Eq. 20: note,
we include parent nodes that were below threshold, since
we had already computed their bias function; however,

their children are discarded. We provide pseudocode for
the tree algorithm in Supplementary Material section S-
I. We verify numerically in Section III D below that the
number of surviving child nodes exhibits sub-exponential
scaling with QM size, with a lower exponent power than
without truncation.

ℎ 123,456

ℎ 124,356

ℎ 134,256 ℎ 125,346

ℎ234,156 ℎ 135,246 ℎ 126,345

ℎ 235,146 ℎ 145,236 ℎ136,245

ℎ 245,136 ℎ 236,145

1

2

3

5

4

6

(a)

(b)

FIG. 3. The FlexiBLE tree algorithm applied to a hypotheti-
cal system of 3 important QM and 3 important MM particles,
indicated by the schematic shown in panel (a), following the
color scheme of Fig. 2. Each node of the tree (ellipses), shown
in panel (b), indicates a unique QM/MM exchange pattern
(shown by the indices of h). Child nodes are generated by
performing a single exchange between each QM particle and
the next immediate outer particle if it is an MM particle, indi-
cated by arrows. Duplicate children are not double counted.
Yellow nodes indicate the bias function is above the thresh-
old, h > hthre, and further children are generated. Red nodes
indicate h ≤ hthre and no children are generated (i.e. the
branch is truncated). The tree is terminated when all nodes
on a level are below threshold, which happens here on level 5.
h is summed over all nodes to give the denominator of Eq. 20.

While the tree algorithm described above is an efficient
means to sum over important exchanges of the penalty
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function in the denominator of the FlexiBLE bias func-
tion, the relation between the penalty function threshold,
hthre, and the error introduced by truncation of the de-
nominator is not immediately clear. In particular, since
the penalty function is always positive, truncation nec-
essarily leads to an underestimate of the true denomi-
nator. Furthermore, the number of neglected nodes in
the tree grows factorially with the number of important
QM and MM particles following pre-screening. While our
tree algorithm guarantees that each neglected node has a
penalty function below the threshold, one might be con-
cerned that an astronomical number of neglected nodes
sum to a non-negligible value. To allay this concern,
we use an adaptive thresholding, by sweeping through
the tree in an iterative fashion, and at each new iter-
ation, tightening the threshold, hthre, to 0.5 of its pre-
vious value. The relative change in the denominator of
Eq. 20 is monitored between iterations, and when below
a convergence parameter, γ, the iterations stop. Given
the logarithmic dependence of the bias potential on the
bias function (Eq. 11), γ directly provides an estimate
of the error in the bias potential due to truncation, in
units of kBT . We find a value of γ = 0.001 kBT yields
stable MD trajectories, and convergence is reached typi-
cally within two or three FlexiBLE iterations, suggesting
that the error in the denominator is typically no worse
than an order of magnitude larger than hthre.

Putting all the pieces together, we present pseudocode
for FlexiBLE in Algorithm 1 below. Note: analytical bias
forces on the QM and MM particles follow straightfor-
wardly from chain-rule derivatives of the pair, penalty,
bias, and potential functions (Eqs. 11, 18-20) with re-
spect to particle coordinates. We thus evaluate and accu-
mulate bias force contributions simultaneously with the
computation of each surviving hFlexiBLE term. With the
pre-screening of important QM and MM pairs, combined
with the tree-algorithm enumeration of important QM
and MM exchanges, evaluation of the bias potential and
forces has an MM-forcefield-like computational cost, and
thus adds negligible overhead to a QM/MM simulation.

III. RESULTS AND DISCUSSION

To benchmark the FIRES, BEST, and FlexiBLE meth-
ods, we consider the quintessential system exhibiting
solvent-supported electronic states: the hydrated elec-
tron, e−(aq), which corresponds to an excess electron em-

bedded in liquid water. We choose an MQC description
of the system such that all water molecules are identi-
cally treated at an MM level. We can then divide the
water molecules into inner and outer regions (MM* and
MM respectively), allowing us to verify the accuracy of
FlexiBLE without possible errors arising due to a mis-
match of QM and MM interactions, and allowing a di-
rect comparison of structural and dynamical properties
against results from MQC simulations without FlexiBLE
partitioning. The low computational cost of MQC also

allows us to reach very large MM* sizes and hundreds of
picoseconds of sampling.

A. Computational details

We used a 20 Å radius spherical droplet model of the
condensed-phase e−(aq), containing 1035 water molecules,

with an excess electron solvated at the center of the
droplet. Although FlexiBLE is fully compatible with Pe-
riodic Boundary Conditions (PBC), we chose a spheri-
cal droplet model to match the many-electron FlexiBLE-
QM/MM model of e−(aq) that we develop in the com-
panion paper.48 Comparing our droplet results against
previous PBC MQC results shows the impact on both
structural and dynamic quantities from using a spherical
droplet model to be minimal.

