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ABSTRACT: We have discovered a ring-opening fluorination of bicyclic azaarenes. Upon treatment of bicyclic azaarenes such as pyra-
zolopyridines with electrophilic fluorinating agents, fluorination of the aromatic ring is followed by a ring-opening reaction. Although this over-
all transformation can be classified as an electrophilic fluorination of an aromatic ring, it is a novel type of fluorination that results in construction 
of tertiary carbon–fluorine bonds. The present protocol can be applied to a range of bicyclic azaarenes, tolerating azines and a variety of func-
tional groups. Additionally, mechanistic studies and enantioselective fluorination have been examined. 

Fluorine is one of the most important elements that could be in-
stalled onto hydrocarbon frameworks in pharmaceuticals, agro-
chemicals, and materials science. Particularly, in medicinal chemis-
try, fluorine has been incorporated into drug molecules to improve 
their liposolubility and metabolic stability.1 The effect of fluorine at-
oms in molecules has been well-studied, and in turn, fluorination 
methodology has flourished as well.2 One of the most conventional 
ways to achieve fluorination is electrophilic fluorination. Nucleo-
philes used in electrophilic fluorinations can be broadly classified 
into carbanions (e.g., 1,3-dicarbonyls), electron-rich unsaturated 
bonds (e.g., alkenes and alkynes), and aromatics.3 However, in these 
existing methods, fluorination proceeds while retaining the carbon 
skeleton of the starting material, and fluorinations involving skeletal 
transformations are rare. 

Ring-opening fluorination, in which a fluorine atom is introduced 
onto a cyclic compound with concomitant ring cleavage, has re-
cently attracted attention as a useful method for efficiently con-
structing complex fluorine-containing skeletons (Figure 1A). Alt-
hough ring-opening fluorinations have recently been reported, most 
are limited to three- or four-membered ring starting materials such 
as epoxides, cyclopropanes/butanes, and aziridines, which have 
strained chemical bonds.4,5 As one of a few examples of ring-opening 
fluorination involving C–C bond cleavage in a ring size ≥ 5, the Sar-
pong group reported an elegant ring-opening fluorination of cyclic 
amines (Figure 1B).6 The Leonori group also discovered a ring-
opening fluorination of cyclic oxime ethers under visible light irradi-
ation.7 In the heteroatom–heteroatom (X–Y) bond paradigm, the 
Yao group reported a ring-opening fluorination using isoxazoline N-
oxides via O–N bond cleavage (Figure 1C).8 However, all these 
methods require the use of highly specific substrates, and fluorina-
tions involving the ring opening of aromatic rings or asymmetric 
fluorination have not yet been reported. 

In contrast to existing methods, we planned to develop a ring-
opening fluorination of bicyclic azaarenes such as pyrazolopyridines. 
We hypothesized that treating bicyclic azaarenes with an electro-
philic fluorinating agent would result in fluorination at the C3 posi-
tion, followed by deprotonation at the C2 position and pyrazole ring 

opening via N–N bond cleavage. Although this can be considered as 
a simple electrophilic fluorination using an electron-rich heteroaro-
matic system as a nucleophile, the resulting compound is an sp3-
fluorinated compound (C(sp3)–F bond) instead of a fluorine-sub-
stituted heteroarene (C(sp2)–F bond). In other words, we thought 
that this would be a novel type of fluorination reaction with accom-
panying skeletal transformation. 
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Figure 1. (A) Ring-opening fluorination. (B) Fluorination of cyclic 
compounds via C–C bond cleavage. (C) Fluorination of cyclic com-

pounds via X–Y bond cleavage. 

First, we selected 3-phenylpyrazolopyridine (1A) as the model 
substrate (which was readily prepared in three steps from a commer-
cially available compound) to examine electrophilic fluorinating 
agents and reaction conditions (Table 1). When N-fluoro-
pyridinium salts (F1–F3) were used in MeCN at 80 °C, ring-open-
ing fluorinated product 2A was successfully obtained, albeit in low 
yields (Entries 1–3). The use of stronger fluorinating agents such as 
NFSI and Selectfluor® gave fluorinated products in high yields (En-
tries 4 and 5).9 As for the reaction temperature, the yield of 2A was 
68% even at 50 °C. The yield increased as the temperature was in-
creased, and the fluorinated product was obtained quantitatively at 
80 °C (Entries 6–8 vs. Entry 5). The reaction proceeded in polar sol-
vents such as acetone and DMF (which is able to dissolve Select-
fluor®), and gave the fluorinated product 2A (Entries 9–11). Finally, 
we conformed the optimal conditions: Selectfluor® (1.0 equiv) at 
80 °C in MeCN for 24 h. 
Table 1. Screening of reaction conditions.a 

 
entry F+ source temp/ °C solvent 2A (%) 

