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Abstract: The emergence of data-intensive scientific discovery and machine learning has dra-
matically changed the way in which scientists and engineers approach materials design. Nev-
ertheless, for designing macromolecules or polymers, one limitation is the lack of appropriate
methods or standards for converting systems into chemically informed, machine-readable rep-
resentations. This featurization process is critical to building predictive models that can guide
polymer discovery. Although standard molecular featurization techniques have been deployed
on homopolymers, such approaches capture neither the multiscale nature nor topological com-
plexity of copolymers, and they have limited application to systems that cannot be characterized
by a single repeat unit. Herein, we present, evaluate, and analyze a series of featurization strate-
gies suitable for copolymer systems. These strategies are systematically examined in diverse
prediction tasks sourced from four distinct datasets that enable understanding of how featuriza-
tion can impact copolymer property prediction. Based on this comparative analysis, we suggest
directly encoding polymer size in polymer representations when possible, adopting topological
descriptors or convolutional neural networks when the precise polymer sequence is known, and
using simplified constitutional unit representations depending on the noise-level of underlying
data. These results provide guidance and future directions regarding polymer featurization for
copolymer design by machine learning.

1 Introduction
Polymers are ubiquitous and versatile materials that can facilitate a wide range of complex tasks
in biology, industry, and beyond.1–4 However, the expansive chemical, sequence, and topologi-
cal space that facilitates such diverse applications can obfuscate the design of next-generation,
fit-for-purpose polymeric materials.5–9 For example, using a limited set of just three different
monomer types, there are on the order of 1047 distinct copolymers that can be generated with
degree of polymerization between 10 and 100. Thus, while theory and modeling are invalu-
able for understanding the origins of observed phenomena and informing the design of specific,
well-defined polymer systems,10–17 intricate studies may severely limit exposure to unknown
but promising regions of design space.18 In addition, resource limitations (time, monetary, or
computational) likely preclude exhaustive characterization of combinatorial search spaces.19

Over the last two decades, artificial intelligence and specifically machine learning (ML), has
emerged as a useful tool for accelerating materials design by (i) facilitating accurate surrogate
modeling of quantitative structure-property relationships (QSPRs) and (ii) providing more effi-
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cient ways to explore chemical space.20–27 Using supervised ML, properties of candidate mate-
rials can be cheaply estimated based on known examples. When coupled to robust optimization
algorithms, promising candidate materials can be efficiently identified, especially when aided by
techniques such as active learning.28 While flourishing in the domain of “hard” materials and
small molecules, applications of ML to polymer design have been relatively limited by compar-
ison for a number of practical and technical reasons.16,29–34 For example, there are numerous
large, open-access databases for small molecules and ordered materials, but data availability
and accessibility remains a major challenge for polymer ML.29,35,36 Presently, this challenge is
overcome by either (i) laborious, brute-force data sourcing and curation or (ii) in-house data
generation. The former approach has been largely useful for polymer informatics in the space
of homopolymers,37–40 while the latter has been typically necessary to design systems with se-
quence41–44 or compositional control45–48 over multiple monomers or constitutional units49

(CUs). In the near term, advancements in automated polymer synthesis50 and in hierarchical
polymer simulation,33 coupled with efficient data acquisition schemes,34 are likely to substan-
tially enhance capabilities to generate requisite data for ML on-the-fly. With evident activity to
facilitate acquisition of suitable polymer data, a fundamental consideration that follows is how
to represent polymer data to ML algorithms.

In the context of ML-guided design, the method of featurization or representation, i.e., how
a molecule or system is converted into a numerical input, is a fundamental consideration that
not only dictates what information is available for constructing QSPRs but also what ML algo-
rithms are suitable for the QSPR task.34 In general, featurization can profoundly impact what
patterns are extracted and exploited by ML algorithms,51–53 which can subsequently affect how
much data and time is required to train accurate models. Because featurization also defines the
mapping of system chemistry to a vector space, it has clear implications on the span of possi-
ble solutions for a given optimization task. Consequently, the development and investigation
of machine-readable representations for property prediction is of significant interest. Although
there are numerous viable strategies to facilitate ML on small molecules and ordered materi-
als,19,54–65 there is comparatively little guidance regarding how to effectively featurize polymers
for ML.

The featurization of polymers has been mostly dictated by the source of training data and the
scope of intended design space. One strategy that has enjoyed considerable success is to simply
adapt existing molecular featurization strategies to describe constitutional repeat units49 (CRUs)
of the polymer; this approach has been useful for designing homopolymers.39,66,67 However, us-
ing only the CRU to define QSPR neglects potential hierarchical and/or topological complexity
that may inform property prediction tasks. To partially address this limitation, Ramprasad and
coworkers have described hierarchical polymer fingerprints that combine atomic-level connec-
tivity descriptors, larger lengthscale property descriptors, and morphological descriptors;68–70

this approach has also been recently extended to describe stochastic binary copolymers.47 Con-
structing a low-dimensional latent space embedding of higher-dimensional feature vectors using
variational autoencoders71 (VAEs) is another attractive and complementary approach to afore-
mentioned techniques. This has been recently exemplified by Shmilovich et al. to describe the
chemical space spanned by coarse-grained tripeptides for the purpose of identifying peptides

1–25 | 2



with specific self-assembly behavior.41 Batra et al. have also demonstrated the use of VAEs to
translate a modified, polymer-based SMILES grammar into a suitable vector space for construct-
ing Gaussian process regression models to predict glass-transition temperatures and bandgaps
of homopolymers.67

Featurization for sequence-defined polymer systems can be pursued in several ways. For ex-
ample, feature extraction architectures may be used to learn relevant sequence and topological
correlations during supervised ML. In this vein, Webb et al. built ML models that leveraged re-
current and convolutional neural network (CNN) techniques to predict and later design the radii
of gyration for CG polymers by simply manipulating sequence.43 Mohaptra et al. similarly com-
bined Morgan fingerprints (a molecular featurization strategy) with CNNs to optimize fast-flow
peptide synthesis.44 The use of graph neural network architectures71 to represent macromolecu-
lar chemistry is also at early stages of exploration.72 As an alternative to using feature extraction
architectures, Jablonka et al. generated a hand-crafted vector of descriptors, which contained
descriptions of sequence entropy or enumeration of sub-sequence clusters, to guide the in silico
design of coarse-grained (CG) polymer dispersants.73 While these developments are generally
promising, it remains unclear under what circumstances and to what extent any given polymer
featurization strategy outperforms another.

