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ABSTRACT 

Computer-aided drug design (CADD) techniques continue to struggle to provide a useful 

advance in the area of drug development due to the difficulties in an efficient exploration of 

the vast drug-like chemical space to uncover new chemical compounds with desired 

biological properties. Other challenges that users must overcome in order to fully use the 

potential of CADD tools and techniques include a lack of completely autonomous methods, 

the necessity for retraining even after deployment, and their lack of interpretability. To solve 

this issue, we created the ‘Custom ML Tools’ integrated within the framework of 

‘AIDrugAPP’. ‘Custom ML Tools’ includes four modules: ‘Mol Identifier’, ‘DesCal’, 

‘AutoDL’, and ‘Auto-Multi-ML’ which give users free access to molecular identification 

using SMILES and compound names, similarity search, descriptor calculation, the building of 

ML/DL QSAR models, and their usage in predicting new data. The study demonstrates the 

potential of the novel tool for computational investigations in drug discovery research. The 

WebApp with its modules has therefore been made available for public use at: https://sars-

covid-app.herokuapp.com/  

Keywords: QSAR, ML/DL, WebApp, Molecular descriptors, Virtual screening, Data 

analysis 
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INTRODUCTION 

Diseases are a global problem and there are thousands of diseases with no treatment that 

leads to approx. min. 80 % of all global deaths [1]. Drug discovery for all those diseases is a 

challenging process that requires billions of dollars of investments and decades of research. 

And above that only, less than 15% of drugs enter clinical trials resulting in an approved 

medicine [2, 3]. For fast and accurate drug discovery researches, novel therapeutic targets and 

drug-like compounds are needed. One promising approach is to use AI in drug discovery to 

improve screening and hit rates from large chemical datasets [4, 5]. The use of Machine 

Learning (ML) algorithms for computer-assisted drug discovery is expanding due to the large 

available public data sources[6]. The global market value of AI for drug discovery and 

development is expected to reach approx. $ 1.4 billion by 2024 with a growth rate (CAGR) of 

40.8% [7].  

 AI has the potential to be useful in several aspects of drug discovery, including drug 

design, chemical synthesis, drug screening, polypharmacology, and drug repurposing. Deep 

Learning (DL) has recently emerged as a technique superior to traditional ML approaches 

due to its ability to perform automatic feature extractions from large amounts of data and 

capture nonlinear input-output relationships [8]. DL algorithms can swiftly anticipate a large 

number of compounds when coupled with a quantitative structure-activity relationship 

(QSAR)-based computational model [9, 10]. For example, the DeepChem platform 

incorporated with DL algorithms resulted in an easy-to-use drug development algorithm that 

outperformed random forests algorithms [11]. Many AI algorithms or pipelines have been 

created for drug discovery, such as DeepNeuralNetQSAR [12], ORGANIC [13], PotentialNet 

[14]. However, the existing algorithms are not that accurate and are difficult to use due to the 

lack of an interface. On the other hand, there are many computational chemistry libraries 
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available such as RDKit [15] libraries for manipulating chemical objects such as atoms, 

bonds and molecules, Mordred [16] libraries for calculating molecular descriptors. 

Developing a new model using any of these libraries or tools does require extensive coding 

which is a big drawback for most of the chemists, biologists, computational chemists or 

biologist who are not computer scientists or software engineers. Third-party software has also 

been developed to provide access to ML techniques for researchers who are unfamiliar with 

coding, however, their ability to perform ML techniques as well as other aspects of the ML 

pipeline is limited [17]. 

To address the issues discussed above, we developed an easy-to-use, freely available 

customized ML module called “Custom ML tools” incorporated in the framework of 

AIDrugApp [18]. With this, users can build their ML or DL models and can apply those 

models for predictions on their data. It is also useful for obtaining molecular information 

using Simplified molecular-input line-entry system (SMILES) and compound names and 

computing user-defined molecular descriptors. We believe that ‘Custom ML Tools’ will be 

valuable in the drug development efforts of both specialists and non-experts in 

cheminformatics and computational chemistry. 

