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Abstract 

Development of novel organics that exhibit multiple and stable redox states, limited solubility and 

improved conductivity is a highly rewarding direction for improving the performance of lithium-ion 

batteries (LIBs). As biologically derived organic molecules, carbonylpyridinium compounds have 

desirable and tunable redox properties, making them suitable candidates for battery applications. In 

this work, we report a structural evolution of carbonylpyridinium-based redox-active organics, from 

2-electron accepting BMP to 4-electron accepting small, conjugated molecules (1, 2), and then to the 

corresponding conjugated polymers (CP1, CP2). Through suppression of dissolution and increasing 

electrochemical conductivity, the LIBs performance can be gradually enhanced. At a relatively high 

current of 0.5 A g-1, high specific capacities for 1 (100 mAh g-1), 2 (260 mAh g-1), CP1 (360 mAh g-1) 

and CP2 (540 mAh g-1) can be reached after 240 cycles. Particularly, the rate performance and cycling 

stability of CP2 surpasses many reported commercial inorganic and organic electrode materials. This 

work provides a promising new carbonylpyridinium-based building block featured with multiple redox 

centers, on the way to high performance Li-organic batteries. 
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INTRODUCATION 

The application of lithium-ion batteries (LIBs) for energy storage has attracted considerable interest 

due to their wide use in portable electronics and promising application in high-power electric vehicles.1, 

2 Nowadays, many studies focus on inorganic materials and their carbon-involved composites. But 

their fabrication consumes a huge amount of energy and releases a large amount of CO2, which 

undermines their environmental sustainability. Moreover, the ultimately limited availability of lithium 

on earth has forced researchers to evaluate alternative electroactive materials for batteries. Compared 

to inorganic materials, organic compounds are attractive alternative electrode candidates for next-

generation LIBs because of their distinct advantages such as lightweight, abundance, non-toxicity, 

sustainability, flexibility, and simple structure optimization.3-7 Therefore, replacing inorganic 

electrodes with organic materials in rechargeable batteries is ideal to alleviate the environmental and 

sustainability challenges.  

Over the past several decades, remarkable progress has been achieved with electroactive organic 

compounds for LIBs.7 A number of diverse structural motifs, such as organic free-radicals,8-11 

conjugated carbonyls,12-19 imine compounds,20, 21 phenothiazine,22-25 phenoxazine,26 

benzothiadiazole,27 dibenzothiophenesulfone,28 and azobenzenes29, 30 have been explored as electrodes 

for batteries. So far however, most of these organic materials are still not competitive enough with 

high-performing inorganic electrode materials. Their practical application is severely hampered by 

their high solubility in organic electrolytes and low electronic conductivity, which leads to poor cycling 

stability and rate performance. Moreover, the charge capacity is generally limited to either one or two 

electrons per molecule or unit, which limits the overall capacity and energy density of the battery. 

These constraints have motivated rapidly accelerating fundamental research to identify novel organic 

molecule that exhibit multiple and stable redox reactions, limited solubility and improved conductivity.  

Pyridinium salts demonstrate chemically reversible electrochemical behavior upon reduction. One 

representative example is the viologen family (quaternized 4,4’-bipyridiniums) that has been widely 

utilized in electrochromic devices and energy storage, due to their desirable redox properties.31-37 

Another notable example includes the NAD+/NADH couple that functions as an electron-transfer 

catalyst in the respiratory chain. The key active motif is the carbonylpyridinium unit, capable of 

accepting two electrons per unit.38, 39 By virtue of its two reversible redox events, high theoretical 

capacity, and its unique structural feature mentioned above, the use of benzoyl-N-methylpyridinium 
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(BMP) derivatives has been proven to be very promising for redox-flow batteries by Sanford and 

coworkers.40, 41 However, the exploration of this appealing bio-derived redox-active structure for 

application in LIBs is considerably underdeveloped, largely due to its high solubility in commonly 

employed electrolytes. 

Several strategies have been devised to address the dissolution problem of small molecule-based 

materials, such as polymerization or salification. Conjugated polymers, as opposed to their aliphatic 

counterparts, have particularly great advantage in achieving highly desirable electrical conductivity. 