An initial water droplet configuration was generated
from a previous PBC MQC simulation49 of the hydrated
electron with the Turi-Borgis (TB) potential46 by first
centering the electron at the origin, tiling space with pe-
riodic replicas of the cubic simulation cell, then prun-
ing to form a spherical droplet of the closest 1035 water
molecules based on oxygen distance from the origin. This
number of water molecules was chosen to be consistent
with the output of a SolvateCap command of the tleap
program in Amber18 for a water droplet radius of 20 Å.50

To prevent water evaporation into the surrounding vac-
uum, a half-harmonic confining potential was applied to
the oxygen atoms: V conf = 0.5kconf(rO − rdrop)2Θ(rO −
rdrop), where rO is the distance of the oxygen atom from
the origin, taken to be the center of mass of the system,
rdrop = 20 Å is the droplet radius, kconf = 10 eV/Å2 is
the confining force constant.

To be consistent with previous PBC MQC
simulations,49,51 the SPC/Flex water model was used
and the excess electron’s wavefunction was discretized
in a Fourier-Grid (FG) basis and the one-electron
Schrodinger Equation was solved with an iterative
diagonalization method (further details below). For
Ground-State (GS) simulations, we used 14 × 14 × 14
grid points with a spacing of 1.1034 Å. For excited-state
calculations, the grid was extended to 32 × 32 × 32,
keeping the grid spacing the same. Since the FG did
not span the entire simulation cell, following Ref. 52,
we periodically shifted particle positions by an integer
number of grid spacings in order to recenter the elec-
tron’s wavefunction, and avoid FG boundary artefacts.
Furthermore, a harmonic restraint with a force constant
of ke-COM = 10 eV/Å2 was placed on the electron
centroid using quantum-biased MD49,53 in order to
tether the electron to the center of the droplet, and
prevent it from diffusing to the droplet surface. Coulomb
and Lennard-Jones pair interactions were not truncated.

For each system (unbiased, FIRES, BEST, FlexiBLE),
we computed observables from ten trajectories of 50 ps in
length. The initial configurations of each trajectory were
sampled at 5 ps intervals from another trajectory of 50 ps
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Algorithm 1 Complete FlexiBLE algorithm

1: y ← hFlexiBLE
ij··· ,kl··· . Compute numerator of bias function (Eqs. 20 & 18).

2: {i′, j′, · · · , k′, l′, · · · } ← OrderIndices({i, j, · · · , k, l, · · · }) . Reorder particle indices based on distance from center.
3: hthre ← γ
4: for a FlexiBLE iteration do
5: {Ii′′ , Ij′′ , · · · , Ik′′ , Il′′ , · · · } ← PreScreen({i′, j′, · · · , k′, l′, · · · }) . With current threshold, hthre, pre-screen to get the

N imp
QM and N imp

MM important QM and MM particle indices using bounds of Eqs. 21 & 22

6: da ←
∑

L∈Limp P̂L

(
hFlexiBLE
i′′j′′··· ,k′′l′′···

)
. Compute truncated denominator with tree algorithm.

7: if da − da−1 > γda−1 then
8: hthre ← 1

2
hthre; Continue

9: else
10: Break
11: end if
12: end for
13: V bias ← −kBT (log y − log da)

in length, following an equilibration period of 10 ps. Ini-
tial velocities were randomly sampled from the Maxwell-
Boltzmann distribution, using a different random number
seed for each trajectory. Temperature was maintained at
298 K using the Bussi-Parrinello thermostat54 with a fric-
tion coefficient of 0.5 ps−1. Unless otherwise stated, the
velocity Verlet algorithm with a timestep of 0.5 fs was
used to propagate MD.55

At each MD timestep, the lowest eigenvalue of the
one-electron Hamiltonian with the TB potential was
solved iteratively using the Generalized Davidson (GD)
algorithm,56 as implemented in SLEPc 3.14.1.57 Forces
on the water molecules from the excess electron were
evaluated with the Hellmann-Feynman theorem,58 which
is exact for a fixed FG basis. To analyze energy-gap
fluctuations, the lowest five electronic excited states of
e−(aq) were computed in an ex post facto fashion on snap-

shots taken from the GS MQC trajectories. However, for
these excited-state calculations, we found that the GD
algorithm occasionally had convergence problems and
would miss roots, so we instead used the Krylov-Schur
algorithm59 along with a second-order Chebyshev poly-
nomial spectral transformation of the eigenspectrum, de-
scribed previously.52

Unless otherwise stated, 64 inner water molecules were
treated as “QM” particles using either BEST or Flexi-
BLE; however, since these particles retained MM force-
fields, we label them MM* to avoid confusion. MM*
and MM particle distances from the origin, needed in
Eqs. 14 and Eqs. 18, were computed based on the wa-
ter oxygen distance from the center of mass of the entire
system. This choice maintained translation invariance of
the Hamiltonian.

B. Structural properties

1. FIRES

We start by exploring how accurately FIRES repro-
duces ensemble-averaged structural properties of e−(aq).

