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Abstract

Characterizing the reaction energies and reaction barriers of complex reaction networks is

central to catalyst development and optimization. Nevertheless, heterogeneous catalytic sur-

faces pose several unique challenges to automatic reaction network characterization, including

large system sizes and open-ended reactant lists, that make ad hoc network construction and

characterization the current state-of-the-art. Here we show how automated algorithms for

exploring and characterizing reaction networks can be adapted to the constraints of hetero-

geneous systems using ethylene oligomerization on silica-supported single site Ga3+ catalysts

as a model system. Using only graph-based rules for exploring the network and elementary

constraints based on activation energy and system size for identifying network terminations,

a comprehensive reaction network was generated for this system and validated against stan-

dard methods. The automated algorithm (re)discovers the classic Cossee-Arlman mechanism

for this system that is hypothesized to drive major product formation while remarkably also

predicting several new pathways for producing alkanes and coke precursors. This demonstra-

tion represents the largest heterogeneous catalyst (more than 50 atoms, with an open-ended
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pool of reactants) to be characterized using a quantum chemistry-based automated reaction

method.

1 Introduction1

Establishing the kinetic details of complex reaction networks is central to understanding heteroge-2

neous catalytic surfaces.1–3 The development of such networks for new systems is often painstaking,3

even when good hypotheses exist for the governing reactions and cycles.4,5 Nevertheless, this sort4

of domain knowledge is often outpaced by the increased synthetic and experimental throughput5

that are driving exploratory catalyst development. The time and cost of generating reaction6

data for new systems are thus impediments to interpreting catalyst performance, rationalizing7

structure-function relationships, and leveraging burgeoning (and data demanding) machine learn-8

ing approaches to catalyst development. For these reasons it is urgent to develop computational9

methods to accelerate and automate the exploration, characterization, and refinement of complex10

reaction networks at surfaces.11

In the context of heterogeneous catalysis, computational methods are relatively mature for12

characterizing the transition states of targeted reactions,6–12 performing microkinetic modeling on13

established reaction networks, and using descriptor-based methods for improving catalysts.13–1614

However, a central challenge in characterizing new catalytic interfaces lies in establishing the ki-15

netically relevant reaction network, which is often based on intuition and can be time-consuming16

and error prone to characterize ad hoc.4,5 Indeed, even seemingly simple heterogeneous reactions,17

like methane activation on metal oxide surfaces, can be decomposed into multiple elementary18

steps.17,18 Furthermore, catalytic cycles can involve many intermediates or even open ended reac-19

tant lists such that brute force enumeration and characterization are infeasible. Such examples20

include the oxidative coupling of methane and olefin oligomerization, each involving the forma-21
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tion/dissociation of long carbon backbones as intermediates and an open set of olefins as potentially22

adsorbed reactants.19,2023

For these reasons, the recent advent of automated reaction prediction approaches is potentially24

promising for elucidating reaction networks involving heterogeneous interfaces.21–23 These methods25

can be categorized on the basis of whether the potential energy surface (PES) is explored in detail26

to locate transition states or whether the reaction networks are enumerated using a closed set of27

reaction templates. The latter class includes packages like Network Generation (NetGen),24 and28

Reaction Mechanism Generator (RMG);25 however, due to the reliance on established reaction29

templates, this strategy is less relevant to characterizing exploratory catalysts where such data is30

typically absent. In contrast, methods that directly explore the PES circumvent this limitation,31

at least in principle. This class includes several approaches that are under active development,32

including the artificial force induced reaction (AFIR) method,26 stochastic surface walking reac-33

tion sampling (SSW),27 the ZStucture method from the Zimmerman group,28 and Yet Another34

Reaction Program (YARP),29 our recently developed methodology. All of these approaches are in-35

trinsically more expensive than template-based methods because they sample the PES (e.g., using36

quantum chemistry calculations), which has been a major obstacle to applying them to inhomo-37

geneous systems in an exploratory context. For example, both SSW and AFIR have been applied38

to successfully (re)discover the relatively simple heterogeneous water-gas shift reaction occurring39

at a copper surface.30,31 Nevertheless, this required millions of density functional theory (DFT)40

gradient calls, despite the small reactive system sizes. As the number of elementary steps grows41

and the complexity increases, a highly efficient reaction exploration scheme becomes even more42

indispensable to mitigate computational costs. Moreover, heterogeneous applications have several43