The traditional design involves the integration of redox-active moieties in the main chain by 

conjugation with aromatic linkers. On the other hand, such design has inevitable drawbacks for 

providing stable redox potentials, due to large charge repulsion from the generated delocalized 

polarons and bipolarons in the backbone, therefore leading to a low battery performance. Very recently, 

we reported a rationally designed conjugated polymer with pendant benzoylpyridinium (BMP) redox-

active units that simultaneously reduce the solubility of the materials and mitigate the charge repulsion 

to enhance the overall battery performance.42 The carbonyl linker could effectively minimize the 

overlap of the HOMO and LUMO orbitals in the materials, allowing the redox centers to operate in a 

relatively interference-free manner. 

Herein, we now report a new rational molecular design strategy and comprehensive study on the 

performance of next-generation carbonylpyridinium-based redox active materials (Scheme 1). As part 

of this investigation, we developed the two di-cationic carbonylpyridinium-derivatives 1 and 2 that 

can stably store up to four electrons per molecule. By increasing the size of aromatic systems, the 

solubility of the materials is greatly reduced as the result of enhanced π-π stacking potential as well as 

their dicationic nature. Our studies have revealed that the donor-acceptor (D-A) design in 2 with an 

electron-donating bithiophene bridge helps to enhance intramolecular charge transfer that improves 

the electronic conductivity, and the final battery performance. Moreover, to further extend the 

conjugated system within a polymer backbone, we also developed a new dibrominated building block 

3, for the synthesis of a series of conjugated polymers CP1 and CP2. The main chain of these 

conjugated polymers is expected to reduce the twisting between the thiophene units because of the 

reduced steric repulsion between bithiophene and the alkynyl linkers, leading to a fairly co-planar 

extended backbone allowing for an efficient electron-conduction pathway. At the same time, the redox 

activity will largely be localized on the spatially separated, “pendant” carbonylpyridinium groups. As 
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cathode materials for LIBs, the prepared polymers present remarkably improved cyclability and rate 

performance, because of their high electrochemical activity and effective suppression of dissolution. 

Impressively, CP2 delivers not only the highest capacity but also the best cycling stability in this series, 

reaching up to 540 mAh g-1 after 240 cycles at 0.5 A g-1, and as such even competing with the best 

inorganic cathode materials. This work highlights the considerable potential of bio-derived 

carbonylpyridinium redox-active units for sustainable energy storage applications and provides 

strategy for how they can be improved in LIBs. 

 

 

Scheme 1. Evolution of carbonylpyridinium based two-electron catholytes from small molecules to 

conjugated polymers. 

 

RESULTS AND DISCUSSION 

Synthesis and Characterization 

Molecular compounds 1 and 2 can be easily synthesized in gram quantities from cheap 

commercially available starting materials in two steps with overall yields of 60-80 %. The synthetic 

route is presented in Figure 1a, and detailed procedures are provided in the Supporting Information. 

The key intermediates S1 and S2 were synthesized by regioselective lithiation of 4,4'-dibromobiphenyl 

or 5,5’-dibromo-2,2’-bithiophene with two equivalents of BuLi, followed by reaction of 4-

cyanopyridine. This method gave the benzoylpyridine derivatives in high yields and good purity. 

Methylation of S1 and S2 by reaction with excess MeI in DMF at 90 ºC gave the desired 

carbonylpyridinium products (1 and 2) as pale-yellow solids with quantitate yields. Conveniently, due 

to the high reaction efficiency, no tedious column chromatography is needed to isolate the 

intermediates and final products in pure form. All the intermediates and final products were fully 
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characterized by 1H and 13C NMR spectroscopy, as well as high-resolution mass spectrometry (HRMS) 

(see SI). The structures of 1 and S2 were further confirmed by single-crystal X-ray crystallography 

(Figure 1b and 1c). Common features are a highly planar central biphenylene or bithienylene bridge, 

while the carbonylpyridine (or pyridinium) units are twisted out of the central plane. The crystal data 

and structural refinement parameters are summarized in Table S1. 