The quantity of interest is the Radial Distribution Func-
tion (RDF), g(r), of the water atoms relative to the
excess electron’s centroid position. Fig. 4(a) plots the
e−-oxygen RDF from FIRES simulations with the half-
harmonic force constant, kFIRES, varied from 23.1 to 1000
eV/Å2. For the highest force constants, we found that a
timestep of 0.25 fs was needed to achieve energy conser-
vation during MD propagation, so we used this timestep
for all FIRES simulations. Results without a MM*/MM
constraining potential are labelled “Full system” and are
shown as purple circles.

From Fig. 4, we see overall good agreement between
FIRES and full system results except for a noticeable
blip of increased water density at a radius of 7.7 Å, corre-
sponding to the MM*/MM transition region. The obser-
vation of structural artifacts at the MM*/MM boundary
matches previous findings in Refs. 12 and 47. It is in-
teresting to note that Rowley and Roux did not observe
such structural problems in their simulations, even with
kFIRES = 500 kcal/mol/Å2,10 which is close to our small-
est chosen force constant of kFIRES = 23.1 eV/Å2. The
likely origin of this different behavior is that our MM*
size is much larger than the QM size used by Rowley and
Roux. Bulo and co-workers observed similar behavior,
noting that the performance of FIRES is density depen-
dent, and placing the QM/MM boundary in a region of
low density can mask structural problems.12

As expected based on the analysis in Section II A, the
deviations between FIRES and the full-system results are
seen to decrease with increasing kFIRES (see inset to panel
(a)). However, evidence of a small increase in water den-
sity at the boundary is seen even for kFIRES = 1000
eV/Å2. Unfortunately, the violation in energy conser-
vation during MD propagation using this value of force
constant is already quite large when a 1.0-fs timestep
is used (0.125 eV/ps, see Fig. S1), meaning that kFIRES

cannot be increased beyond 1000 eV/Å2. This motivated
us to consider other constrained QM/MM methods.
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FIG. 4. RDF of e−-oxygen distances from constrained
MM*/MM simulations with 64 inner MM* water molecules.
Panel (a): FIRES using different force constants, k, in units
of eV/Å2. The inset shows a blow up of the MM*/MM tran-
sition region. Panel (b): BEST using the single exchange or
double exchange approximations (solid red and dashed blue
curves respectively) with α = 189 Å−1. Unconstrained “Full
system” results are indicated as purple circles.

2. BEST

Fig. 4(b) plots the RDF for e−-oxygen distances from
BEST simulations in the Single (SE) and Double (DE)
approximations (solid red and dashed blue curve respec-
tively). Here we used a high value of the exponent pa-
rameter, α = 189 Å−1, to match the previous BEST
work.13,14 With this choice, we found that a timestep of
0.25 fs was needed for stable MD propagation.

Similar to FIRES, we see overall good agreement be-
tween BEST and Full system results except for notice-
able artefacts at the MM*/MM boundary region at 7.6
Å. Interestingly, BEST-DE performs worse than SE. Ev-
idence that derivative discontinuities in the BEST poten-
tial (discussed in Section II B) are the source of the prob-
lem is seen in Fig. 5, which reveals noticeable drifts in the
total energy of ∼ 0.8 eV/ps for BEST-SE (red curve) and
worsening to ∼ 1.7 eV/ps for BEST-DE (blue curve). We
note that these problems were not observed in the orig-

inal BEST work,13,14 which however used much smaller
QM (or MM*) regions of 12 or fewer water molecules,
compared to 64 in this work. In Fig. S2, we verify that
BEST-SE conserves energy and reproduces full system
results with MM* = 4. The derivative discontinuity prob-
lems therefore seem to become appreciable only for large
QM regions. This makes sense, since a large QM region
will experience frequent exchanges between the furthest
QM and second furthest QM particle, leading to deriva-
tive discontinuities resulting from the SE approximation.
The DE approximation also apparently fails to amelio-
rate this problem, since the pair function it relies on
(Eq. 14) itself has a derivative discontinuity, which is not
perfectly cancelled out, unlike in the SE approximation.
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FIG. 5. Total energy drift along a 10-ps trajectory for
BEST-SE, BEST-DE, and FlexiBLE simulations (red, blue,
and green curves respectively) in the NVE ensemble with a
timestep of 0.25 fs. The BEST simulations used α = 189 Å−1,
and FlexiBLE used α = 15 Å−1.

The lack of energy conservation in BEST leads to a
temperature gradient, with the MM* region heating up
relative to the MM region, as shown in Fig. 6. This is
despite the use of a thermostat, and the resulting non-
equilibrium condition explains why ensemble quantities
like the RDF in Fig. 4 do not agree with full system re-
sults. It is possible that the temperature gradients in
BEST could be ameliorated with a more aggressive ther-
mostating, in particular by associating an independent
thermostat with each particle, and increasing the fric-
tion coefficient from our choice of 0.5 ps−1. However,
such an approach would strongly affect dynamical quan-
tities, which we wish to preserve. The lack of energy
conservation in both FIRES and BEST motivated us to
develop the FlexiBLE method, described in Section II C.
We consider its performance next.
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FIG. 6. Temperature distribution for BEST-SE, BEST-DE
and FlexiBLE simulations (red long dashed, blue dashed, and
green dotted curves respectively) as a function of distance
from the excess electron. Full system results are shown as
the solid black curve. A noticeable temperature gradient is
observed for the BEST simulations, while FlexiBLE main-
tains thermal equilibrium, in agreement with the full system
results.