MATERIALS AND METHODS 

The entire system is hosted on the Heroku cloud application platform server[19] by 

maintaining the program code in GitHub[20]. Python was selected as the primary 

programming language for developing Customized ML tools since it integrates nicely with 

the other tools/packages such as RDKit [21], scikit-learn[22], pandas[23], numpy[24], 

tensorflow[25], keras[26], etc. Streamlit [27] was used to provide a high-level Python web 

framework for Custom ML tools. For reading and writing molecular data files, the custom 

ML tool employs python modules such as pandas for handling data frames and NumPy for 
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numerical data processing. Before transferring to the backend program, it uses user input in 

the form of SMILES, chemical names, and molecular features as single string or file, 

depending on the type of input (single/multiple) and ML module type. 

Backend Computational Engine Design 

The computational engine for the Custom ML tool is divided into four modules (Fig. 1) and 

operates on the backend server for the front-end User Interface, which visualises predictions 

based on user input. The four modules of “Custom ML Tools” are 1. Mol_Identifier, 2. 

DesCal, 3. AutoDL and 4. Auto-Multi-ML.  

 

 

 

Fig. 1: Representation of the four modules integrated into Custom ML Tools 
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Mol_Identifier 

Mol_Identifier is a Custom ML tool module that helps in converting chemical names to 

SMILES, molecular SMILES to compound names, 2-D structures, and identifying molecular 

similarities on user data. Python libraries used for developing Mol_identifier are 

PubChemPy[28], pandas, RDKit, mols2grid (https://github.com/cbouy/mols2grid ) and 

matplotlib. The Mol_Identifier framework was designed in the Streamlit python library so 

that users can retrieve the calculations based on a single or multiple input value. To query the 

PubChem REST API for converting the chemical name to SMILES and SMILES to name, 

we utilise the PubChemPy python package. To visualize the 2-D structures of users 

molecules, RDKit and mols2grid python libraries were utilized. Mols2grid is an RDKit-based 

interactive chemical viewer for 2D structures of small molecules. RDKit libraries were also 

used to generate different similarity metrics such as Tanimoto, Dice, Cosine, Sokal, and 

McConnaughey on user data for molecular fingerprint (MACCS) based similarity 

calculations.  

DesCal 

DesCal is a Custom ML tool module that helps to generate various molecular 2-D descriptors 

and fingerprints on user's data. It also helps to calculate customized molecular descriptors as 

selected by the user on their data. Python libraries used for developing DesCal are 

TensorFlow, Keras, scikit-learn, streamlit, pandas, NumPy, Mordred [29] and RDKit. The 

‘DesCal’ framework was designed in the Streamlit python library so that users can retrieve 

the calculations based on single or multiple input values. Mordred and RDKit python libraries 

were used for calculating 2-D molecular descriptors and fingerprints (MACCS and Morgan 

for radius =1, 2, 3) on user's data. The carbon atom from the carbonyl functional group is 

used to calculate radii or bond depths. Radius 2 (ECFP4) and radius 3 (ECFP6) are the most 

https://github.com/cbouy/mols2grid
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prevalent. It will essentially extract information on substructures comprising circular atom 

neighbourhoods, such as an atom, and its connectedness to immediate neighbours and then 

neighbours of those neighbours.  

 In the Mordred and RDKit python libraries, several molecular properties, such as LogS, 

density, and so on, are neither inbuilt or calculated. Therefore, we have introduced ‘Custom 

descriptors’ component in DesCal which enables users to calculate selected descriptors like 

AromaticProportion [30], Density and LogS (solubility of molecules) values on user's data. 

AromaticProportion (= Number of aromatic atoms in a molecule / Number of heavy atoms in 

a molecule) and Density (= Mass / Volume) were calculated using existing python libraries 

i.e. Mordred and RDKit. LogS values, on the other hand, were predicted using DL (DL) 

QSAR-based linear regression models using the Delaney [31] solubility dataset of n= 1144 

molecular SMILES with observed solubility values in mol/L. The DL models for predicting 

LogS values were developed using the Python libraries TensorFlow and Keras. The model 

was trained on 2-D molecular descriptors and fingerprints generated by RDKit python 

libraries. Training set model validated based on the test set. The DL model has one input and 

two hidden layers, each with 100 neurons, with ReLU and linear activation function, Adam 

optimizer, and loss= Mean squared error (MSE) and Mean absolute error (MAE). During 250 

epochs of training in 50 batches with 57,901 parameters, the best model was developed with 

a maximum Coefficient of determination (R2) score (Train: 0.99, Test: 0.93) and a minimum 

MSE score (Train: 0.02, Test: 0.29) and MAE score (Train: 0.09, Test: 0.38). 