We introduce a series of relatively simple featurization strategies for copolymers and evaluate
their performance in supervised learning regression tasks derived from four distinct datasets.
Following the introduction of the datasets and featurization approaches, we critically examine
the role of polymer size, the expression and manner of sequence representation, and the impact
of using chemically informed CU descriptions in different prediction scenarios. Through this
comparative study, we identify key attributes amongst successful strategies that can serve as
guidance for future ML-guided copolymer design problems.

2 Methodology
2.1 Datasets
To evaluate the efficacy of potential polymer featurization strategies, we consider their perfor-
mance in several, distinct supervised regression tasks. These tasks are defined in the context of
four datasets, which will be referenced as Datasets A, B, C, and D. Dataset A is introduced in
the present paper and comprises properties obtained by CG simulation for a set of intrinsically
disordered proteins (IDPs). The remaining three datasets are obtained from literature sources
(Dataset B from Ref. 43, Dataset C from Ref. 48, and Dataset D from Ref. 74); these datasets
feature different property labels, design spaces, and CU metadata.

2.1.1 Dataset A: Coarse-grained IDPs

Dataset A contains simulation-derived properties for 2,585 IDPs. The CUs for IDPs correspond
to the various amino acids, but their disordered sequences precludes definition of a single CRU
for each sequence. The IDPs are thus fairly described as linear, stochastic polymers with known
sequence. The IDPs within Dataset A have a degree of polymerization, denoted as N, between 20
and 600 CUs (amino acids). The specific sequences were sourced from version 9.0 of the DisProt
database;75,76 upon initial acquisition, care was taken to eliminate any duplicate sequences and
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ensure that all 2,585 IDPs were unique.
Properties of the IDPs under infinite-dilution conditions (i.e., single-chain properties) were

computed at 300 K via molecular dynamics (MD) with the LAMMPS simulation package.77 All
IDPs were modeled using the improved hydropathy scale CG model from Regy et al.78 Specific
properties extracted for use as labels in supervised ML include the radius of gyration Rg, the heat
capacity Cv, and the end-to-end decorrelation time τN . Dataset A is provided in the supplemen-
tary information (SI) as well as additional details regarding the simulations and calculations.

2.1.2 Dataset B: Monodisperse Coarse-grained Polymers

Dataset B is sourced from Ref. 43, which used ML and Bayesian optimization to direct the design
of sequence-defined polymers with target mean-square radius of gyration ⟨R2

g⟩. The dataset con-
tains 1,540 regular copolymers (i.e., they have a well-defined CRU) and 200 stochastic copoly-
mers; for each copolymer, the label is ⟨R2

g⟩ obtained from CG simulation. The copolymers contain
up to four distinct CUs from ten possible CUs, and each CU features one of two types of back-
bone beads and up to two pendant beads, also of two possible types; all copolymers have N =
400 CUs. Unless otherwise noted, all performance metrics and models are derived only from the
regular copolymers of Dataset B.

There are several notable differences between Datasets A and B. First, Dataset B features
CG polymers that are monodisperse. Second, Dataset B contains fewer total possible CUs than
Dataset A, and the number of unique CUs in any given polymer is restricted to a subset of
that total in Dataset B but not in Dataset A. Finally, the CG polymers in Dataset B are not
necessarily linear, although the side-chains are small. Like Dataset A, the data originates from
MD simulation, such that the sequences and simulation metadata are precisely known.

2.1.3 Dataset C: Experimental Methacrylate Copolymers

Dataset C is sourced from Ref. 48, which uses a computer-guided materials discovery approach
to design statistical copolymers of methacrylates to serve as high contrast 19F MRI agents.48

There are six possible CUs that can be combined in varying proportions and degrees of polymer-
ization, but the polymer sequences are unknown. Of the 397 unique copolymers reported in the
study, we use 271 copolymers that were labeled with the signal-to-noise ratio (SNR) from NMR
experiments; the SNR is always treated as the target output for our regression task. In addition,
the dataset describes the fractions of incorporation for each possible methacrylate, the mean
number-averaged molecular weight of the polymers, and the polydispersity. Like Dataset A and
in contrast to Dataset B, the polymethacrylates are linear copolymers. In contrast to all other
datasets discussed, the data is experimentally obtained. This dataset is also smallest in size.

2.1.4 Dataset D: Linear Bipolymers with Patterned Surfaces

Dataset D is sourced from Ref. 74, which trains support vector regression (SVR) models to
predict the adhesion free energy of CG copolymers on patterned surfaces as a function of polymer
sequence; a separate SVR model is developed for each of four surfaces. The copolymers studied
are comprised of up to two distinct CUs and have N = 20. Considering all four surfaces, Dataset
D contains 80,000 data points with known polymer sequence labeled with an adhesion free
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Fig. 1 Diagrammatic depiction of the relationships amongst various polymer featurization strategies used in
this study. All strategies have a common conceptual starting point of a polymer being a set of N topologically
connected constitutional units (CUs); the constitutional units are assigned types A, B, C, . . . ,T , depending
on their chemistry. The chemistry of the various CUs can be numerically represented via fingerprints, denoted
as f K for a CU of type K. We consider featurization strategies that either explicitly represent the polymer
sequence (blue) or those that do not (green). In the figure, quantities subscripted with alphabetic characters
are associated with CU types, quantities subscripted with arabic numerals are associated with indexed CUs
within the polymer, and quantities with no subscript are associated with the polymer.

energy ∆Fad for a given surface. Compared to Datasets A and B, which are also generated by CG
MD simulation, the copolymers in Dataset D are shorter and have fewer unique CUs. However,
∆Fad is comparatively more complex than the single-chain properties reported in Datasets A and
B.