 

Figure 1. (a) Synthesis of 1-3, (b, c) X-ray crystal structures of 1 and S2. The I- anions of 1 are omitted 

for clarity. 

 

To further extend the basic conjugated framework, a dibrominated compound 3 was designed that 

allows for subsequent cross-coupling reactions. The two-step synthesis of 3 is similar to that of 2. 

Polymerization of 3 via Sonagashira coupling by reacting it with the corresponding arylethynylenes 

(4,7-diethynyl-2,1,3-benzothiadiazole or 1,4-diethynylbenzene) in the presence of Pd(PPh3)2Cl2, CuI 

in DMF/Et3N (1:1, v/v) afforded CP1 and CP2, respectively. The resulting polymers are not soluble 

in either water, organic solvents, or organic carbonates (electrolyte), indirectly affirming their 

polymeric structure, and were thus easily purified by successively washing with excess DMF, methanol, 

dichloromethane, and finally diethyl ether.  
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The chemical structures of the polymers were verified by Fourier transform infrared (FTIR) 

spectroscopy and solid-state 13C nuclear magnetic resonance (13C NMR) spectroscopy. From the FTIR 

spectra (Figure S1), CP1 and CP2 exhibit strong peaks at υ = 1640 and 1650 cm-1, corresponding to 

the C=O stretching mode. Both polymers also display distinct a C≡C stretching vibration signal at 

2180-2190 cm-1, confirming the successful polymerization by connecting two monomers through a 

C≡C-bond. In addition, the 728 cm-1 band of 3 assigned to C-Br stretching, is absent in CP1 and CP2, 

manifesting the completeness of the polymerization reaction. As observed from the 13C NMR spectra 

(Figure S2), the signals at ca. 190 ppm support the existence of carbonyl carbon, while signals in the 

range of 120-150 ppm for CP1 and CP2 very likely arise from aromatic carbon atoms. The X-ray 

photoelectron spectra (XPS) of CP2 confirmed the presence of C, O, S, N, and I atoms, as well as the 

absence of Br atoms, lending further support to the efficiency of the polymerization process (Figure 

S3 and S4). 

Scanning electron microscopy (SEM) images show that CP1 and CP2 have a relatively uniform 

flower-like morphology (Figure 2a-d, S5), constructed from 2D nanosheets. The formation of this 

morphology can be explained by the synergistic polymerization and self-assembly process of the 

formed amphiphile polymers through hydrophobic-hydrophobic interaction and – stacking.34 Such 

unique morphology is beneficial for exposing more redox-active sites and also minimized diffusion 

length for the transport of ions/electrons, thus potentially delivering a higher capacity and enhanced 

rate performance.43 In contrast, undesirable fine-grained bulk morphologies were observed for 1 and 

2, probably resulting from tight molecular stacking, which is confirmed by their high crystalline nature. 

Powder X-ray diffraction (PXRD) patterns of 1 and 2 display several sharp reflection peaks at 2θ 

values of 5-30°. However, CP1-CP2 are amorphous, as revealed by broad peak in the range of 20° to 

25° in the PXRD pattern (Figure 2e). The Brunauer-Emmett-Teller (BET) surface areas for CP1 and 

CP2 were determined to be 24.1 and 41.3 m2/g, respectively (Figure S6). Such small surface area was 

tentatively attributed to the strong stacking as a result of the largely linear and extended conjugated 

system. Thermogravimetric analysis (TGA, Figure S7) of the as-prepared polymers under N2 unveils 

modest-to-high thermal stability. The decomposition temperatures (defined as the temperatures of 5% 

mass loss) were determined to be ca. 150 °C.  
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Figure 2. (a-d) SEM images of 1 (a), 2 (b), CP1 (c) and CP2 (d). (e) PXRD spectra and (f) electronic 

conductivities of 1, 2, CP1, and CP2. 