Auto-DL 

AutoDL is a Custom ML tool module that helps to build DL models with neural networks on 

user's data. It also helps to predict user-specific target data based on DL models built 

algorithms selected by the user. Python libraries used for developing AutoDL are 
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TensorFlow, AutoKeras [32], scikit-learn, pandas, NumPy and matplotlib. The AutoDL 

framework was designed and deployed in the Streamlit so that users can build their own 

regression or classification based DL model and retrieve the predictions on input data (Fig. 

2). AutoKeras is an AutoML system based on Keras. AutoDL employs both 

StructuredDataClassifier and StructuredDataRegressor of AutoKeras python library to 

construct automatic classification and regression DL models by searching the best detailed 

configuration for user input target data. Other python libraries such as scikit-learn to perform 

hyperparameter optimization by calculating MSE, MAE, Root mean squared error (RMSE), 

and R2 values for regression models and precision score, recall score, ROC AUC score, f1 

score, confusion matrix for classification models and matplotlib was used for data 

visualization.  

 

Fig. 2: An overview of the processing of automated ML/DL modules 

Auto-Multi-ML 

Auto-Multi-ML is a Custom ML tool module that helps to build and compare multiple ML 

models for interpreting best performing ML algorithms on users data. It also helps to predict 
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user specific target data based on ML models built and selected by the user (Fig. 2). Python 

libraries used for developing Auto-Multi-ML are scikit-learn, pandas, NumPy, Lazypredict 

(https://github.com/shankarpandala/lazypredict ) and Sweetviz [33]. The Auto-Multi-ML 

framework was designed using Streamlit python library so that users can build their own 

regression or classification based multiple ML (ML) model and retrieve the predictions on 

input data. Lazypredict library was used to semi-automate ML operations by building 

multiple traditional ML models without much code and evaluating which models perform 

better without any parameter tuning. Sweetviz library was used to provide elegant, high-

density images to aid with Exploratory Data Analysis (EDA). Scikit-learn was used to select 

significant features on users target data, split data into training and test sets, and optimise 

hyperparameters by calculating MSE, MAE, RMSE, and R2 values for regression models and 

precision score, recall score, ROC AUC score, f1 score, confusion matrix for classification 

models. 

RESULTS AND DISCUSSION 

Front End User Interface 

Users can use a web browser to access the publically available interface (https://sars-covid-

app.herokuapp.com/ ). The user interface of the ‘Custom ML Tools’ is comprised of a User 

Input panel containing four key modules i.e. “Mol Identifier”, “DesCal”, “AutoDL”, and 

“Auto-Multi-ML” (Fig. 3). The output panels, on the other hand, are loaded on the same Web 

page on the right side of the input panel, where the user can view the calculation results. For 

selecting various options, the user input panel consists of radio buttons, select boxes, 

checkboxes, and sliders. Users can visualise and download/ save (.csv file) the outcomes, 

predicted results, model data analysis, uploaded data analysis, and model evaluation results 

https://github.com/shankarpandala/lazypredict
https://sars-covid-app.herokuapp.com/
https://sars-covid-app.herokuapp.com/
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using the output panel. Every module is also enclosed with instructions for better 

understanding. 
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Fig. 3: Screenshots of the user interface for ‘Custom ML Tools’ that comprises four major 

modules: (A) ‘Mol_Identifier’, (B) ‘DesCal’, (C) ‘AutoDL’ and (D) ‘Auto-Multi-ML’. 
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Computation of SMILES, compound names and molecular similarity 

scores 

Name to SMILES 

Users can input compound name for a ‘Single molecule’ or multiple names by uploading a 

.csv file in the ‘Multiple molecules (Batch)’ mode of ‘Mol_Identifier’ module. This allows 

users to obtain Canonical SMILES or Isomeric SMILES for their molecular names after 

clicking ‘GET SMILES’ button (Fig. 4). 

SMILE to Compound 

Users can input Canonical SMILES for a ‘Single molecule’ or multiple SMILES by 

uploading .csv file in ‘Multiple molecules (Batch)’ mode of ‘Mol_Identifier’ module. This 

allows users to obtain molecular names for their molecular SMILES after clicking ‘GET 

COMPOUND’ button (Fig. 4). 

Molecular Similarity 

Users can input a pair of Canonical SMILES for a ‘Single molecule’ or multiple SMILES by 

uploading a .csv file in ‘Multiple molecules (Batch)’ mode of the Mol_Identifier module. 