Rather than training separate ML models for each of the surfaces present in Dataset D, we
pursue a different approach that additionally uses the surface as an input feature. To encode the
identity of the surface for which the ∆Fad label is computed, all polymer feature vectors are ap-
pended with a four-dimensional one-hot vector prior to being passed to densely connected neural
network layers. For explicit-sequence featurization strategies (Section 2.3.1), representations of
the polymer are first processed with feature-extraction architectures prior to concatenation with
the one-hot encoding vector that indicates the surface.
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2.2 Overview of Featurization Strategies
Fig. 1 illustrates the origins and relationships amongst the various polymer featurization strate-
gies explored in this paper. Common to all strategies is the essential characterization of a polymer
as a set of bonded or topologically connected CUs (Fig. 1, left top and middle); the CUs can be
numerically described via a vector that distinguishes its chemical characteristics from other CUs
via what is colloquially referred to as a “fingerprint” (Fig. 1, left bottom). Across Datasets A-D,
the CUs are respectively amino acids, sets of CG polymer beads, methacrylate monomers of dif-
fering chemistry, and CG beads; the specific fingerprints employed for these CUs are described in
Section 2.2.1. From this starting point, we explore two broad paradigms of featurization strate-
gies: those that explicitly represent sequence information (Fig. 1, top in blue) and those that do
not (Fig. 1, bottom in green). While the latter may be considered for most prediction/design
tasks, the former may not be viable, depending on data source or synthetic limitations.

2.2.1 Fingerprints

2.2.1.1 One-hot encoding. We view one-hot encoding (OHE), which is commonly used to
represent categorical variables, as the simplest of chemical fingerprints. In this approach, CU
fingerprints are NT -dimensional vectors where NT is the number of distinct CUs in the dataset.
For notational convenience, we will assume here and in subsequent sections that CUs of type A,
B, C, . . . , T are numerically indexed by 1, 2, 3, . . . , NT . The elements of the OHE fingerprint for
a CU of type K are thus given by

f K [i] = δki, for i = 1, . . . ,k, . . . ,NT (1)

where k is the numerical index for the CU of type K, f k [i] provides the value of the fingerprint in
the ith dimension, and δki is the Kronecker delta. The result is that the kth element of f k is equal
to one, and all remaining are equal to zero. Therefore, the dimensionality of OHE fingerprints
are 20, 10, 6, and 2 for Datasets A, B, C, and D, respectively. Notably, the OHE fingerprint simply
identifes CUs and does not express chemical similarity. Within this representation, one may view
the different CUs as being orthogonal in chemical space.

2.2.1.2 Molecular fingerprints. For Datasets A and C, we also make use of conventional
molecular fingerprinting techniques as applied to each of the various CUs. In particular, we
use RDKit79 to obtain Morgan fingerprints for each CU.54 The Morgan fingerprint, like other
extended-connectivity fingerprints,55 generally denote the presence or absence of chemical sub-
structures. The uniqueness and information content of the Morgan fingerprint depends on both
the vector dimensionality as well as the radius of the substructure search. We find that the mean
pairwise geometric similarities amongst CUs approximately plateaus at 2048 dimensions and 4
Å for Dataset A and 2048 dimensions and 5 Å for Dataset C. Therefore, we choose these as the
hyperparameters for CU fingerprint generation. Following generation of fingerprints for all CUs
in a given dataset, we remove dimensions that possess only zeros or only ones. This yields a final
dimensionality of 66 and 150 for the Morgan fingerprints used for Dataset A and C, respectively.
This approach is not used for Datasets B and D as there are no underlying chemical structures to
represent the CUs.
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2.2.1.3 Descriptor vectors. Describing molecules or systems using a vector of physiochemi-
cal descriptors is another common strategy in molecular featurization when constructing QSPR.
We adopt a similar strategy here as applied to CUs.

For in silico-derived datasets (Datasets A, B, and D), we use simulation metadata by formu-
lating vectors of force-field parameters (FFP) that are specific to each CU. Because the force-field
parameters express information such as the CU size or its interaction with other moeities, they
are somewhat similar to common descriptors like accessible surface area, partitioning coeffi-
cients, or properties derived from quantum chemical calculations. The descriptor vector for the
kth CU formed from simulation metadata is given by

fK =



(mK,qK,σk,1, . . . ,σk,n,λk,1, . . . ,λk,n) for Dataset A

flatten



(εk0,1 . . . ,εk0,4)

(εk1,1 . . . ,εk1,4)

(εk2,1 . . . ,εk2,4)

(σk0,1 . . . ,σk0,4)

(σk1,1 . . . ,σk1,4)

(σk2,1 . . . ,σk2,4)


for Dataset B

(εk,1,εk,2,rk,1,rk,2) for Dataset D

. (2)

For Dataset A, mK is the mass of the kth CU, qK is its charge, σk,i and λk,i respectively represent the
pairwise Lennard-Jones interaction diameter and strength of hydrophobic interactions between
the kth and ith CUs; in the HPS model,78 arithmetic means are used to define cross interactions.
For Dataset B, εk j,i and σk j,i are the energy minimum and diameter for the interaction between
the CG bead in position j of the kth CU and bead type i; there are four dimension in each row to
account for the four distinct CG bead types that make up the ten possible CUs. Here, j is 0 for the
backbone position, 1 for the first pendant position, and 2 for the second pendant position. For
CUs that do not feature CG beads in one or both of the pendant positions, the entries are zero.
In Ref. 43, Lorenz-Berthelot combination rules define cross interactions. For Dataset D, εk,i is the
minimum pairwise interaction energy between the kth and ith CUs and rk,i is the cutoff distance
for their interaction. Cross interactions are defined as specified in Ref. 74. In all cases, properties
that do not vary amongst CUs (e.g., the bead size for Dataset B and D) are excluded from fK

as they would represent constants to the ML algorithm, but they could be included if required
for extensibility. Lower-dimensional forms of the descriptor vectors in Eq, 2 that exclude cross
interactions are also considered.