other technical obstacles to applying automated approaches that were designed for molecular sys-44

tems. These include the larger system sizes that are typical of surface models; the occurrence of45

spectator atoms that do not participate in reactions but nevertheless play important non-covalent46
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or structural roles in the reaction pathways; and the use of periodic versus molecular models of the47

reacting systems. The optimal manner of addressing these obstacles are all outstanding research48

questions.49

Here, we show how these problems can be addressed by combining YARP, a graph-based50

reaction exploration scheme, with a cluster model of a reactive interface. Ethylene oligomerization51

on silica-supported single site Ga3+ catalysts is used as a benchmark system for this approach52

based on the fact that some reaction data exists for this system while it still exhibits several53

unaccounted for product pathways. In particular, it has been previously observed that single site54

Ga3+ performs oligomerization chemistry via the classic Cossee-Arlman mechanism with reasonably55

high selectivity to short linear alpha-olefins; whereas, side products, such as light alkanes and56

coke, have also been detected.32 Here, YARP not only (re)discovers the 1-butene-centered Cossee-57

Arlman catalytic cycle, but also discovers TSs responsible for side reactions, such as the formation58

of isomers of 1-butene, odd-number oligomers, alkanes, and coke. Moreover, this represents the59

largest heterogeneous cataytic system (more than 50 atoms, with an open-ended pool of reactants)60

to be characterized using a quantum chemistry based automated reaction method. The reactions61

that are discovered by YARP are generalized based on mechanisms, including carbon-backbone62

lengthening, oligomer liberation, and hydrogen transfer to form alkanes. The kinetic significance63

of the TSs are further analyzed based on the energy surfaces of three representative catalytic cycles64

comprising 36 elementary steps.65
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Figure 1: Overview of automated reaction network characterizing applied to ethylene oligomer-
ization on single site Ga3+ catalysts supported on silica. (a) A cluster model of a Ga3+ single
site is built from a conventional periodic model. (b) Possible products are recursively enumerated
from reactants/intermediates following the elementary reaction steps on the cluster model. (c) A
series characterizations is applied to each enumerated reaction to locate and characterize transition
states. (d) Once the network exploration recursion terminates, detailed reaction mechanisms and
relevant reaction cycles are summarized.

2 Method66

2.1 Cluster Model Construction67

Ethylene oligomerization on single-site Ga3+/SiO2 was modeled based on a Si8O12(OH)8 cluster68

that was adapted from Ugliengo et al.33 A Ga3+ single-site was created by substitution of a Si-OH69

moiety with a Ga atom. The cluster model can be viewed as a finite portion of the solid silica, with70
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the dangling oxygen atoms passivated by hydrogen atoms. The localized nature of oxides and the71

Ga3+ center make the cluster model a credible approximation for assessing surface reactivity.33,3472

Comparisons between the energies and barrier heights calculated on periodic surfaces and the73

cluster model were used to validate this assumption. Based on an earlier study, initiation of a Ga-74

ethyl site from a bare single site and gaseous ethylene was expected to be facile, and a low barrier75

Ga-ethyl-centered Cossee-Arlman mechanism has been observed. Such active intermediates could76

easily form when catalysts are treated with hydrogen or ethylene gas.32 Thus, here the activated77

Ga-ethyl site with excess ethylene was treated as the starting reactant for network exploration.78

The Ga-ethyl site was created in the model cluster by adding an ethyl group to the Ga site and a79

proton to the adjacent oxygen atom to maintain charge balance (Fig. 1a).80

2.2 Reaction Network Characterization81

The recently developed YARP methodology was used to enumerate the reactions and characterize82

the transitions states associated with the Ga-ethyl species modeled in the presence of excess ethy-83

lene. For a more detailed description of the YARP methodology we direct readers to our previous84

publication.29 In the following sections we focus on the modifications that were implemented to the85

reaction enumeration and reaction pathway construction steps to adapt YARP to explore ethylene86

oligomerization on single-site Ga3+/SiO2.87

Product enumeration88

The YARP methodology consists of recursively applying graph-based elementary reaction steps89

(ERS) of the form break m bonds and form n bonds (bmfn). These rules are sufficiently generic90

to recapitulate many reactions without relying on explicit reaction templates and they define91

reaction spaces that can be comprehensively explored (e.g., all b2f2 pathways of a given set of92

reactants is a well-defined set). For neutral closed-shell systems, the simplest reaction that yields93
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non-trivial closed-shell products is b2f2 (e.g., an E2 reaction); however, single-step b3f3 reactions94

might also be both thermodynamically and kinetically accessible (e.g. Diels-Alder reaction and95