 

The solubility and electrical conductivity of the electrode materials are fundamental factors in 

determining battery performance. Solubility measurements indicate that 1 and 2 are much less 

soluble in electrolyte (ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl 

carbonate (EMC) (1:1:1, v/v)) than BMP. BMP has a high solubility exceeding 40 mg mL-1, 

while those of 1 and 2 are 0.25 and 0.05 mg mL-1, respectively. These results validate our 

design concept that the stronger intermolecular interaction (π–π stacking) can reduce the 

overall solubility, even for relatively small molecules. Polymerization further suppresses the 

solubility and two polymers (CP1 and CP2) gratifyingly exhibit undetectable solubility. On 
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the other hand, as shown in Figure 2f, the conductivity measurement confirms that the electrical 

conductivity of 2 (8.9  10-8 S cm-1) is slightly higher than that of 1 (6.2  10-8 S cm-1), 

consistent with the D-A design that leads to relatively stronger intramolecular charge transfer. 

Notably, significantly improved electrical conductivity was observed for CP1 (4.2  10-7 S cm-1) and 

CP2 (7.6  10-7 S cm-1), up to an order of magnitude higher than those of the small molecules 1 and 

2. 

 

Electrochemical and Optical Properties 

The electrochemical properties of 1 and 2 were initially evaluated using cyclic voltammetry (CV). The 

CV measurements were conducted in DMF with 0.1 M tetrabutylammonium hexafluorophosphate 

(TBAPF6) as a supporting electrolyte (Figure 3a). Compound 1 with biphenyl linker, demonstrates two 

well-separated two-electron transfer reduction waves at E1/2(1) = -1.05 V and E1/2(2) = -1.69 V (vs. 

Ag/Ag+), and the profile is almost identical with that of BMP, except a slight positive shift (Figure 

S8). This suggests that the two redox-active carbonyl pyridinium units in 1 remain completely 

independent, which is in line with related systems.44, 45 Compared with 1, each pair of reduction waves 

in 2 is split into two, leading to the appearance of four reversible reduction waves, with the reduction 

potentials (vs. Ag/Ag+) determined to be E1/2(1) = -0.97 V, E1/2(2) = -1.07 V, E1/2(3) = -1.60 V and 

E1/2(4) = -1.72 V. The reason could again be attributed to the intramolecular charge transfer due to the 

introduction of stronger electron-donating bithiophene linker. The peak-to-peak separation (ΔEp-p) for 

each wave is ca. 60 mV, indicating their good reversibility. In Figure 3b, the differential pulse 

voltammograms (DPV) further confirm the four-electron reduction processes of 1 and 2, and the 

patterns are consistent with the CV. The CV of 3 is almost identical with that of 2 (Figure S9). In 

addition, a negligible loss of signal is observed in both cases after 10 continuous CV cycles at a scan 

rate of 100 mV/s, suggesting their excellent electrochemical stability. Overall, each carbonyl 

pyridinium unit can serve as two-electron storage unit. As such, compounds 1 and 2 can store up to 

four electrons per molecule. To make it more intuitive, the four-electron transfer processes are depicted 

in Figure 3c. The first two-electron reduction event leads to the formation of neutral radical species, 

and the second two-electron reduction produces the formation of anionic species, in line with the 

electrochemical data for BMP reported in the literature.40, 42 
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Figure 3. (a) Cyclic voltammogram (CV) of 1 and 2 in DMF solution (c = 1 mM) with 0.1 M TBAPF6 

as the electrolyte. (b) DPV of 1 and 2 in DMF solution (c = 1 mM) with 0.1 M TBAPF6 as the 

electrolyte, parameters: increase E = 4 mV, amplitude = 50 mV, pulse width = 60.0 ms, sampling width 

= 20.0 ms, pulse period = 500.0 ms. (c) Reversible four reduction process for 1 and 2. (d) UV-vis 

spectra of 1 and 2 in DMF solution. (e) The energy levels of HOMO and LUMOs of 1, 2, CP1-T, and 

CP2-T obtained by DFT calculations. 