While Datasets B and D stem from properties of phenomenological CG polymers of no spe-
cific chemistry, the polymers in Datasets A and C have CUs with underlying chemical structures.
Consequently, we also consider descriptor vectors of nearly 1600 descriptors derived using the
Mordred python package.58 For a given set of CUs, we remove any descriptors with zero vari-
ance. We also remove descriptors that exhibit significant correlation with other descriptors in
stepwise fashion. Specifically, we compute the number of instances for which a descriptor ex-

1–25 | 7



hibits a Pearson correlation coefficient > 0.85 with the set of all current descriptors, and then
we remove the descriptor with the greatest number of instances and repeat until all descrip-
tors possess pairwise Pearson correlation coefficients less than 0.85. Although this process is
not guaranteed to provide the maximum number of uncorrelated features, it is a reasonable
approximation to the NP-hard problem of vertex cover. This process yields a 248-dimensional
descriptor vector for Dataset A and a 46-dimensional descriptor vector for Dataset 3 for use as
CU fingerprints.

2.3 Featurization Paradigms
We consider featurization strategies that both explicitly represent polymer sequences as well
as those that rely more on composition-based or “scaled” representations. The different ap-
proaches are shown in Fig. 1. In all cases, property predictions are ultimately made based on
the output of a densely-connected deep neural network (DNN). For sequence-explicit featuriza-
tion approaches, additional ML architectures that function as feature extraction algorithms are
coupled to the DNN.

2.3.1 Explicit Sequence Representation

2.3.1.1 Sequence graph The sequence graph featurization approach explicitly represents the
polymer sequence and connectivity amongst CUs. Specifically, the polymer is represented as a
graph G = (V,E). V is a set nodes that contain fingerprint-embeddings of each CU within the
polymer, and E is a set of edges that indicate how CUs are topologically connected. To process
this representation, a graph convolutional network (GCN) is used to update the CU-fingerprint
embeddings, which are then aggregated and passed to a DNN for final property prediction. We
generally hypothesized that this approach would encode useful sequence information for the
property prediction task and tested this strategy for Dataset A. We considered two graph con-
volutional architectures: the graph convolutional layer80 and the graph attention layer.81 Both
layers aggregate and utilize neighbor embeddings when updating a node embedding; however,
the graph attention layer possesses additional parameters that allow neighbors to have differing
levels of importance when performing the update. After a maximum of two graph convolutions,
the node embeddings are aggregated and passed as input to a DNN.

2.3.1.2 Sequence tensor We additionally consider representations for which the CU finger-
prints are stacked to form a tensor. In this approach, one dimension tracks the ordering of CUs
within the polymer sequence, and the remaining dimensions relate to the CU fingerprint. For
dataset A, where polymers have varying degrees of polymerization, all sequences are padded
with zeros in to match the length of the longest polymer.

To process the sequence tensor, we employ two approaches. In the first, a one-dimensional
convolutional neural network (CNN) architecture leads into a DNN; this strategy is analogous
to the “property-coloring” scheme discussed in Ref. 43. The essential premise is that convo-
lution operations performed over windows of the sequence can extract high-level, hierarchical
feature correlations that may be useful for polymer property prediction. The CNN works by
sliding a kernel over the numerical representation of the polymer and extracting sequence-level
features. This operation, paired with pooling and subsequent convolutions, allows the model to
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directly construct hierarchical features. Inspired by demonstrated utility in modeling polymer
sequences,43 we also test long-short term memory (LSTM) architectures. The LSTM is a type of
recurrent neural network that processes a sequence in a unit-by-unit fashion, with model-specific
parameters and operations that retain information from previously processed units. Similarly to
CNNs, LSTMs can facilitate algorithmic identification and extraction of sequence features that
could relate to polymer properties.

To account for likely invariance in polymer properties due to certain sequence variations
(inversion and cyclic permutation in the case of Dataset B), the datasets are augmented with the
anticipated equivalent sequences labeled with the property value of the original sequence, where
appropriate. We note that this approach does not ensure that resulting ML models possesses all
intended invariance properties, but it does provide additional examples and loss incentives for
the learned parameters of the model to capture this invariance.

2.3.2 Scaled fingerprints

The scaled fingerprint approach can be employed in settings when precise polymer sequence
is known as well as when such information is absent or ambiguous. Here, the representation
effectively constitutes a weighted average of CU fingerprints f̄ = ∑k xk f k where the weight asso-
ciated with the kth CU is determined based on, e.g., its fraction of incorporation in the polymer
xk; this representation is effectively the same as that described by Kuenneth et al.47 This repre-
sentation can be derived from the sequence tensor by simply summing along the sequence axis
and dividing by N. In theory, it can also be obtained from the graph of CU embeddings if there
are no node update operations and instead the embeddings are pooled together using fractions
of incorporation as attention-like parameters. The lack of any graphical operations highlights a
potential limitation of such a polymer fingerprint: it lacks information regarding polymer con-
nectivity or CU patterning. Nevertheless, one advantage is that it can be constructed in most
experimental and in silico design problems. For the polymers in Dataset C, this is the only viable
option because no sequence information is present.