Claisen rearrangement). Here we applied a compromise scheme, including all b2f2 reactions and96

the subset of b3f3 reactions involving at least one double bond breaking. These ERSs were applied97

to the gallium, carbon, and hydrogen atoms attached to carbon in the cluster model (shown as98

pink, gray, and white balls in Fig. 1b) to enumerate all products for each reactant in the network.99

Reactions that did not involve Ga (e.g., non-catalytic reactions between ethane and other alkyl100

products) and reactions that yielded species with C>5 were discarded from consideration.101

Transition state localization102

After product enumeration, YARP attempts to localize transition states (TSs) for each reac-103

tion. This consists of initializing a reaction geometry, estimating the transition state at the104

semi-empirical GFN2-xTB35 level using the growing string method (GSM),36 transition state op-105

timization at the DFT level using Berny optimization, and intrinsic reaction coordinate (IRC)106

calculations to classify the resulting transition states (Fig. 1c). For the geometry initialization,107

the joint-optimization algorithm reported in the original YARP publication was retained, with108

the exception that the position of silica atoms (except the two oxygen atoms attached to gallium)109

were fixed to preserve the initial DFT-level cluster structure. These structures were then used as110

the fixed endpoints for GSM calculations, and after convergence, the highest energy node along111

the reaction pathway was selected as the initial guess for an unconstrained DFT level Berny tran-112

sition state optimization. The final TS (i.e. after successful convergence of previous steps with113

a structure exhibiting a single imaginary frequency) was characterized by an IRC calculation to114

ensure its correspondence to the attempted reaction. When the two end nodes obtained by the115

IRC calculation matched the input reactant and product, the attempted reaction was classified as116

an “intended” reaction and was included in the reaction network.117
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Reaction network construction118

To construct the reaction network, interleaved product enumeration and transition state localiza-119

tion was performed as described in the previous sections until exhausting the discovery of new120

reactions. At each stage of this iteration, the Ga-products of the previous iteration served as121

potential reactants for the next iteration subject to conditions that were designed to manage the122

size of the reaction network while being relatively permissive in terms of exploring new reactivities.123

Specifically, Ga-species were only included as potential reactants at the next iteration if they were124

connected to the rest of the network by an intended reaction with an activation energy less than 3125

eV (∼ 70 kcal/mol). Additionally, the size of the reactant species attached to the gallium site was126

limited to butyl and smaller to avoid the trivial growth of the network due to lengthening of the127

carbon backbone. All of the Ga intermediates obtained without violating these constraints were128

included as species capable of participating in reactions in the next iteration. At each iteration, the129

set of explored reactants consisted of all combinations of the active Ga-species and any free olefins130

that were produced as products during previous iterations of exploration. Thus, a newly generated131

Ga-species would participate in up to n+ 1 separate reactant sets, where n is the collection of free132

olefins discovered up until that point of exploration and the additional one corresponds to consid-133

ering unimolecular reactions involving the Ga-species. Reactant combinations involving more than134

six carbons were discarded to avoid trivial growth of the network. For each set of reactants, the135

ERS generated reactions were characterized and the recursion ended after no new reactions were136

discovered. We note that it is possible for a Ga-species to fail the activation energy constraint at137

an early iteration, but then to be included later if an alternative pathway is discovered.138
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2.3 Periodic DFT calculations139

The reaction energies and reaction barriers for a subset of pathways were recalculated on a amor-140

phous silica slab model with a large unit cell (21.6 Å× 21.6 Å× 34.5 Å) and compared with cluster141

model results for validation. These calculations were performed on the amorphous structure re-142

ported by Floryan, generated from an annealing process using classical molecular dynamics and143

multiple dehydration processes, which results in siloxane rings with different sizes.37 The Ga-ethyl144

moiety was created using the same approach as was employed in cluster models. Previous studies145

indicate that the less-constrained, three-coordinated Ga sites are responsible for the oligomeriza-146

tion chemistry, whereas the constrained four-coordinated sites are relatively inactive due to steric147

hindrance effects.32 Therefore, the periodic slab calculations focused on the less-constrained Ga148

site.149

2.4 Computational Details150

In the present study, YARP used Gaussian 16 as the reference quantum chemistry engine for the151