 

In dilute DMF solution, the π to π* absorption peak maximum of 2 is located at max= 402 nm, 

which is 80 nm red-shifted compared to 1 at max = 322 nm (Figure 3d). Moreover, 2 exhibits an 

additional low-energy absorption shoulder at 525 nm, which is attributed to intramolecular charge 

transfer from electron-donating bithiophene to carbonylpyridinium units. From the onset of the 

absorption (1: onset= 375 nm; 2: onset= 600 nm), a narrower energy band gap (Eg = 2.07 eV) is 

determined for 2 compared to 1 (Eg = 3.31 eV). Based on the equation ELUMO = -[𝐸𝑜𝑛𝑠𝑒𝑡
𝑟𝑒𝑑 -E(Fc/Fc+) + 

4.8] eV, the lowest unoccupied molecular orbital (LUMO) energies were calculated to be -3.8 eV for 

both 1 and 2. While the same LUMO energy level means that both compounds have identical electron 

affinity, the narrow band gap for 2 indicates its high electron conductivity, which is confirmed by the 

conductivity measurement. 
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To obtain a better understanding of the photophysical and electronic properties, density functional 

theory (DFT) calculations for small molecules and polymers were performed at the B3LYP/6-31G(d) 

level of theory using the polarizable continuum model (PCM) solvation model (solvent: CH3CN). The 

polymers were modeled as short chains containing three structural units (CP1-T and CP2-T) to keep 

the calculations manageable. The frontier orbitals diagrams, optimized structures and the coordinates 

are included in the SI (Figures S10-S14, Table S3-S6). For small molecules 1 and 2, the highest 

occupied molecular orbitals (HOMOs) are localized over the biphenyl or bithiophene linker. The 

calculated energy gap between HOMO and LUMO for 1 is larger than 2, consistent with the 

experimental trend. The contour plots of the five lowest unoccupied orbitals (LUMO to LUMO+4) 

reveal that LUMOs are largely distributed on the carbonylpyridinium units. Representative frontier 

orbitals HOMO, and LUMO to LUMO+4 as well as the calculated orbital energy levels are shown in 

Figure 3e. The energy gaps between LUMO and LUMO+1, LUMO+3 and LUMO+4 are very small 

(less than 0.35 eV, indicative of their degenerative nature). Interestingly, the LUMO+2 orbitals display 

a large contribution from the central linker, indicating that the extended linker may also play a role in 

accepting electrons. It is well-known that the LUMO energy level of n-type electroactive materials is 

a useful parameter for estimating its relative redox potential (a lower LUMO energy level corresponds 

to a higher reduction potential). Assuming that the electron configurations are rigid, electrons will 

successively fill the unoccupied orbitals from the lowest to the highest-energy orbital during the 

reduction process. 

The optimized structures of CP1-T and CP2-T reveal high planarity of the extended conjugated 

backbone (main chain. Figures S11-S12), where majorly contribute to the HOMOs. Analogous 

to small molecules 1 and 2, the LUMOs of the two polymers are also mostly located on the 

carbonylpyridinium units. Both polymers exhibit a dozen of low-lying orbitals from LUMO to 

LUMO+11 that could potentially be involved in relevant reductive processes (the lower/upper values 

are -3.8/-2.1 eV for CP1-T, -3.9/-2.7 for CP2-T, Figure 3e). Moreover, the introduction of an 

electron-withdrawing benzothiadiazole unit significantly lowers the LUMO in CP1-T.  
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Lithium-ion battery test 

For the investigation of 1, 2, CP1, and CP2 as active materials in LIBs, we fabricated composite 

electrodes containing 60 wt% of active material, 30 wt% carbon black (ECP-600JD) as the conductive 

additive, and 10 wt% polyvinylidene fluoride (PVDF) binder. A lithium metal disk was used as the 

counter electrode and LiPF6 (1.0 M) in a mixture of ethylene carbonate (EC), dimethyl carbonate 

(DMC) and ethyl methyl carbonate (EMC) (1:1:1, v/v) with 1% vinylene carbonate (VC) was used as 

the electrolyte. The cells were first evaluated using cyclic voltammetry (CV) over the voltage range of 

0.05-3.0 V vs Li/Li+ at 0.2 mV s-1. As shown in Figure 4a-b, the two polymers show two quasi-

reversible anodic peaks at 1.35 and 2.20 V (vs Li/ Li+), that are comparable to the performance of small 

molecules and related polymers in our previous report.42 In addition, the peak-to-peak area under the 

electrochemical event at 2.20 V were enhanced for CP2 as result of the introduction of 

benzothiadiazole unit as an additional redox center. This could consequently improve the capacity of 

the battery. In comparison, the two small molecules 1 and 2 exhibit less-obvious peaks (Figure S15), 

probably due to their undesired bulk morphologies, which hampers the effective full utilization 

of the redox-active units. 