The scaled fingerprint f̄ can be modified in several ways, depending on the availability of
other descriptors. One common descriptor may be the size of the polymer, which is observed
to vary amongst polymers in Datasets A and C, for example. We consider two approaches to
encoding the information on polymer size. In the first, we simply multiply f̄ by the measure of
polymer size (e.g., N) to obtain a final polymer fingerprint f ; we refer to this as a size-implicit
scaled fingerprint. We note that when the representation of size is the degree of polymeriza-
tion and the weights for computing f̄ are fractions of incorporation, the resulting feature vector
is effectively a “Bag-of-features” or possibly “Bag-of-words” representation. For example, if a
dimension in the CU fingerprint contains its average charge, then the size-implicit scaled fin-
gerprint will report the net charge of the polymer. If the CU fingerprint is given by OHE and
the CU is a monomer, then one obtains an enumeration of how many monomers of each type
are present in the polymer, or a “Bag-of-monomers.” In the second approach, we add another
dimension to f̄ to include the polymer size; we refer to this as a size-explicit scaled fingerprint. In
addition to these (optional) modifications, we also consider augmenting scaled fingerprints with
additional descriptors of the polymer. This approach can be used to partially address the lack of
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connectivity information in the scaled fingerprints by adding dimensions for sequence-level or
topological descriptions. We refer to this approach as an augmented fingerprint and test it for the
simulation-derived datasets (Datasets A, B, and D). For Dataset A, we consider sequence charge
decoration (SCD), which captures the spacing of charge along a polymer chain, and sequence
hydropathy decoration (SHD), which captures information about the spacing of hydrophobic
components along a polymer chain.82 For Datasets B and D, we compute blockiness parameters
for each polymer as

b j = 1− 1
N

N−1

∑
i=0

1 j(k,k+1), (3)

with 1 j(k,k+1) as an indicator function that is equal to one if and only if all dimensions of the
CU fingerprints fk and fk+1 related to position j of the CU are identical; it is zero otherwise. In
the context here, 1 j(k,k+1) = 1 implies that the CG bead at position j in the kth CU is the same
as the CG bead at position j in the (k+1)th CU. For polymers in Dataset B, j = 0, 1, or 2, such
that the scaled fingerprint is augmented by three dimensions. For polymers in Dataset D, j=0
(they are linear polymers), such that the scaled fingerprint is augmented by a single dimension.

2.4 Model training and evaluation
The performance of each featurization strategy is obtained by averaging performance metrics ob-
tained using a nested, five-fold cross-validation procedure. In particular, each dataset is initially
split into five outer folds. For each outer fold, a set of optimal hyperparameters for the ML model
is obtained by an inner five-fold cross-validation. The hyperparameter optimization is facilitated
by using the tree-structured Parzen Estimator (TPE) approach as implemented in Hyperopt83 to
minimize the average mean-squared-error (MSE) across inner folds. The hyperparameter search
is conducted in a staged fashion wherein 100 random sets of hyperparameter combinations and
evaluations are followed by 100 Bayesian optimization steps with the TPE algorithm. For ML
models using LSTMs, hyperparameters were identified only using random search due to the
computational expense associated with their training. Using the best set of hyperparameters, a
model is trained and evaluated on the outer test fold. This process is repeated until every fold
has served as a test fold. The coefficient of determination, r2, and mean absolute error, MAE,
are used to assess model performance over all test sets. Care is taken to ensure augmented data
variants do not simultaneously appear in both the train and test splits.

All reported metrics represent the average values across test sets, and errors indicate the
standard error of the mean. To represent variation of MAE over consistent scales, we also in-
troduce a normalized MAE, which corresponds to MAE divided by the average property value in
the given dataset. The hyperparameter ranges, performance metrics, and other training settings
are provided in the SI. All neural networks were trained using Tensorflow,84 and Spektral85 was
used to implement graph convolutional network layers.

3 Results and Discussion
3.1 Representation of Polymer Size
Many polymer properties directly depend on the degree of polymerization or molecular weight
of a polymer,86,87 which make it an important candidate descriptor in polymer featurization.
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Fig. 2 Comparison of size-explicit versus size-implicit scaled fingerprint strategies for various fingerprints as
applied to property prediction tasks for (A) coarse-grained intrinsically disordered proteins in Dataset A and
(B) stochastic methacrylate copolymers as 19F MRI agents in Dataset C. Both panels illustrate the percent
decrease in mean absolute error (MAE) for a simple scaled fingerprint compared to that with either size-explicit
representation (plain bars) or size-implicit representation (hatched bars). In (A), results are shown for ML
models trained to predict the radius of gyration Rg, the heat capacity Cv, and the end-to-end decorrelation time
τN . In (B), the property label is an experimentally determined signal-to-noise ratio (SNR) as reported in Ref.
48. Both panels examine the effect on MAE using one-hot encoding (purple), molecular fingerprints (green),
and descriptor vector (orange) approaches to CU fingerprinting. In (A), three descriptor vectors are used. The
first two are vectors of force-field parameters (FFP); FFP1 excludes cross interactions while FFP2 additionally
uses cross interaction parameters; the third is obtained from the chemical structure using Mordred.58

While the notion of polymer size is seemingly already expressed in the explicit-sequence fea-
turization strategies, we sought to first quantify the impact of size representation by comparing
the performance of ML models trained with scaled fingerprints (SFP), size-implicit SFPs, and
size-explicit SFPs for Datsets A and B (Fig. 2).

Figure 2A shows that fingerprints that use either size-explicit or size-implicit representations
of the polymer significantly improve ML models trained to predict properties in Dataset A. In
particular, we observe in excess of a 50% decrease in MAE compared to using a simple scaled
fingerprint for all prediction tasks. In the case of the properties tested (Rg, Cv, and τN), these
results are overall expected because polymer size has clear implications for each. However, for a
given fingerprint type, we generally do not observe a statistically significant advantage to using
size-explicit versus size-implicit representations. Thus, for polymers in Dataset A, the inclusion
of N is crucial to a successful polymer featurization, but there is flexibility in the method of
representation.