1b F1 80 MeCN 39 

2 F2 80 MeCN 27 

3 F3 80 MeCN 5 

4 NFSI 80 MeCN 94 

5 SelectfluorⓇ 80 MeCN >99 

6 SelectfluorⓇ 50 MeCN 68 

7 SelectfluorⓇ 60 MeCN 74 

8 SelectfluorⓇ 70 MeCN 87 

9 SelectfluorⓇ 80 Acetone 65 

10 SelectfluorⓇ 80 DMF 64 

11 SelectfluorⓇ 80 MeOH 58 

 

a Conditions; 1A (0.20 mmol), F+ source (1.0 equiv), solvent (1.0 mL), 
50–80 °C, 24 h. NFSI = N-Fluorobenzenesulfonimide 

With the optimal conditions in hand, the substrate scope was in-
vestigated (Scheme 1). Various 3-arylpyrazolopyridines were exam-
ined: Methyl (1B), tert-butyl (1C), and phenyl (1D) at the para-po-
sition on the aryl group gave the ring-opening fluorinated products 
2B–2D in moderate yields. It should be noted that fluorination of 
these aryl groups was detected. When using trimethylphenyl (1E) 
and naphthyl (1F) starting materials, the corresponding products 
2E and 2F were obtained in moderate yields, and occurred decom-
position of 1E or fluorinated the aryl group of 1F (less than 10% 
yields). The reaction showed good functional group tolerance in the 

presence of formyl (1G), acetyl (1H), cyano (1I), trifluoromethyl 
(1J), nitro (1K), and chloro (1L) groups, as the reaction worked to 
give the corresponding products 2G–2L in excellent yields. Next, 3-
alkylpyrazolopyridines were investigated. The fluorination using bi-
cyclic azaarenes bearing alkyl groups (1M and 1N) or acetal (1O) 
proceeded smoothly to give the corresponding fluorinated products 
2M–2O in moderate to excellent yields. Pyrazolopyridines with al-
kyl acetate (1P), cyano (1Q), and ethylcarboxylate (1R) afforded 
the corresponding products (2P–2R) in good yields. Pyra-
zolopyridine carboxylates were also examined. Substrates with alkyl 
groups including alkene (1U) and alkyne (1W) remained intact to 
give products 2S–2X in high yields. Carboxylic acid 1Y also reacted 
well, but the product was difficult to purify, resulting in a low yield of 
2Y. In the case of compounds with amides such as 1Z, deamidation 
occurred to give 3-fluoropyrazolopyridine as a byproduct. Therefore, 
the fluorinated product 2Z was obtained in moderate yield (39%) by 
reacting at a lower temperature (–30 °C). Furthermore, azaarenes 
1AA and 1AB derived from probenecid and estrone also gave fluor-
inated compounds 2AA and 2AB in high yields. Of note, in the case 
of an unsaturated ester or iodine at the C3 position, the desired fluor-
inated product could not be obtained, giving a complex mixture. 

Substituted bicyclic arenes gave fluorination products 2AC–2AF, 
however, for some substrates such as 1AC and 1AE, the fluorination 
reactions were more difficult. After extensive screening of additives, 
we found that NaClO4 (1.0 equiv) was effective for increasing yields 
(see the Supporting Information for details). For example, without 
this additive, 1AC gave 2AC in only 51% yield, but with the additive, 
the yield improved to 87%. The role of the additive remains unclear, 
but we hypothesize that the counter anion exchange in the interme-
diate might affect the acidity of the proton at the C3 position.10 

This fluorination was also applicable to other pyrazoloazines: py-
razolopyrimidine with a phenyl group at the C3 position gave fluor-
inated compounds 2AG–2AI in high yields. 6-Bromopyrazolopy-
rimidine with various aryl groups at the C3 position gave fluorinated 
compounds 2AJ–2AL as well. The ring-opening fluorination pro-
ceeded well even when using zaleplon, a hypnotic agent, for which 
the desired product 2AM was obtained. The reaction was also appli-
cable to pyrazolopyrazine, triazine, quinoline, and quinazoline, giv-
ing fluorinated products 2AN–2AQ in moderate yields. 

In order to elucidate the reaction mechanism, we performed reac-
tion tracking by 1H NMR analysis using 1M (Figure 2A). When Se-
lectfluor® was added to 1M in an NMR tube without stirring, 1M was 
immediately consumed to produce tetrafluoroborate 3 as the inter-
mediate, which is thought to be the result of electrophilic fluorina-
tion at the C3 position. After 2 to 4 hours of reaction time, 1M al-
most entirely disappeared, and NMR peaks showed a mixture of 2M 
and 3; finally, practically only 2M resulted in the 1H NMR spectrum. 
This experiment indicated that the fluorination and the cleavage of 
the N–N bond proceeds in a stepwise fashion. When the reaction 
was stirred in a flask, 1M disappeared after 10 min at room tempera-
ture, giving intermediate 3 and the residue 4 of Selectfluor® (Figure 
2B). Upon removal of 4 from the resulting mixture, further reaction 
did not procced by heating at 80 °C for 24 h (see Supporting Infor-
mation for experimental details). Therefore, triethylamine (1.0 
equiv) was added, and the reaction proceeded quickly to give the de-
sired 2M quantitatively. This supports the role of Selectfluor® as the 
fluorinating agent in the reaction and the residue 4 as the base that 
promotes the N–N bond cleavage. 
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Scheme 1. Substrate scopea 

 
a Conditions; 1A (0.20 mmol), Selectfluor® (1.0 equiv), MeCN (1.0 mL), 80 °C, 24 h. b Selectfluor® (5.0 equiv) was added. c The reaction was per-

formed at –30 °C. d NaClO4 (1.0 equiv) was added. 