As an important parameter in LIBs that is greatly influenced by the solubility, the long-term 

cyclability was first investigated. Figure 4c presents the cycling performance with a high 

coulombic efficiency of 1, 2, CP1 and CP2 at a current density of 0.5 A g-1. During the first 30 

cycles, all electrodes showed a steady decay in capacity, and the capacity values in a certain 

cycle follow the trend of 1 ˂ CP1 ˂ 2 ˂ CP2. The capacity loss in the first few dozen cycles is 

mainly ascribed to the electrolyte decomposition and the formation of solid electrolyte 

interphase (SEI) film, which is often observed for organic battery electrodes.46-50 The electrodes 

based on compounds 1, 2, CP1 and CP2 deliver reasonable capacities of 196, 293, 291 and 

390 mAh g-1 after 30 cycles. (Figure 4c). In subsequent cycles, the capacity of 2 stabilized at 260 

mAh g-1, while 1 further underwent gradual capacity decay to 100 mAh g-1 after 240 cycles. 

The relatively poor cycling stability of 2 can easy be ascribed to its partial dissolution of in the 

electrolyte. However, its cycling stability is still much better than that of BMP, which exhibits a rapid 

capacity fading with only 50 mAh g-1 after 480 cycles (Figure S16). In comparison, the CP1- 

and CP2-based electrodes display a gradually increased capacity in the following cycles, 
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measured to be 360 mAh g-1 (CP1) and 540 mAh g-1 (CP2) after 240 cycles, respectively. This 

phenomenon can be attributed to electrode conditioning that provides more efficient conductive 

pathways as the electrode repeatedly swells and expels ions during charging and discharging 

cycles. Such behavior has also been observed in other lithium-organic hybrid batteries before. 

Notably, the capacity of CP1 outperforms 2 after 45 cycles, and a new trend 1 ˂ 2 ˂ CP1 ˂ 

CP2 occurs during cycles 45-240. These results suggest that conjugated polymers deliver the 

best cycling stability, resulting from high electrochemical activity and effective suppression of 

dissolution. We attribute the highest capacity observed for CP2 to the introduction of 

benzothiadiazole unit as an additional redox center, which has already been demonstrated in our 

previous work.27, 42 Moreover, their Coulombic efficiencies are close to 100% in all cases, 

verifying the high reversible redox stability of the carbonylpyridinium units. Overall, the 

varying dissolution behavior of the four materials agrees well with their different cycling performance, 

thus leading us to believe that unfavorable dissolution (and not chemical decomposition of the 

materials) is the dominating factor in capacity fading.  

The rate performances were evaluated at various current densities from 0.2 to 5 A g−1 (Figure 4d). 

At a low current density of 0.2 A g-1, electrodes based on 1, 2, CP1, and CP2 exhibited stable discharge 

capacities of 350, 520, 360, and 520 mAh g-1, respectively. The discharge capacities monotonically 

decrease with increasing current densities but more drastically in the case of two small molecules 1 

and 2. The detailed data are summarized in Table S2. This observation could be attributed to kinetic 

factors, such as lithium-ion diffusion and electron-transfer rates that limit the amount of charge 

extracted from the electrode at higher currents. Impressively, the two conjugated polymers again 

display superior rate performances than the small molecules. Relative to their specific capacity at 0.2 

A g-1, their capacity retentions at 1 and 5 A g-1 are 46 % and 22 % for 1, 50 % and 22 % for 2, 64 % 

and 40 % for CP1, 70 % and 44 % for CP2, respectively. Although CP1 displays lower capacity than 