DFT calculations associated with the Berny optimizations and IRC calculations.38 Calculations152

were performed at the B3LYP/6-31G level of theory during network exploration, while reaction153

energies and reaction barriers were refined at the B3LYP-D3/6-311G(d,p) level of theory for vali-154

dation and comparison with periodic calculations. The GSM calculations were performed by the155

pyGSM package using eleven images, fixed reactant and product geometries, and other default156

hyperparameters.39 All GFN2-xTB calculations were performed with the xTB program (version157

6.2.3).35158

Periodic DFT calculations were performed using Vienna Ab-initio Simulation Package (VASP,159

5.4.1), where plane-wave basis sets expanded the Kohn-Sham orbitals, and the Kohn-Sham equa-160

tions were solved self-consistently.40–44 The BEEF-VdW exchange-correlation functional with pro-161
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jector augmented wave (PAW) pseudopotentials was employed.44–46 A Monkhorst-Pack k -sampling162

was used, and a k point grid of 2 × 2 × 1 was applied. A cutoff energy of 400 eV and a force-163

convergence criterion of 20 meV Å−1 for energy local minima were used. The climbing image164

nudged-elastic-band (CI-NEB) method was used as a first step to locate transition states.47,48165

Seven images were used in each NEB calculation as generated by the Image Dependent Pair166

Potential (IDPP) tool.49 Following each NEB calculation, Lanczos diagonalization was used to167

identify the transition state with a greater accuracy.50 The force-convergence criterion of a tran-168

sition state optimization was 20 meV Å−1. All energies are reported with respect to the ground169

state energy of Ga-ethyl plus a gaseous ethylene molecule.170

3 Results and Discussion171

3.1 Deep reaction network constructed by YARP172

The overall reaction network that was generated by YARP for ethylene oligomerization on silica-173

supported single site Ga3+ is shown in Figure 2. Network exploration was initialized with the Ga-174

ethyl species (node 0 in Fig. 2), which has been proposed as a key intermediate in Cossee-Arlman175

ethylene oligomerization cycle.32 After a single-step of reaction enumeration and TS characteri-176

zation, Ga-n-butyl, Ga-vinyl + ethane, and Ga-hydride + 1-butene, were identified as intended177

products of a reactions between Ga-ethyl and ethylene. The free energies of activation (∆G†)178

of forming Ga-n-butyl, Ga-vinyl, and Ga-hydride are 44.1, 59.8, and 93.5 kcal/mol, respectively.179

Based on its high activation energy, YARP excluded Ga-hydride from further exploration, whereas180

Ga-n-butyl and Ga-vinyl were included as active nodes for further reaction exploration. The high181

activation energy of β-hydrogen elimination forming Ga-hydride has also been observed in our182

previous studies using conventional periodic DFT.32 The second step of exploration identifies Ga-183
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Figure 2: Gallium catalyzed olefin oligomerization reaction network obtained from YARP explo-
ration. Free energies of activation are presented by the edge colors that represent kinetic acces-
sibility. Intermediate types are classified based on the alkyl and alkenyl attached to Ga and are
denoted by different node colors.

n-butenyl (from Ga-vinyl, ∆G† = 53.2 kcal/mol), acetylene (formed with Ga-ethyl from Ga-vinyl,184

∆G† = 51.4 kcal/mol), Ga-hexyl (from Ga-butyl, ∆G† = 61.3 kcal/mol), 1-butene (formed with185

Ga-ethyl from Ga-butyl, ∆G† = 36.0 kcal/mol) and butane (formed with Ga-vinyl from Ga-butyl,186

∆G† = 76.4 kcal/mol) as intended products. Notably, the lowest barrier step yielding 1-butene187

constitutes a rediscovery by the algorithm of the classic Cossee-Arlman mechanism that has pre-188

viously been studied as the likely pathway for major product formation in this system. Based189

on the activation energies of the reactions at this iteration, Ga-n-butenyl was included as a new190

active node for further exploration (node 7), Ga-n-hexyl was classified as a terminal node (node 13)191
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due to its size, and 1-butene was added to the free-olefin list as a candidate for further reactions192

with the active nodes, Ga-ethyl (node 0) and Ga-vinyl (node 1). YARP recursively explored the193

reaction space via the same approach that was employed in the first and second iteration until194

all reactions within the prescribed constraints had been explored. All reactions explored with195