This allows users to obtain Tanimoto, Dice, Cosine, Sokal, and McConnaughey similarity 

scores under ‘Single molecule’ mode after clicking the ‘GET SIMILARITY’ button. 

Whereas, through ‘Multiple molecules (Batch)’ mode users can get similarity scores 

(Tanimoto, Dice, Cosine, Sokal, and McConnaughey) between multiple molecules, 

interpretation of similarity scores in the form of a histogram that shows the distribution of the 

pair-wise scores and table of pairwise similarity scores among molecules. The Tanimoto 

score between molecules is used to interpret similarity scores. These studies assist users in 

determining how similar molecules are and how ‘similar’ is comparable (Fig. 4). 
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Fig. 4: Workflow highlighting the computation of SMILES, compound names, and molecular similarity scores by using ‘Mol_Identifier’ module 

of ‘Custom ML Tools’.
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2-D Structure 

Users can input Canonical SMILES for a ‘Single molecule’ or multiple SMILES by 

uploading the .csv file in the ‘Multiple molecules (Batch)’ mode of the Mol_Identifier 

module. This allows users to obtain molecular 2-D Structure for their molecular SMILES 

after clicking the ‘GET STRUCTURE’ button (Fig. 4). 

Computation of molecular descriptors and fingerprints 

RDKit_2D 

Users can input Canonical SMILES for a ‘Single molecule’ or multiple SMILES by 

uploading the .csv file in the ‘Multiple molecules (Batch)’ mode of the DesCal module. This 

allows users to obtain molecular 2D RDKit descriptors for their molecular SMILES after 

clicking the ‘CALCULATE’ button. It will output the list of 115 2D RDKit descriptors that 

are presently accessible (Fig. 5). 

Mordred_2-D 

Users can input Canonical SMILES for a ‘Single molecule’ or multiple SMILES by 

uploading the .csv file in the ‘Multiple molecules (Batch)’ mode of the DesCal module. This 

allows users to obtain molecular Mordred_2-D descriptors for their molecular SMILES after 

clicking the ‘CALCULATE’ button. It will output the list of 1613 Mordred_2-D descriptors 

that are presently accessible (Fig. 5). 

Fingerprints 

Users can input Canonical SMILES for a ‘Single molecule’ or multiple SMILES by 

uploading the .csv file in the ‘Multiple molecules (Batch)’ mode of the DesCal module. This 

allows users to obtain fingerprints like MACCS and Morgan fingerprints also known as 

Extended Connectivity Circular Fingerprints (ECFP) for radius = 1, 2 and 3 for their  
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Fig. 5: Workflow highlighting the computation of molecular 2-D descriptors and fingerprints by using ‘DesCal’ module of ‘Custom ML Tools’. 
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molecular SMILES after clicking the ‘CALCULATE’ button.  In both fingerprints, each bit 

position reflects the presence or absence of certain substructures. Users can extract smaller 

fragments with a smaller radius, and bigger fragments with a bigger radius. Users can extract 

MACCS fingerprints with 167 bits and Morgan fingerprints with 2048 bits that are presently 

accessible (Fig. 5). 

Custom descriptors 

Users can input Canonical SMILES for a ‘Single molecule’ or multiple SMILES by 

uploading the .csv file in the ‘Multiple molecules (Batch)’ mode of the DesCal module. This 

allows users to obtain Custom descriptors of their choice from the given lists for their 

molecular SMILES after clicking the ‘CALCULATE’ button (Fig. 5). Users can extract 

molecular descriptors of their choice as available in three lists, which are as follows: 

List 1: ‘MolLogP’, ‘MolWt’, ‘NumHAcceptors’, ‘NumHDonors’, ‘NumRotatableBonds’, 

‘RingCount’, ‘TPSA’, ‘HeavyAtomCount’. 

List 2: ‘nAromAtom’, ‘Wpath’, ‘Vabc’, ‘nAcid’, ‘nBase’ 

List 3: ‘logS’, ‘AromaticProportion’, ‘Density’ 

While predicting/ calculating ‘logS’ values, users can also view the DL based QSAR model 

data for LogS and model evaluation by clicking the check box. The model is trained on 

RDKit 2-D descriptors and MACCS fingerprints generated for Delaney [31] solubility dataset 

of n= 1144 molecular SMILES with observed solubility values in mol/L. The data has been 

divided into 75:25 train test splits. Users can also view the model summary and metrics used 

for model prediction evaluation each for training and test set. Training curves for R
2
, RMSE 

and Linear regression plots for training and test sets are shown in Fig. 6. The best model was 

developed with the highest Coefficient of determination (R2) score (Train: 0.99, Test: 0.93) 
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and the lowest MSE score (Train: 0.02, Test: 0.29) and MAE score (Train: 0.02, Test: 0.29). 