3. FlexiBLE

Before considering FlexiBLE’s ability to reproduce
structural properties, we first confirmed that it perfectly
conserves energy during MD propagation (green curve of
Fig. 5) and does not exhibit temperature gradients (green
curve of Fig. 6). We then computed e−-water RDFs from
FlexiBLE simulations using α = 5 Å−1. This small ex-
ponent allows for a stable MD propagation over a long
timescale with a timestep of 1.0 fs, which we confirm
from a series of NVE simulations, with results shown in
Fig. S4. RDFs are shown in Fig. 7, where we see per-
fect agreement between FlexiBLE (solid black curves)
and Full system results (green circles) for both e−-O and
e−-H RDF in panels (a) and (b) respectively.

Aside from the total RDF, there is also a question
of how well MM*/MM separation is maintained with a
small bias exponent. In particular, it was seen in BEST
that QM/MM separation broke down unless a bias expo-
nent of α ≥ 19 Å−1 was used.13 Fig. 7 shows a decompo-
sition of the RDF into MM* and MM contributions (solid
red and blue shaded regions respectively), which demon-
strates that FlexiBLE successfully maintains MM*/MM
separation, even when a small α = 5 Å−1 is used. The
small amount of overlap between MM* and MM contri-
butions to the e−-O RDF in panel (a) largely results from
density fluctuations that dynamically move the location
of the MM*/MM boundary, resulting in a smearing out
of their distributions in the ensemble average. The MM*
and MM e−-H distributions in panel (b) display more
overlap than the e−-O distributions since the bias poten-
tial is applied to the oxygen atom only, i.e. some MM
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FIG. 7. RDF of e−(aq) from FlexiBLE simulations with α = 5

Å−1 (solid black curves) compared to unbiased Full system
simulations (green circles). Panel (a): e−-Oxygen distribu-
tions. Panel (b): e−-Hydrogen distributions. Also shown
is a breakdown into MM* (red) and MM (blue) contribu-
tions. FlexiBLE reproduces full system results and success-
fully maintains MM*/MM separation.

water molecules can rotate their hydrogen atoms to be
within the MM* region. This is expected and desirable
behavior: applying orientational constraints on MM par-
ticles would lead to an artificial structuring at the bound-
ary, so we apply boundary constraints only on a single
atom (or virtual site) of each MM* and MM molecule.

FlexiBLE is able to maintain MM*/MM separation
even with a small bias exponent, due to our construction
of a bias potential that has an asymptotically quadratic
repulsion as particles cross the boundary (see Fig. 1).
It should be noted, however, that FlexiBLE does per-
mit a degree of MM*/MM mixing at the boundary, the
amount of which depends on the choice of bias exponent,
α. This mixing can be quantified by rmix, the differ-
ence between the radii of the outermost MM* and inner-
most MM molecules, the distribution of which is shown
in Fig. 8.

For α = 5 Å−1 (dotted red curve of Fig. 8), rmix has an
average value of 0.2 Å and remains below 0.6 Å, which
is less than an OH bond length. We view this as an
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FIG. 8. MM*/MM mixing in FlexiBLE, measured by rmix,
the difference between the radii of the outermost MM* and
innermost MM molecules. Distributions of rmix are shown for
two choices of bias exponent, α = 5Å−1 (dotted red curve)
and α = 15Å−1 (solid black curve). rmix ≥ 0 indicates
MM*/MM mixing, rmix < 0 indicates MM*/MM separation.

acceptable amount of MM*/MM mixing because the ro-
tational freedom of water places MM hydrogen atoms
within the MM* region (and vice versa) anyway (see
Fig. 7). Furthermore, the definition of rmix involves dif-
ferences in radial distances between the outermost MM*
and innermost MM molecules, which are not necessar-
ily neighboring each other. The MM* molecules are still
mostly surrounded by other MM* molecules. As a result,
we do not expect the observed mixing in FlexiBLE to in-
troduce problematic over-polarization of QM molecules
when it is applied to actual QM/MM simulations, at
least no worse than seen in regular QM/MM simulations.
Indeed, in Part II, we see that structural properties of
liquid water and the hydrated electron are free of arti-
facts in FlexiBLE-QM/MM AIMD simulations.48 With
that said, it is straightforward to reduce the amount of
QM/MM mixing, if so desired, by increasing α, at the
expense of needing a smaller timestep. We demonstrate
this in Fig. 8 for α = 15 Å−1 (solid black curve), which
required a timestep of 0.5 fs.