By comparison, Figure 2B shows that there is no clear advantage in providing a measure of
polymer size in the polymer fingerprint for ML prediction tasks over Dataset C. In this case, the
representation of polymer size is the mean number-averaged molecular weight, and we do not
observe statistically significant reductions in MAE compared to models trained using only scaled
fingerprints, irrespective of the CU fingerprinting technique. We speculate that the SNR property
label is not especially sensitive to polymer size over the size-range explored in Dataset C: the
standard deviation of molecular weight is 1,100 g/mol compared to the mean of 7,770 g/mol
across the dataset. In contrast, the range of polymer sizes in Dataset A spans from N = 20 up

1–25 | 11



to 600. In addition to the lack of variability in molecular weight, other factors may include the
overall dataset size and statistical noise associated with SNR, such that any potential effect of
molecular weight is obfuscated by measurement noise. Nevertheless, inclusion of polymer size
does not remarkably decrease the performance of ML models compared to the simple scaled
fingerprint. Therefore, for most design tasks, it seems generally advisable to include either an
implicit or explicit description of polymer size in the polymer feature vector.

3.2 Effect of Explicit Sequence Representation
Many polymer materials systems may have the opportunity to exploit the sequential or topo-
logical arrangement of CUs to tailor properties or enhance figures-of-merit. Previous studies
have variously explored both recurrent neural networks and CNNs in polymer property predic-
tion tasks, presumably to extract and correlate sequence patterns with property labels; however,
such strategies are rarely compared. To provide some guidance regarding polymer featurization
when sequence is known, we constructed and compared the performance of three ML models
that use explicit-sequence representation for the IDPs in Dataset A to predict their radius of gyra-
tion Rg. In particular, models are developed using sequence tensors with one-dimensional CNNs,
sequence graphs with GCNs, and sequence tensors with long-short-term memory (LSTM) net-
works. To control for any potential role of different CU fingerprinting strategies, all comparisons
are made between models that use OHE for the CU fingerprints.

Fig. 3 summarizes the performance for the different sequence-processing strategies, with
panels A-C providing correlation plots between ML predictions and the “ground truth” results
obtained from MD simulation and panel D comparing the normalized MAE. We find that all ar-
chitectures perform respectably in predicting Rg, with coefficients of determination r2 in excess
of ∼0.9. Among the various strategies compared in Fig. 3, the CNN exhibits statistically lower
MAE compared to both the GCNs (27% lower) and the LSTM (18% lower). Interestingly, com-
parison of Fig. 3B and Fig. 3C suggests that the use of sequence graphs with GCNs is superior
to using sequence tensors and LSTMs, although Fig. 3D illustrates slightly lower MAE for the
LSTM architecture. The reason is clear from inspection of Fig. 3C, which reveals that processing
sequence tensors with LSTMs provides reliable predictions for short chains while systematically
underestimating Rg for larger chains. This suggests that the LSTM architecture may not en-
code an effective representation of polymer size, which was shown to have significant impact
for Dataset A prediction tasks in Section 3.1. While we expected similar performance between
CNN and GCN, we believe that the GCN performance was somewhat limited by the lengthscale
of node embeddings and the the number of allowable graph convolutions in our architectures.
Conversely, the CNN could aggregate features over much larger length scales by utilizing larger
kernel windows, which were found to span ∼20 CUs after hyperparameter optimization.

Based on the overall success of the explicit-sequence representations, we also examined per-
formance for Dataset B, for which similar architectures were examined in Ref. 43. In that study,
Webb et al. developed an ML model that used a two-dimensional CNN (labeled as property-
coloring) to process regular copolymer sequences; the performance of that model for a simple
80/20 train/test split was reported as r2 = 0.958 and MAE = 106 σ2, where σ is the characteristic
size of a CU with a single CG bead. In the present paper, we find similarly good performance with
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Fig. 3 Comparison of explicit-sequence featurization strategies for Rg prediction tasks in Dataset A. Note that
the axes labels are shared for panels (A)-(C); all data points in the correlation plots correspond to when the
given polymer is in the held-out test fold during corss validation. Panel (D) reports the normalized MAE for
sequence models in the prediction task. Standard errors and means for all quantities are obtained from the
results of five-fold cross-validation. In the labels, ⟨·⟩ denotes an ensemble average (obtained from statistical
sampling from simulation) and ·̄ denotes an average over the dataset.
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Fig. 4 Comparison of featurization strategies with varying levels of sequence information. Note that the axes
labels are shared for panels (A)-(C), (E)-(G), and (I)-(K). The coefficients of determination are reported with
standard errors for the last digit in parentheses. All data points in correlation plots correspond to when the
given polymer is in the held-out test fold during cross validation. Panels (D,H,L) report the average normalized
MAE for CNN models, scaled fingerprint models, and scaled fingerprint models augmented with topological
descriptors for prediction tasks associated with Datasets A,B, and D, respectively. Standard errors and means
are obtained from the results of five-fold cross-validation.

a one-dimensional CNN over OHE CU fingerprints (r2 = 0.946 and MAE = 111 σ2 obtained using
five-fold cross-validation). Additionally, Webb et al. reported r2 = 0.895 and MAE = 130 σ2 for
an LSTM model that predicts ⟨R2

g⟩ for stochastic copolymer sequences using training data only
from regular copolymer sequences. Interestingly, for the same task, we find somewhat better
performance ( r2=0.926 MAE of 110 σ2) using an ensemble model obtained from the five-fold
cross-validation procedure, i.e., the predicted labels are an average of predictions generated by
five separate models. Although hyperparameter optimization was not reported in Ref. 43, the
present results indicate that the CNN model can capture sequence correlations and generalize
these patterns to non-regular sequences somewhat better than the LSTM approach.
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3.3 Sequence and Topology Representations
The results of Section 3.2 demonstrate explicit-sequence representations can be effective; how-
ever, it is not clear to what extent the ML regression task efficiently leverages this sequence-level
information in its predictions. To assess the importance of sequence information on property
prediction, we compared three featurization strategies that utilize different levels of sequence
information; we considered prediction tasks on the simulation-derived Datasets A, B, and D be-
cause the sequences are precisely known. The first strategy (CNN) uses a sequence tensor pro-
cessed by a one-dimensional CNN. The second strategy (SFP) uses a scaled fingerprint, such that
there is no explicit sequence information. The third strategy (aug. SFP) uses the same feature
vector as the second strategy but the polymer fingerprint is additionally augmented with some
descriptors (see Section 2.3.2) that provide some characterization of sequence and/or topology.
All strategies use a OHE fingerprint to distinguish the CUs. The results are provided in Fig. 4.