Next, the fluorination reaction was carried out with 5, where the 
C2 position was substituted (Figure 2C). As a result, only trifluorob-
orate salt 6 was obtained in a good yield, with no ring-opened prod-
uct was obtained upon heating. When the fluorination reaction was 
attempted using 7, which is unsubstituted at the C3 position, one 
equivalent of Selectfluor® gave the fluorinated compound 8 as the 
main product (50%) and the ring-opened compound 9 as a byprod-
uct, demonstrating further fluorination. When the amount of Select-
fluor® was increased to two equivalents, 9 became the main product 
(58%). These results demonstrated that the ring-opening fluorina-
tion can proceed as long as an appropriate substituent is present at 
the C3 position. 

We then studied the enantioselective version of this fluorination 
reaction (Figure 3D). Fluorinations using a chiral phosphoric acid 
and decarboxylative asymmetric allylation reaction were 

unsuccessful (see the Supporting Information for details).11 There-
fore, we attempted asymmetric fluorinations using chiral fluorinat-
ing agents. Shibata reported that a chiral fluorinating agent, NF–
(DHQD)2PHAL, can be prepared by mixing (DHQD)2PHAL and 
Selectfluor® at room temperature.12 A reaction using stoichiometric 
amounts of these agents with 3-phenyl-6-bromopyrazolopyrimidine 
1AJ in MeCN at 50 °C gave the corresponding product in 68:32 e.r., 
albeit in a low yield. However, when (DHQD)2PHAL was reduced 
to catalytic amount, enantioselectivity was dropped whereas the 
yield was increased. The substrate without a bromo atom at the C6 
position (1AG) gave the fluorinated product in moderate yield 
(44%) and 65:35 e.r. By lowering the temperature, changing the 
fluorinating agent, and changing the solvent, we finally succeeded in 
obtaining the fluorinated compound 2AJ with an enantioselectivity 
of 84:16 e.r. 
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Figure 2. (A) Reaction tracking by 1H NMR. (B) The role of Selectfluor®. (C) Reactions using C2-substituted azaarene 5 and C3-unsubstituted 
azaarene 7. (D) Studies toward asymmetric fluorination.

The absolute stereochemical configuration was determined by 
derivatization of the optically pure product to amide 10, recrystalli-
zation, and then X-ray structural analysis. This enantioselectivity 
could be explained using the proposed transition state model. Alt-
hough the direction in which the substrate reacts with the chiral 
fluorinating agent determines the enantioselectivity, we believe that 
the transition state of the desired compound has a π-π interaction 
between the substrate and the methoxyquinoline moiety of 
(DHQD)2PHAL, which fixes the conformation.12c, 13 

Finally, the obtained fluorinated compounds were derivatized 
into various compounds (Scheme 2). The ring-opened fluorinated 
products of pyrazolopyridine 2U (R = CO2allyl) were condense with 
amines to give amide 11 in 41% yield. Palladium-catalyzed decar-
boxylative allylation and removal of allyl esters proceeded to give de-
rivatives 12 and 13 in high yields. Furthermore, we attempted to 
convert the cyano group of the product of the fluorination reaction. 
Fluorinated product 2A (R = Ph) was converted to methyl ester 14 
by methanolysis. 2A was also converted to amides 15 and 16 by hy-
drolysis and Ritter reaction.14 Furthermore, borane reduction gave 
amine 17. In this way, we have succeeded in synthesizing a variety of 

fluorine-containing compounds by orthogonal functional group 
transformations following ring-opening fluorination. 

 
Scheme 2. Derivatization of products. 
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Conditions: (i) pyrrolidine (5.0 equiv), MeCN, RT, 12 h; (ii) 
Pd(PPh3)4 (5.0 mol %), toluene, RT, 1 h; (iii) Pd2(dba)3 (5.0 mol %), 
PPh3 (20 mol %), pyridine (3.0 equiv), MeCN, RT, 1 h; (iv) TMSCl 
(5.0 equiv), MeOH, 50 °C, 6 h; (v) Pd(OAc)2 (4.0 mol %), acetaldox-
ime (10 equiv), 1,4-dioxane, reflux, 1 h; (vi) tBuOAc (6.0 equiv), conc. 
H2SO4 (10 µL), 40 °C, 2 h; (vii) BH3·SMe2 (3.0 equiv), THF, 0 °C to 
RT, 19 h. 

 
In summary, we developed a ring-opening fluorination of bicyclic 

azaarenes leading to sp3-fluorinated compounds via N–N bond 
cleavage. Studies revealed that the electrophilic fluorinating reagent 
functioned not only as the fluorine source, but also as the base re-
quired for ring opening. Expanding the range of substrates and other 
electrophiles for this type of transformation is currently underway in 
our laboratory. 
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