∆G† < 80 kcal/mol are presented in Figure. 2 and detailed geometries of each node can be found196

in the SI.197

3.2 Three key reaction types occurring on Ga3+
198

Three distinct types of reactions were discovered during the network exploration that are distin-199

guished by their reactions with the adsorbed carbon species. All instances of each class exhibit200

∆G† < 70 kcal/mol. The first types is responsible for lengthening (or breaking as the reverse201

reaction) the carbon backbone (Type I in Fig.3). The TS of the Type I reaction involves a “C=C”202

moiety bonding to the catalyst to form a four-coordinate Ga intermediate that precedes bond203

formation with an adsorbed alkyl species. The second type of reaction is β-hydride transfer that204

enables liberation of an oligomer and closes an oligomerization cycle (Type II in Fig.3). In the TS,205

the β-hydrogen of the adsorbed alkyl species transfers to an incoming olefin, which binds to the206

Ga center and becomes a new adsorbate. An oligomerization cycle can also be completed by a β-207

hydride elimination step to form Ga-hydride, but YARP predicts a much higher activation energy208

for this pathway. The third type of reaction produces an alkane, leaving a hydrogen-deficient ad-209

sorbed species, like Ga-vinyl (Type III in Fig.3). The TS of the Type III reaction resembles that of210

Type II, except that the hydrogen transfers to the α-carbon. Alkane formation has been reported211

in multiple olefin oligomerization experiments,32,51–53 which may be explained by moderate-barrier212

Type III pathways. Further, we hypothesize that the products of type III reactions may undergo213

additional type I and type II steps. The combination of type I-III reactions may eventually liberate214

alkynes and aromatics that are commonly considered coke precursors.215
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Figure 3: Three elementary reaction types identified during reaction network exploration. (I) olefin
insertion; (II) β-hydride transfer; (III) α-hydride transfer.

In addition to recapitulating the expected Cossee-Arlman oligomerization cycle, these elemen-216

tary reaction types can also participate in several catalytic cycles for olefin isomerization and chain217

cracking (Fig. 4). Interestingly, following the formation of 1-butene and the recovery of the Ga-218

ethyl intermediate (species 5 in Fig.4), where a Cossee-Arlman oligomerization cycle is about to219

finish, the 1-butene molecule can be re-adsorbed with a simple rotation and react with Ga-ethyl220

again through another β-hydride transfer step (type II), producing Ga-2-butyl (species 6 ). This221

newly reported intermediate can undergo a facile type II reaction, forming cis- or trans-2-butene222

(only cis-2-butene formation is considered here, species 14 ). Alternatively, Ga-2-butyl can un-223

dergo additional type I and II reactions to form Ga-methyl with physisorbed propylene (species224

8 ). Intriguingly, there can be another re-adsorption step of propylene on Ga-methyl, resulting in225

a Ga-isobutyl species (species 15 ), which eventually leads to isobutene (species 17 ). Through-226

out the isomerization and cracking pathways, the type III step can occur on each Ga-alkyl species.227
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For example, a plausible pathway involving the type III reaction is outlined in the green circle228

of Figure 4, where the resulting Ga-vinyl intermediate undergoes additional β-hydride transfer,229

leading to the formation of acetylene (a coke precursor).230

3.3 Kinetic significance of types 1-3 transition states231

Focusing on the proposed oligomerization, isomerization, cracking, and coking pathways, the reac-232

tion energies and reaction barriers predicted by the cluster model were compared with the results of233

periodic DFT and NEB-Lanczos TS characterizations using the slab model. The kinetic relevance234

of three reaction cycles, which determine the selectivity of producing various gaseous products and235

coke precursors, were compared using potential energy diagrams (Fig. 5):236

(1) 2C2H4 −→ C4H8237

(2) 3C2H4 −→ 2C3H6238

(3) n+2
2

C2H4 −→ C2H2 + CnH2n+2, where n = 1, 2, and 3.239

Cycle (1) involves multiple ethylene dimerization products (Fig. 4a-c). One catalytic cycle240

simply closes through an ethylene insertion (denoted as type I) and a β-hydride transfer (denoted241

as type II). Following further type I-II steps occurring on Ga-ethyl with an adsorbed 1-butene242

(species 5 ), cis-2-butene and isobutene can also form (Fig. 4b-c). To complete the catalytic243

cycle of cycle (2), one propylene molecule can be obtained through C-C bond breaking of a Ga-244