C. Dynamical properties

Having seen that FlexiBLE successfully reproduces
structural properties of e−(aq) compared to simulations

without a bias, we next consider dynamical properties.
Our focus is on Time Autocorrelation Functions (TACF),
which although are equilibrium dynamical properties, re-
quire a correct description of not only the system’s con-
figurational space distribution, but also its time evolu-
tion, making TACFs much more challenging to repro-
duce than time-independent ensemble averages like the
RDF. It is important to note that FlexiBLE, and indeed

any constrained QM/MM method, will be incapable of
describing long-timescale diffusional dynamics, since the
applied bias potential prevents QM or MM particles from
leaving their respective regions. As a result, in the long-
time limit, the QM particles’ self-diffusion coefficients
are necessarily zero in constrained QM/MM. However,
many processes of interest, such as photochemical re-
actions, radical reactions, solvation dynamics, and mo-
tions probed by electronic/vibrational spectroscopy oc-
cur on sub-diffusional timescales, and we seek to explore
whether FlexiBLE can accurately capture such dynamics.
Of particular interest is the energy gap autocorrelation
function of e−(aq), since this reports the dynamical cou-

plings between the solvent and QM solute, and can be
used to predict the absorption spectrum, including nu-
clear quantum effects.60 The gap correlation function for
state i is defined as

Ci(t) =
〈δEi(t) · δEi(0)〉
〈δEi(0)2〉

, (23)

where δEi(t) = (Ei(t)−E0(t))−〈Ei−E0〉, and Ei is the
adiabatic energy of state i (0 indexes the ground state).
We computed energy gaps along the MQC trajectories.
A timestep of 0.5 fs was found necessary to properly re-
solve the influence of the OH stretch on the correlation
functions in the frequency domain.

Fig. 9 shows C(t) for the first and fifth excited states
(panels a and b respectively). Full system results (green
dot dashed curves) agree with previously published PBC
MQC simulation results using the TB potential,60 where
we see that both state 1 and 5 exhibit rapid decorrela-
tion, reaching ∼10% of their initial values by t = 500
fs. Fourier transforms of the correlation functions reveal
that the energy gaps of either state are predominantly
coupled to translational and librational motions of wa-
ter; however, the gap to state 5 exhibits stronger cou-
pling to higher frequency vibrational modes.60 The dif-
ference between the gap correlation functions for state 1
and 5 results from the cavity localized nature of the s-like
ground state and p-like state 1 (see orbital plots in the
insets to Fig. 9), so that their energies are modulated in
a fairly parallel fashion by first-solvent-shell intramolec-
ular motion. On the other hand, having d-like symmetry,
and therefore a larger centrifugal repulsion from the cav-
ity, state 5 is much more delocalized and weakly coupled
to first-solvent-shell motions, such that its energy gap
fluctuations are dominated by the ground-state energy,
which is more strongly coupled to vibrations of the first
solvent shell.

We now test FlexiBLE’s ability to reproduce dynam-
ical quantities. Since a 0.5 fs timestep was used for the
full system calculations, we used the same timestep and
chose a FlexiBLE bias exponent of α = 15 Å−1. We first
consider a very small MM* region of 2 water molecules.
This choice places the MM*/MM partition in the first
solvent shell of e−(aq) and would be expected to alter its

dynamics. Indeed, we see noticeable deviations between
the correlation functions from FlexiBLE 2MM* (dotted
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FIG. 9. Gap Correlation Function, C(t), for e−(aq) from MQC

simulations with FlexiBLE MM*/MM partitioning. Panel
(a): ground to State 1 energy gap correlation function. Panel
(b): ground to State 5 energy gap correlation function. Molec-
ular graphics in the insets show isosurfaces of the relevant
orbitals (enclosing 0.667 e of charge density) involved in the
electronic excitations. Results are shown with two different
sized MM* regions: 2 MM* (dotted black curves) and 16 MM*
(solid red curves), with the latter in excellent agreement with
full system results (dot-dashed green curves).

black curve) and full-system results (dot-dashed green
curve), although the differences are modest. In partic-
ular, the gap correlation functions for both state 1 and
state 5 decay slower for FlexiBLE 2MM*, presumably
because first solvent shell translations and librations are
hindered by the biasing potential. Remarkably however,
upon extending FlexiBLE to include 16 MM* molecules
(two solvation shells), the computed gap correlation func-
tions (solid red curves) are indistinguishable from full
system results. Similar agreement is found also for larger
MM* regions. Thus, FlexiBLE is seen to preserve dy-
namical properties of the inner QM region, at least on
sub-diffusional timescales. Similar findings for the FIRES
method were observed by Bulo and co-workers.12

The electronic structure of e−(aq) is strongly coupled

to solvent motions (being a solvent-supported species),
particularly via translational and librational modes that

should be most strongly affected by the FlexiBLE poten-
tial, so the fact that we do not observe any detectable in-
fluence of the bias potential on the dynamics of e−(aq) gives

us confidence the technology could be used to study the
dynamics of many other solutes at a FlexiBLE-QM/MM
level, providing a sufficiently large QM region is chosen.