2 at low current densities (˂ 1 A g-1), it catches up with increasing current, which is consistent with the 

observed cycling performance. The excellent rate performance of the conjugated polymers is not only 

the result from their absolute insolubility, but also their enhanced electronic conductivity. In addition, 

their amorphous morphology in the microscale range probably allows the full utilization of the redox-

active sites and also minimizes diffusion length for the transport of ions/electrons, thus delivering a 

higher actual capacity and enhanced rate performance. Importantly, when the current density is shifted 
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back from 5 A g-1 to 0.2 A g-1, nearly quantitative recovery of the initial capacities is observed in all 

the cases, demonstrating the superior stability.  

 

Figure 4. (a-b) CV curves of CP1 and CP2 electrodes in a battery configuration at 0.2 mV s-1. (c) 

Cycling performance of 1, 2, CP1, and CP2 at 0.5 A g-1. (d) Rate performance of 1, 2, CP1, and CP2 

at different current densities. 

 

Overall, the stepwise improvement of the rate performance and cycling stability on going from 1 

via 2 to CP1 and finally CP2, is consistent with their inherent electrical conductivity, solubility, and 

morphology. Impressively, CP2 delivers not only the highest capacity but also the best cycling stability 

(Figure 4c-d), suggesting high electrochemical activity and effective suppression of dissolution. To 

our knowledge, the rate capability and cycling stability of CP2 is one of the best reported for organic 

Li-ion batteries. Compared to many other well-known cathode materials for Li-ion batteries, such as 

inorganic LiCoO2 (140 mAh g-1), TEMPO (radical) functionalized polymethcarylate (PTMA, 111 
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mAh g-1),8 polyanthraquinone (263 mAh g-1)14, poly(chalcogenoviologen)s (463 mAh g-1 at 0.5 A g-

1),33 and other previously reported bio-derived polymeric cathode materials (< 150 mAh g-1),51-55 our 

polymer provides among the highest specific capacity, making this current system highly desirable as 

an organic cathode material for lithium-ion battery applications.  

 

Figure 5. (a) EIS spectra of 1, 2, CP1, and CP2 electrodes before cycling. (b) CV curves of CP2 at 

different scan rates. (c) Log i versus log v plots of CP2 to determine the b values of different peaks. 

(d) Capacitive contributions of CP2 in CV curve at 0.6 mV s-1. (e) Capacitive contributions (in 

percentage) of 1, 2, CP1, and CP2 at different scan rates. 

 

The electrochemical kinetics were investigated using electrochemical impedance spectroscopy 

(EIS; Figure 5a). The charge-transport resistances (Rct, denoted by the diameter of the semicircle in 

high- and intermediate-frequency region) became smaller from 1 (70 Ω) ˂ 2 (65 Ω) ˂ CP1 (52 Ω) ˂ 

CP2 (43 Ω), supporting an improved electrical conductivity by extending the conjugation and 

improving charge transfer. These values are consistent with the conductivity measurements (vide 

supra). Furthermore, to better understand the Li+ diffusion process, the diffusion coefficients (DLi
+) of 

the four electrodes were calculated from the Warburg region (see the SI for details). The DLi
+ values 

of 1, 2, CP1, and CP2 were calculated to be 6.64×10−14 cm2 S−1, 8.54×10−14 cm2 S−1,  1.42×10−13, and 

3.12×10−13, respectively. The highest DLi
+ value of CP2 indicates faster lithium-ion diffusivity, 

consistent with the battery test data. 
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The reaction kinetics were further studied by conducting cyclic voltammetry on the four materials 

at various scan rates. As seen from the CV profiles of CP2 at various sweep rates (0.2 to 1.0 mV s-1; 

Figure 5b), multiple redox peaks were continuously observed at various scan rates. With elevated scan 

rates, the cathodic peaks shift to lower potentials, while the anodic peaks shift to higher potentials, 

which we ascribe to the enhanced polarization (Figure 5b and Figure S17-S20). In the linear fits of the 

natural logarithm (ln) of peak current vs. scan rate, the slopes for anodic and cathodic peaks for the 

two conjugated polymers (0.84-0.95) are higher than those of the two small molecules (0.65-0.85), 

indicating more capacitance contribution in reaction kinetics of polymers (Figure 5c and Figure S17-