2-butyl species (reverse type I). The production of a second propylene molecule occurs via the245

same Cossee-Arlman oligomerization cycle initiated by the Ga-methyl intermediate (species 9 ,246

Fig. 4d). In cycle (3), the type III elementary step generates an alkane, which may occur for all247

Ga-alkyl intermediates, and an alkyne, like acetylene, is formed that balances the stoichiometry.248

A relatively facile acetylene formation pathway occurs through a type II step occurring on the249

Ga-vinyl species from the type III reaction (species 3a , Fig. 4e). Many other relatively low250

barrier pathways (≤70 kcal/mol) are discovered by YARP, including the formation of various251
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CnH2n species, and CnH2n-2 isomers. The combination of these three elementary catalytic cycles252

thus results in a broad diversity of possible products.253

To validate the accuracy of the cluster model results, they were benchmarked against conven-254

tional periodic DFT results on reaction cycles (1) and (2) (Fig. 5a). For this comparison, the255

cluster model results were further refined at the B3LYP-D3/6-311G(d,p) level of theory to mini-256

mize the DFT errors as a confounding factor when comparing the cluster and slab results (see the257

Supporting Information for additional details). Overall, the conventional periodic DFT and the258

cluster model results generate similar binding energies, reaction energies, and reaction barriers.259

However, consistently higher activation energies are observed for the cluster model. For example,260

for the ethylene insertion step (species 2 to species 3 ), the cluster and periodic catalyst site261

models give activation energies of 1.8 and 1.5 eV, respectively. The difference may be attributed262

to long-range order in the silica support, which may cause a lower activation energy, but is absent263

in the cluster model. Moreover, the models are evaluated with distinct functionals due to their264

differing availability in the reference molecular and periodic quantum chemistry packages being265

used. Nevertheless, the two approaches predict similar relative barriers for all of the TS under each266

elementary step type. The mean difference between activation energies for type I versus type II267

reactions are 0.8 and 1.0 eV, calculated by the cluster model and the periodic model, respectively.268

Further, all type I transition states are nearly equally accessible in the energy landscape, and both269

models predict type II reactions to be consistently lower barrier. The overall excellent qualitative270

and quantitative agreement between the cluster and periodic models with respect to relative barrier271

heights validates the usefulness of the cluster models for performing reaction network exploration.272

273

Figures 5b-c outline the energy landscape comparison between the overall reaction cycles (1)-274

(3) using the cluster results. In cycle (1), where the carbon chain length doubles and 1-butene is275

formed (species 1 - 5 ), the ethylene insertion involves an activation energy (1.76 eV) higher than276
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Figure 5: Energy diagrams of three kinetically relevant reaction cycles discovered within the re-
action network. (a) Comparison of the energy landscape for cycle (2) using the cluster model
and periodic slab. (b) Comparison of competing olefin formation pathways (colored) and crack-
ing pathways (gray). (c) Comparison of competing acetylene formation pathways (colored) and
cracking pathways (gray). The species are numbered based on the pathway diagram in Figure 4.
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the olefin liberation step (1.02 eV). Indeed, previous studies have shown that ethylene insertion is277

rate-determining in this system,32 and the cluster calculations predict that the energy of a type278

I TS is typically higher than a type II. Throughout the energy landscape of cycle (2), three type279

I elementary steps have distinctly high activation energies: the ethylene insertion shared by cycle280

(1), the cracking of Ga-2-butyl (species 7 , 2.40 eV), and the step forming Ga-1-propyl (species281

10 ) from Ga-methyl and ethylene (2.08 eV). Particularly, the cracking of Ga-2-butyl, forming282

Ga-methyl and propylene, involves the highest activation energy since it is a reversed type I step.283

Both periodic and YARP-cluster results predict that type I reactions are exothermic. Therefore,284

cycle (2) may not dominate the reaction network. Indeed, previous experimental results of Ga285

single sites show a strong selectivity to olefin oligomerization at 250 °C and 1 atm, forming short286

linear oligomers.32) However, the cracking activation energy becomes lower as the temperature287

increases due to a favorable entropic effect (more degrees of freedom) on the reverse type I step288

versus the formation of longer Ga-alkyl carbon chain, thus narrowing the energy difference between289