D. Computational scaling

We finally consider the computational scaling of Flex-
iBLE. Without truncation, the cost of the method is ex-
pected to scale as the number of penalty function terms
in the denominator of Eq. 20, Nterms, so we consider this
quantity first. As described in Section II C, there are two
stages of truncation: first a pre-screening of important
MM* and MM particles, then a truncation of exchanges
between the surviving important MM* and MM parti-
cles in the denominator of Eq. 20. We considered the
scaling of Nterms following both of these truncations by
performing a series of e−(aq) simulations with the number

of MM* waters varied from 4 to 384. An exponent pa-
rameter of α = 15 Å−1 was used for all simulation. 50
ps of dynamics was propagated and Nterms was averaged
along the trajectory. All simulations were performed on
a single core of an Intel Xeon E5-2630 v4 2.20GHz chip.

In Fig. 10 we plot how Nterms scales with the size of
the QM region, taken here to be the number of MM*
water molecules. The black curve shows the total num-
ber of exchanges after a pre-screening of important MM*
and MM particles. As expected based on theoretical
grounds (see Supplementary Material section S-II), fol-

lowing pre-screening, Nterms scales as 2a(N
QM)

2
3 , where a

is a free parameter. The relatively high power of (NQM)
2
3

means that for MM* regions of greater than ∼200 QM
particles, the FlexiBLE boundary potential evaluation
would become the most computationally expensive part
of the MQC calculation. This motivates the truncation
of QM/MM exchanges with our tree algorithm (dashed
red curve), which we see dramatically reduces Nterms and

lowers their scaling to ∼2b(N
QM)0.53 , with b a free param-

eter.
The computational cost of FlexiBLE is explored in

Fig. 11, which plots the average CPU time per timestep
spent on FlexiBLE and its breakdown into different op-
erations. The first operation is to sort QM and MM
indices (red squares): this is seen to have a low cost that
is constant with QM size, since the cost of sorting de-
pends on the total number of particles, NQM + NMM,
which is fixed in our simulations. The next operation is
the pre-screening of important QM and MM labels (black
circles). This also has a low cost that fits to a sublinear
power law with QM size. The evaluation of the FlexiBLE
numerator penalty function in Eq. 20 (purple upward tri-
angles) also has a negligible cost that does not scale with
QM size. The two operations that dominate a Flexi-
BLE calculation are thus the evaluation of denominator
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FIG. 10. Scaling of number of FlexiBLE denominator terms
(Eq. 20), Nterms with QM size. The effects of two types
of truncation are shown: the black curve shows the num-
ber of terms following a pre-screening of important QM and
MM particles. The dashed red curve shows the number of
terms following truncation of the denominator according to
the FlexiBLE tree algorithm. Equations of best fit are shown.

penalty function terms (turquoise downward triangles),
with a scaling that matches Fig. 10, and the bookkeeping
associated with maintaining a growing child-node history
to avoid their duplication (blue diamonds). Since both
of these operations happen in the inner loop of the Flexi-
BLE algorithm, they exhibit similar sub-exponential scal-
ing. As we see, it is the computations associated with the
child history that dominate the total cost of FlexiBLE.
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FIG. 11. Computational cost of FlexiBLE with varying QM
size, and its breakdown into different contributions, in order
of operation. CPU times report averages per timestep. Red
squares: cost associated with sorting particle indices by dis-
tance from center. Black circles: pre-screening of important
QM and MM indices. Purple upward triangles: numerator
of Eq. 20. Turquoise downward triangles: denominator of
Eq. 20. Blue diamonds: bookkeeping of child history to avoid
duplication of denominator terms.

That the bookkeeping associated with avoiding child

node duplication in the FlexiBLE algorithm should dom-
inate the calculation is a testament to how significantly
our truncation algorithm has reduced the number of
surviving denominator penalty function terms: with-
out truncation, they would overwhelm the computational
cost. Maintaining a child history is the remaining expen-
sive operation since at every level of the tree, each new
child must be compared against a growing list of previ-
ously visited children on that level, and the number of
children grows steeply with the depth of the tree, even
with truncation. We have made this operation as effi-
cient as possible by using a binary representation of the
QM and MM labels of each node. As a result, the ob-
served overall sub-exponential scaling of FlexiBLE has a
sufficiently small prefactor that the method has a CPU
time of <1 s even for QM sizes of ∼400 atoms, which
is certainly negligible compared to the cost of ab initio
electronic structure calculations on QM regions of this
size. Nevertheless, the sub-exponential scaling of Flex-
iBLE, compared to the polynomial scaling of electronic
structure, means that a crossover point will occur for QM
regions of sufficiently large size, after which the computa-
tional cost of FlexiBLE would dominate. The crossover
point depends on the level of electronic structure, but ap-
pears to be in the thousands of QM particles, for which
AIMD is already infeasible, without considering the cost
of FlexiBLE, and this will likely remain true for the fore-
seeable future. Thus, we consider FlexiBLE to be prac-
tical for some time to come.