(Train: 0.09, Test: 0.38). 

 

 



 
 
 

Page | 17  

 

 

 

Fig. 6: Training curves for (A.) R2, (B.) RMSE and Linear regression plots for (C.) training 

and (D.) test sets for logS Model  
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Building DL model and predicting target data using Auto-DL 

Users can input molecular descriptors in a .csv file with target data for a ‘Classification’ or 

‘Regression’ mode of the Auto-DL module. This allows users to obtain the best DL model for 

their input data. To predict using the same DL model, users must enter their data before 

clicking the ‘PREDICT’ button. It will generate the train-test split of the target data, as well 

as its model summary, model evaluation scores, and predicted results for visualization and 

download using the same DL model that was developed.  

The entire process takes only four steps (Fig. 7) to complete by pressing a button, as follows: 

Step 1: In the User input-side panel, select the type of algorithm (‘Classification’ or 

‘Regression’) for building the DL model. 

Step 2:  Upload descriptor data (included with target data) for building DL model (Example 

input file provided) 

Step 3: For developing the model, specify parameters such as ‘Train-Test split percent’, 

‘random seed number’, ‘maximum trial number’, and ‘epochs number’. 

Step 4: Upload descriptor data (excluded with target data) for making target predictions 

(Example input file provided) and click on the ‘PREDICT’ button to display the results. 
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Fig. 7: Steps (A - D) for developing an automated DL model and using it to predict data 
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Building multiple ML models and predicting target data using Auto-Multi-

ML 

Users can input molecular descriptors in a .csv file with target data for a ‘Classification’ or 

‘Regression’ mode of the Auto-Multi-ML module. This allows users to obtain multiple ML 

models (n=40) and their interpretation (RMSE, R
2
 and time taken for building model) for 

their input data. Users are also allowed to select the ML model from the provided list for 

prediction on new data based on the interpretation of multiple models. To predict using the 

best ML model, users must enter their data before clicking the ‘PREDICT’ button. It will 

generate an Exploratory Data Analysis (EDA) report for uploaded data in the form of 

SWEETVIZ_report [33], feature engineered data with significant features, a train-test split of 

the feature engineered data, as well as an EDA report for feature engineered data in the form 

of SWEETVIZ_report, interpretation of multiple models for training and test set, and 

predicted results for visualization and download using the best ML model that was 

developed.  

The entire process takes only five steps (Fig. 8) to complete by pressing a button, as follows: 

Step 1: In the User input-side panel, select the type of algorithm (‘Classification’ or 

‘Regression’) for building the multiple ML models. 

Step 2:  Upload descriptor data (included with target data) for building multiple ML models 

(Example input file provided) 

Step 3: For exploratory data analysis and/or interpreting and comparing multiple ML models, 

tick the checkboxes for ‘EDA of uploaded data’, ‘EDA of feature engineered data’, and 

‘Interpret multiple ML models’. 
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Fig. 8: Steps (A - E) for developing automated multiple ML models and using them to predict data 
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Step 4: After evaluating and understanding the outcomes of different ML models, select ML 

algorithm (ideally the top-performing ML model for the best results) for building an ML 

model on new data and predicting target data. 

Step 5: Upload descriptor data (excluded with target data) based on feature-engineered model 

data for making target predictions by applying selected built ML model (Example input file 

provided) and click on the ‘PREDICT’ button to display and download the results. 

CONCLUSIONS 

The "Custom ML Tools" is an integral part of the “AIDrugApp” that provides users a 

convenient and online way to identify compounds using SMILES, compound names, and 

similarity scores. It also enables users to compute molecular descriptors, build ML/DL 

models, and predict data using built models. It can be used for various scientific applications 

such as QSAR, similarity search, ADMET prediction, virtual screening and data analysis. It 

is designed with an elegant and user-friendly graphical interface for a cost-free and login-free 

WebApp platform. Users may utilise interactive features to input simple data and analyse it 

quickly, and they don't need any prior knowledge of coding or computer-aided design. 

Finally, the study reveals that the new tool has the potential to help the whole community 

(biologists, chemists, and nonexperts) with their drug discovery efforts. 
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