Ga-2-butyl (species 7 ) and the cracking TS. Entropy can also shift the equilibrium since cycle (2)290

produces a higher number of gas molecules than cycle (1), suggesting that cycle (2) becomes more291

favorable at higher temperatures. Finally, the high barrier of the reverse type I step provides a292

basis for the competition between type I and III reactions starting from the Ga-2-butyl species. In293

particular, the formation of 1-butane (species 6 - 3c ) can be competitive with cracking reactions294

(species 7 - 8 ). Subsequently, acetylene formation can occur via facile type II reactions (species295

4c - 5c ,1.68 eV). Therefore, our pathway analysis suggests that type III reactions are kinetically296

less favorable, but nevertheless represent side-reaction channels that becomes accessible as they297

compete with the reverse of type I step. With the formation of alkynes, other side reactions, such298

as aromatization and coking, may occur as subsequent thermodynamic products.299
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4 Conclusion300

The maturation of reaction exploration algorithms will provide access to chemical network kinetics301

during the chemical discovery and design phases, rather than retrospectively. This presents sev-302

eral exciting possibilities for catalyst design, including optimizing catalysts with respect to specific303

products rather than specific mechanisms, predicting off-target pathways, and generating hypothe-304

ses for novel catalytic cycles. Here we have demonstrated how automatic exploration can be applied305

to heterogeneous catalytic networks using ethylene oligomerization catalyzed by a silica-supported306

Ga single site as a benchmark. The method (re)discovered the classic Cossee-Arlman oligomeriza-307

tion cycle and several side-product pathways with minimal user intervention. Given the generic308

reaction rules and size constraints that were used to generate this network, there are relatively few309

obstacles to applying this approach to other heterogeneous systems. Among the salient details of310

the implementation to consider moving forward are the use of a cluster model as a surrogate for311

a periodic slab and the major speedup provided by semi-empirical quantum chemistry. Neither312

detail is intrinsic to applying YARP. The cluster assumption was validated here and adopted out of313

convenience, since the useful GFN2-XTB semi-empirical method is at present non-periodic. There314

are no obstacles to applying YARP using a periodic code, outside of cost. Notably, cluster models315

used to be much more prevalent before the adoption of periodic DFT, and as demonstrated here,316

the assumption is robust for establishing relative barriers in localized catalysts, like oxide surfaces,317

that can be refined later at the periodic level as required. The applicability of this approach to318

other heterogeneous surfaces is therefore anticipated and is currently under investigation.319
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5 Data Availability320

The authors declare that the data supporting the findings of this study are available within the321

paper and its supplementary information files.322

6 Code Availability323

The version of YARP used in this study and a guide to reproducing the results is available through324

GitHub under the GNU GPL-3.0 License [repository doi will be inserted upon acceptance].325
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Skúlason, E.; Bligaard, T.; Nørskov, J. K. Scaling Properties of Adsorption Energies for341

Hydrogen-Containing Molecules on Transition-Metal Surfaces. Phys. Rev. Lett. 2007, 99,342

016105.343

(7) Nørskov, J.; Bligaard, T.; Logadottir, A.; Bahn, S.; Hansen, L.; Bollinger, M.; Bengaard, H.;344

Hammer, B.; Sljivancanin, Z.; Mavrikakis, M.; Xu, Y.; Dahl, S.; Jacobsen, C. Universality in345

Heterogeneous Catalysis. J. Catal. 2002, 209, 275–278.346

(8) Greeley, J. Theoretical Heterogeneous Catalysis: Scaling Relationships and Computational347

Catalyst Design. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 605–635.348

(9) Bligaard, T.; Nørskov, J.; Dahl, S.; Matthiesen, J.; Christensen, C.; Sehested, J. The349

Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal.350

2004, 224, 206–217.351

(10) Kropp, T.; Mavrikakis, M. Brønsted–Evans–Polanyi relation for CO oxidation on metal oxides352

following the Mars–van Krevelen mechanism. J. Catal. 2019, 377, 577–581.353

(11) Vojvodic, A.; Calle-Vallejo, F.; Guo, W.; Wang, S.; Toftelund, A.; Studt, F.; Mart́ınez, J. I.;354

Shen, J.; Man, I. C.; Rossmeisl, J.; Bligaard, T.; Nørskov, J. K.; Abild-Pedersen, F. On355

the behavior of Brønsted-Evans-Polanyi relations for transition metal oxides. J. Chem. Phys.356

2011, 134, 244509.357
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