S20). More accurately, the capacity contribution to the total capacity can be evaluated by the equation: 

i = k1ν1/2 + k2ν, where k1ν1/2 and k2ν represent the diffusion-controlled and capacitive-controlled 

contributions, respectively. At a fixed potential of 0.2 mV s-1, capacitive contributions were determined 

to be 30%, 11%, 78% and 56% for 1, 2, CP1 and CP2, respectively. Increasing the scan rate led to 

higher capacitive contributions in all cases, and the values are summarized in Figure 5e. The higher 

capacitive contributions with the two conjugated polymers indicate fast insertion and extraction of Li-

ions, which is favorable for fast charge storage and long-term cyclability. Overall, these results further 

confirm high rate and long cycling performance of the conjugated polymers, consistent with the battery 

test data.   

The interaction of CP1 and CP2 with lithium-based entities was further analyzed by ex-situ FTIR 

and ex-situ XPS spectroscopies. As shown in Figure 6a, the intensity of C=O peak at 1650 cm-1 of the 

benzoyl-N-methylpyridinium unit of CP2 gradually decreased during discharge (0.005 V vs. Li/Li+), 

suggesting the reduction process and lithium insertion. The carbonyl peak was found to recover again 

upon charging, indicating complete reversibility of this reaction. The ex-situ XPS data further confirm 

that the cycled reduction/oxidation and lithium/de-lithiation process. In the C 1s spectra in Figure 6b, 

the characteristic peak assigned to the C=O bond at 288.6 eV disappears after discharged to 0.005 V, 

along with the emergence of new peak at 287.1 eV which was attributed to the reduced C-O bond. 

Subsequent recharging to 3.0 V led to the re-appearance of the C=O peak, suggesting its good 

reversibility. A C-Li peak (289.2 eV) was also observed during the discharge, which may result from 

the superlithiation process and/or the SEI formation. In the O 1s spectra in Figure 6c, the obvious 

signal of C=O at 530.5 eV is shifted to the C-O-Li at 531.4 eV in the initial discharge process and 

partially recovered at the fully charged state, suggesting the lithiation and de-lithiation process during 
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the reduction and oxidation reactions. These XPS data are consistent with the FTIR data, demonstrating 

the relatively good stability during the charging and discharging cycles. In addition, SEM analysis of 

the electrodes after 90 cycles revealed no obvious morphology changes compared to the fresh cells for 

both small molecules and polymers, further confirming their high electrochemical stability (Figure 

S21). 

 

 

Figure 6. (a) Ex-situ FTIR and (b-c) C 1s and O 1s XPS spectra of the CP2 electrode recorded at 

different charge states. 

 

CONCLUSIONS 

With the aim to improve the energy and high-power density of Li-organic hybrid batteries, the 

development of organic molecules with multiple redox centers, limited solubility and high conductivity 

is highly desirable. In the current work, we report a rational design strategy to suppress the dissolution 

and enhance the conductivity of such active materials from small molecules 1 and 2 to conjugated 

polymers CP1 and CP2 in stepwise fashion toward realizing high performance LIBs. Compounds 1 

and 2 can reversibly store up to four electrons and show greatly decreased solubility compared to BMP 

as a result of strong intermolecular interactions. The donor-acceptor (D-A) character of 2 helps 

enhancing the intramolecular charge transfer, thereby improving the electronic conductivity and 

ultimately, battery performance. Both cycling stability and rate performance are further enhanced 

through the polymerization, as a result of high electrochemical activity and effective suppression of 

dissolution. Impressively, polymer CP2 delivers not only the highest capacity, but also the best cycling 
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stability, reaching up to 540 mAh g-1 after 240 cycles at 0.5 A g-1. We believe that this work provides 

a promising carbonylpyridinium-based building block featuring multiple redox centers, on the way to 

competitive high performance Li-organic batteries. 
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