Fig. 4A-D compare the performance of the three featurization strategies for predicting Rg

for the polymers in Dataset A. Surprisingly, we find that the ML model that uses size-implicit
SFPs (effectively a “Bag-of-Amino Acids”) statistically outperforms the sequence tensor/CNN
model both in terms of r2 (0.952 for the CNN in Fig. 4A versus 0.972 in Fig. 4C) and MAE
(see Fig. 4D). Meanwhile, using aug. SFPs enables the most accurate models. In fact, simply
adding these descriptors reduces the MAE by 32% compared to the simple SFP approach. Thus,
while comparing Fig. 4A and Fig. 4B suggests that Rg in Dataset A is primarily driven by CU
composition and polymer size, comparing Fig. 4B and Fig. 4C indicates that there are sequence-
level effects that can influence Rg within the dataset. In theory, both the model derived from
the simple scaled fingerprint as well as that augmented with sequence descriptors are within the
function space of the sequence tensor/CNN model, which performs the worst of the three. We
speculate that this primarily due to data limitations. In particular, the properties examined are
principally governed by composition and polymer size, such that sequence variation is perhaps
a perturbative or noise-level effect. Consequently, it is difficult to extract meaningful sequence
patterns on Rg (or other properties in Dataset A) from the sequences in the DisProt database.
Thus, it is more data-efficient to directly encode descriptors of sequence in the feature vector.

Fig. 4E-H compare the performance of the three featurization strategies for predicting ⟨R2
g⟩

for the polymers in Dataset B. The CNN strategy is comparable to the aug. SFP strategy in terms
of its performance metrics. Both are statistically superior to the SFP strategy, reducing MAE by
14% and 11% upon including sequence-level information via the CNN and sequence descriptors,
respectively; the r2 improves from 0.932 to 0.946 and 0.949. We attribute the relative success
of the sequence tenosr/CNN strategy, which is not encountered for Dataset A, to several factors.
First, the properties of polymers in Dataset B likely exhibit amplified sequence effects compared
to those in Dataset A. In particular, the polymers in Dataset B experience variations to intramolec-
ular bonding potentials due to sequence,43 while this is not the case for the HPS model for CG
IDPs.78 Secondly, there are relatively fewer unique non-bonded interactions amongst CG beads
for polymers in Dataset B compared to those for polymers in Dataset A. Thirdly, by construction,
there are well-defined, systematic sequence patterns in Dataset B, while the origin of sequences
in Dataset A is comparatively uncontrolled. We believe the combination of these factors facilitate
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feature extraction from polymers in Dataset B.
Fig. 4I-L compare the performance of the three featurization strategies for predicting ∆Fad

for the polymers in Dataset D. Analogously with the discussion surrounding Dataset B, we find
that explicitly representing the sequence or providing sequence-level descriptors statistically im-
proves the predictive capabilities of ML models compared to models that do not possess sequence
information. In particular, there is a 34% reduction in MAE when using the CNN strategy versus
SFP and a 39% reduction when using aug. SFP versus simple SFP. Notably, both the CNN strat-
egy and the aug. SFP strategy exhibit r2 that rival the highest reported r2 in Ref. 74, although
here we develop a single model for all surfaces based on DNN whereas Shi et al. develops
separate SVR models for each surface, such that direct comparisons are difficult. The sequence
tensor/CNN strategy likely again performs well due to the relatively small number of CUs and
a comparatively abundant number of training examples, which enables facile extraction of rel-
evant sequence patterns. Another contributing factor may be the monodispersity of sequence
length in Dataset C compared to that of Dataset A.

Considering all the data in Fig. 4, ML models built with aug. SFPs are consistently good
across prediction tasks. This suggests that this simple fingerprinting approach may be preferred
or at least a viable alternative to more complicated strategies that use CNNs or GCNs, even when
precise sequence or topological information is known. From a practical standpoint, such models
would also be cheaper to optimize. One potential advantage to the aug. SFP approach is the
opportunity to leverage domain-specific knowledge or make use of well-known descriptors as
we have here. On the other hand, this may also bias the ML models and limit the information
content of feature vectors to only human-crafted descriptors. In principle, using sequence tensors
or graphs with convolutional networks provides an overall more flexible, unbiased approach
to featurizing polymers. Because we do not observe remarkably poor performance with this
approach for any prediction task here, using explicit-sequence featurization strategies are still
likely viable, but they may not immediately provide the most accurate property predictions.

For design tasks, both explicit-sequence featurization or aug. SFPs would be reasonable for
use in surrogate modeling during property optimization. A potential advantage of the explicit-
sequence featurization is that optimization to identify a specific polymer is well defined. By
contrast, additional effort would be required to chemically invert the optimal descriptor vectors
into a sequence were one to optimize directly in the feature space of an aug. SFP. Optimiza-
tion could be used in sequence space with surrogate evaluations performed with the aug. SFP
featurization strategy, but this may undesirable due to degeneracy in the sequence-to-aug. SFP
mapping.