It is reasonable to ask whether the complexity of Flexi-
BLE presented above is necessary, and if a simpler single
or double exchange approximation, as in BEST, could
work. We show in Supplementary Material section S-
VIII that a double exchange approximation, FlexiBLE-
DE, is able to reproduce RDFs, but only in the limit of
large bias exponent α ≥ 40 Å−1, where the approxima-
tion of exchanges between only two important MM* and
two important MM molecules is accurate. This comes
at the cost of requiring a 0.25-fs timestep, so we do not
recommend this approximation.

IV. CONCLUSIONS

In this paper, we developed a new constrained
QM/MM method called FlexiBLE, which allows for a
QM/MM partitioning between identical diffusible par-
ticles such as a solvent or gas. We demonstrated that
the method has the five qualities of a good constrained
QM/MM method set out in the introduction: 1) it closely
maintains QM/MM separation. 2) It rigorously preserves
ensemble averaged quantities. 3) It exhibits energy con-
serving MD propagation in liquid water with a 1.0-fs
timestep. 4) It introduces bias forces that are highly
localized to the QM/MM boundary, leaving dynamical
quantities in the inner QM region unperturbed, at least
on sub-diffusional timescales. 5) It comes with negli-
gible computational overhead compared to the cost of
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QM/MM electronic structure calculations.
We expect that FlexiBLE embedding will be broadly

useful in simulating static and dynamic equilibrium prop-
erties of complex systems. As a first showcase of the
method, in the companion paper,48 we apply FlexiBLE
to the dynamics and electronic structure of e−(aq) at a

many-electron QM/MM level. Although the initial focus
of the method has been on solvated systems, the bias
function can be easily modified to describe surface ge-
ometries, allowing a description of heterogeneous inter-
faces. Furthermore, since the FlexiBLE bias potential is
a function of nuclear coordinates only, and has an MM-
forcefield-like computational cost, the approach is en-
tirely compatible with other embedding schemes, such as
polarizable,61–64 density,23,24 and mean-field embedding
theories.25 We thus believe that constrained QM/MM
partitioning, as in FlexiBLE, is a promising alternative
to adaptive QM/MM.

SUPPLEMENTARY MATERIAL

See the supplementary material for further details on
our tree algorithm, the computational scaling of Flex-
iBLE, energy conservation for FIRES, a comparison of
BEST with small versus large QM regions, BEST versus
FlexiBLE energy conservation, energy conservation for
FlexiBLE with a small bias exponent, dynamical proper-
ties from FlexiBLE with a large QM region, and struc-
tural properties from FlexiBLE with a double-exchange
approximation.
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Appendix A: Proof that tree visits all QM/MM exchanges

Here we prove that all QM/MM exchanges are visited
by the tree algorithm described in Section II C. We start

by summarizing our algorithm in the language of graph
theory.

• With the set of important particle indices, U :=
{1, . . . , N imp

QM + N imp
MM}, we consider the directed

graph G = ({hS0
, . . . , hS , . . .}, E), where S0 :=

{1, . . . , N imp
QM } and for every set S ⊆ [U ] of size

N imp
QM , we define the node hS to represent hFlexiBLE

S,U\S .

• There exists a directed edge from hS to hS′ if S′

is obtained by removing some a ∈ S from S and
adding the corresponding a+ 1 /∈ S into S.

Claim. There exists a direct path from hS0 to every node
in the graph.

Proof. For every hS , let dS denote the difference between
the sum of elements in S and the sum of elements in S0

(i.e. dS is the level of the tree). We will prove the claim
inductively according to dS . The base is true because S
must be S0 itself when dS = 0.

Assume that for integer n ≥ 0 there exists a directed
path from hS0

to any hS with dS = n. Now we prove
that hS′ can be reached for any S′ with dS′ = n + 1. It
suffices to show that there exists a directed edge between
S′ and S for some S with dS = n. Then we can have a
path from S0 to S′ by extending the path from S0 to S
via this edge.

Let a1 < · · · < aN imp
QM

denote sorted elements in S′ and

b1 < · · · bN imp
MM

denote sorted elements in U \ S′. Observe

that b1 < aN imp
QM

(otherwise S′ can only be S0 and dS′ =

0). Then there must exist i, j such that ai = bj + 1.65

Hence, by swapping ai and bj , we will obtain the desired
S with dS = n.

Appendix B: Proof of tree hierarchy

To simplify the proofs of inequalities involving the
FlexiBLE penalty function, hFlexiBLE (Eq. 19), we first
introduce a new notation to identify the QM and MM
particle indices that the penalty function depends on.
To start, we assume that all QM and MM particles have
been ordered by distance from the center of the QM re-
gion, as discussed in Section II C. A QM/MM list used
to build hFlexiBLE is then defined as [AA · · ·ABB · · ·B]
where A and B are QM and MM particle labels respec-
tively, and the location of the label in the list indicates
the particle index. Perfect QM/MM separation corre-
sponds to the situation where all A labels are on the
left of B labels. Each unique list therefore corresponds
to a unique hFlexiBLE function. For example, a list of
[AABABB] corresponds to hFlexiBLE

124,356 .
By the definitions of Eq. 18 and 19, the root of the

FlexiBLE tree, hFlexiBLE
root , which has perfect QM/MM

separation, is:

hFlexiBLE
root = h[AA · · ·ABB · · ·B] = 1. (B1)
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hFlexiBLE
root is the largest term in the denominator because

all of its pair functions, gmn, are 1.
According to the tree algorithm discussed in Section

II C, we define a child node by performing on its par-
ent a single exchange between a QM particle and the
next immediate outer particle if it is an MM particle.
Thus, the only child generated from the root node is
h[AA · · ·ABABB · · ·B], with a value of gNQM,NQM+1 ≤ 1.
Thus we see that the first-level node of the tree is guar-
anteed to be equal to or less than the zeroth-level node.

To show that the hierarchical nature of the tree holds
generally for any parent and child, consider a parent node
of [· · ·AB · · · ], where A is the ith particle and B is the
(i+ 1)th particle. Suppose that there are N B labels to
the left of i with indices {n1, n2, ..., nN} and M A labels
to the right of i+1, with indices {m1,m2, ...,mM}. Note:
there can be an arbitrary number of A labels to the left
of i and an arbitrary number of B labels to the right of
i + 1. Upon exchange of i and i + 1 labels, the relation
between the value of the child node and parent node is:

hFlexiBLE
child = hFlexiBLE

parent × gi+1,i ×
gn1,i+1

gn1,i
× gn2,i+1

gn2,i
× · · · × gnN ,i+1

gnN ,i
× gi,m1

gi+1,m1

× gi,m2

gi+1,m2

× · · · × gi,mM

gi+1,mM

, (B2)

where we have retained only non-unit terms. Since gmn

is monotonically decreasing from 1 to 0, we have the fol-
lowing relations for any exchange:

gi+1,i ≤ 1,

gna,i+1 ≤ gna,i,∀ na,
gi,mb

≤ gi+1,mb
,∀mb, (B3)

which together with Eq. B2 proves that any child node
has a value equal to or less than its parent:

hFlexiBLE
child ≤ hFlexiBLE

parent . (B4)

Appendix C: Proof of FlexiBLE penalty function bounds

As discussed in section II C, the number of hFlexiBLE

terms can be aggressively truncated by including only
the important QM/MM particles that always contribute
at least one pair function gFlexiBLE (Eq. 18) that is
neither exactly 1 nor results in a penalty function be-
low the truncation threshold, hthre. This allows a pre-
screening of particles, and reduces the size of system from

(NQM,NMM) to (N Imp
QM ,N Imp

MM) based on the upper bounds

to hFlexiBLE in Eqs. 21 and 22.
To see how pre-screening works, consider the specific

case of 4 QM particles and 4 MM particles. The denomi-
nator of Eq. 20 involves a sum over hFlexiBLE terms result-
ing from all possible QM and MM exchanges. However,
if every exchange producing a QM label at the eighth
particle results in hFlexiBLE below the threshold, hthre,
these terms are truncated, and the only surviving terms
all have an MM label at the eighth particle position. Fol-
lowing Eq. 19, every surviving pair function, g, involving
particle 8 is exactly 1 and does not alter hFlexiBLE, thus
particle 8 can be excluded entirely in the construction of

hFlexiBLE, and N Imp
MM can be reduced by one.

To efficiently pre-screen particle indices, we seek an
upper bound to hFlexiBLE following any exchange pat-
tern that leaves the outermost QM label at the parti-
cle position under consideration. In the 4 QM, 4 MM

example, it is clear that the largest hFlexiBLE value is
h[AAABBBBA] (using the notation introduced in Ap-
pendix B). Any further exchanges (indicated below with
“X” labels) will lead to a smaller h, according to the tree
hierarchy relation in Appendix B. Therefore, starting
from perfect QM/MM separation, the single exchange
between the outermost QM label (particle 4) and the
eighth particle label (MM) serves as the upper bound for
pre-screening:

h[XXXXXXXA] ≤ h[AAABBBBA] =

g84 × g85 × g86 × g87 = hMM bound
8 . (C1)

Generalizing to arbitrary NQM and NMM, the MM
bound for particle q′ is:

h[ X · · ·X︸ ︷︷ ︸
q′−1≥NQM

AB · · ·B] ≤ h[A · · ·A︸ ︷︷ ︸
NQM−1

B · · ·B︸ ︷︷ ︸
q′−NQM−1

AB · · ·B] =

q′−1∏
i=NQM

gq′,i = hMM bound
q′ . (C2)

This proves Eq. 22. The proof of Eq. 21 follows similarly.
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