3.4 Impact of Constitutional Unit Fingerprints
In previous sections, we simplified comparisons by using only OHE fingerprints of the CUs,
achieving overall excellent predictive accuracy. Still, OHE is a limited representation that is
deficient in any notion of chemical similarity amongst CUs, such that all CUs are equidistant
in the chemical feature space. In addition, the dimensionality of OHE fingerprints scales with
the number of possible CUs, which may be problematic for less restricted design spaces. Both
factors limit the transferability of ML models constructed with OHE fingerprints of CUs. We
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hypothesized that using chemical fingerprints or descriptor vectors would enhance the predictive
capabilities of ML models by allowing for a better expression of chemical similarity. To test this
hypothesis, we compared an ensemble of models that use the same featurization strategy but
exchange the CU fingerprints. To investigate the utility of these chemically-informed encodings,
different representations of CUs were used in conjunction with the SFP and explicit-sequence
featurization strategies for regression tasks across Datasets A, B, and C (Fig. 5). Because Datasets
A and C have CUs that can be described by real chemical structures, despite Dataset A featuring
CG polymers, Fig. 5A and C compare OHE, molecular fingerprints, and descriptor vectors for use
as fingprints of the CUs. For Dataset B, the comparison is limited to only OHE versus descriptor
vectors as there are no underlying chemical structures for the CUs. We do not investigate this
comparison for Dataset D since the two representations are identical for this simple system:
representations using OHE are related to representations in the basis of force-field parameters
by a linear transformation.

Fig. 5A reveals that most SFP-based strategies with size representation perform similarly,
irrespective of the type of CU fingerprint and the prediction task for Dataset A. Meanwhile, there
is no evident systematic advantage for any given CU fingerprint when used along with explicit-
sequence featurization strategies. In fact, the models utilizing the OHE CU fingerprints are either
the best or within statistical error of the best-performing models (controlling for a given model
type and prediction task). The most noticeable result is that graph-based models have generally
larger errors, but apart from one ML model (sequence graph/CNN with CU embeddings given
by descriptors from Mordred), all models exhibit overall high accuracy.

Examination of Fig. 5B, which considers OHE and descriptor vector CU fingerprints in both
SFP and sequence graph/GCN featurization strategies for polymers in Dataset B, provides some-
what similar conclusions. In this case, however, using descriptor vectors does consistently en-
hance predictive capabilities compared to using OHE for the CU fingerprints. While the ad-
vantage is more striking when using SFPs than when using explicit-sequence featurization, the
differences remain overall modest when considering the proximity of all points for generally
accurate models.

In stark contrast, Fig. 5C clearly demonstrates relative success of OHE fingerprints for CUs
compared to either molecular fingerprints or descriptor vectors. Between molecular fingerprints
and descriptor vectors as the CU fingerprints, molecular fingerprints seem to provide overall
more accurate models, but the advantage is not always statistically significant. We note that the
error bars are larger here than in either Fig. 5A or B due to the dataset being smaller and the
labels being more prone to statistical noise. Consequently, we expect that the low-dimensionality
of SFP-based models with OHE is an advantage in data-scarce regimes and in prediction tasks
with larger measurement uncertainties.

4 Conclusions
In this paper, we introduced, examined, and compared the performance of various polymer
featurization strategies for diverse ML regression tasks derived from four distinct datasets. We
considered polymer featurization from the perspective that polymers are comprised of constitu-
tional units, which may be described in numerous ways, and that the precise sequence or topol-
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ogy of CUs may or may not be known, depending on the design space or synthetic capabilities.
Therefore, we outlined a series of approaches that invoked varying degrees of sequence-level
information. We additionally considered the special role of polymer size in property prediction
when it is a known variable in the dataset.

Our results indicate that the “best” polymer feaurization strategy is context-dependent, and
its performance may also be degenerate with other featurization strategies. For example, in re-
gression tasks associated with Datasets A and B, descriptor vectors performed as well as, if not

Fig. 5 Comparison of CU fingerprints combined with different featurization strategies for prediction tasks
related to (A) Dataset A, (B) Dataset B, and (C) Dataset C. For all figures, the horizontal and vertical axes
correspond to the average coefficient of determination r2 and the normalized MAE, respectively. Standard
errors are obtained from the results of five-fold cross-validation. The insets on all graphs range over the same
intervals for visual reference across panels. The symbol shapes can be interpreted as the following: cross symbols
correspond to scaled fingerprint strategies, up-triangle symbols correspond to scaled fingerprint strategies with
the size-explicit representation, down-triangle symbols correspond to scaled fingerprint strategies with the size-
implicit representation, square symbols correspond to a sequence tensors processed by convolutional neural
networks, and circle symbols correspond to sequence graphs processed by graph convolutional networks.

1–25 | 18



better, than models that use OHE. However, for the lone experimental dataset, OHE CU rep-
resentations definitively outperformed molecular fingerprinting or descriptor vector strategies,
although we expect this advantage to diminish for larger datasets. In situations where sequence
information is known, we found consistent advantages to leveraging sequence information com-
pared to relying solely on composition. On the other hand, explicit-sequence representations
coupled with feature extraction architectures did not outperform simpler models built using
fingerprints augmented with sequence descriptors. Because sequence descriptors are derivable
from explicit sequence representations, this result likely stems from data limitations. Here,
scaled fingerprints augmented with sequence descriptors seemingly provide a data-efficient ap-
proach to encode essential sequence characteristics for ML models, which is advantageous for
polymer design tasks. Finally, we find that some representation of polymer size is either nec-
essary to achieve accurate ML models or, at worst, inconsequential, depending on the property
prediction task.

The current work also points to several interesting questions for polymer featurization that
can be considered for future polymer design problems. For example, while we found that pro-
cessing sequence information through CNNs was generally more effective and computationally
expeditious compared to GCNs or LSTMs, the performance limitations or applicability of all
these approaches are still not fully understood. We also did not assess the performance or via-
bility of low-dimensional polymer embeddings achieved using unsupervised ML techniques88 or
variational autoencoders.41,67 Another consistent theme uncovered by exploration of multiple
datasets is the potential sensitivity of polymer featurization to dataset construction. For exam-
ple, we believe that the comparatively poor performance of explicit-sequence models for Dataset
A is because sequence effects must be ascertained from random occurrence of sequence motifs
across the dataset, and any relevant effects are small by comparison to those arising from com-
position or polymer size. This highlights a need to carefully consider dataset construction, if one
aims to use explicit-sequence representations.
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