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ABSTRACT: A light-driven method for the contra-thermody-
namic positional isomerization of olefins is described. In this work, 
stepwise PCET activation of a more substituted and more thermo-
dynamically stable olefin substrate is mediated by an excited-state 
oxidant and a Brønsted base to afford an allylic radical that is cap-
tured by a Cr(II) co-catalyst to furnish an allylchromium(III) inter-
mediate. In situ protodemetalation of this allylchromium complex 
by methanol is highly regioselective and affords an isomerized and 
less thermodynamically stable alkene product. The higher oxida-
tion potential of the less substituted olefin isomer renders it inert to 
further oxidation by the excited-state oxidant, enabling it to accu-
mulate in solution over the course of the reaction. A broad range of 
isopropylidene substrates is accommodated, including enol ethers, 
enamides, styrenes, 1,3-dienes, and tetrasubstituted alkyl olefins. 
Mechanistic investigations of the protodemetalation step are also 
presented. 

Synthetic methods for the selective incorporation and manipulation 
of olefins have been the subject of extensive research efforts.1 In 
this context, positional olefin isomerization is a particularly attrac-
tive strategy as it directly interconverts isomeric alkenes through 
double-bond transposition along a carbon chain.2 Leading studies 
on transition metal-catalyzed olefin isomerization by Cramer, 
Heck, Wilkinson, Noyori, and others stimulated significant re-
search in this area, resulting in both detailed mechanistic under-
standing and the development of useful synthetic methods.3 More 
recent advances from Schoenebeck, Shenvi, Holland, Grotjahn, and 
Mazet have continued to expand the scope of these protocols.4 
While powerful, thermal olefin isomerizations are limited to ac-
cessing equilibrium populations of olefin isomers whose relative 
concentrations are dictated by their thermodynamic stabilities. As 
such, thermal catalytic methods can only isomerize less stable al-
kenes into more stable positions (Figure 1a). To overcome this 
constraint, numerous two-step methods have been reported wherein 
an internal olefin is first stoichiometrically converted into a termi-
nal alkyl organometallic intermediate via chain-walking hydro-
functionalization, with subsequent elimination affording a terminal 
olefin product.5 In these protocols, the favorable consumption of a 
stoichiometric reagent provides the driving force necessary to com-
pensate for the otherwise endergonic isomerization. 

Alternatively, photochemical approaches are well-suited to drive 
reactions against a thermodynamic bias. In addition to the photon 
absorption event providing an exogenous driving force, the key 
bond-forming and bond-breaking steps can proceed across multiple 
potential energy surfaces, providing pathways that bypass the 
constraints of microscopic reversibility that govern thermal 

processes.6 These ideas have been effectively utilized in 
geometrical olefin isomerization, wherein triplet energy transfer 
can lead to selective enrichment in the higher energy Z-isomers.7  
Light-driven positional olefin isomerizations have been less 
extensively studied, though important examples have been reported 
by Arnold, Pete, Jørgenson, Gilmour, and others.8 Seeking to build 
on these advances, we describe here a light-driven method for the 
direct contra-thermodynamic isomerization of numerous olefin 
classes enabled by the selective generation and in situ consumption 
of a key allylchromium nucleophile (Figure 1b). The design, 
optimization, and demonstration of this methodology are presented 
below.  
Our approach finds its basis in recent studies from Kanai and 
Glorius on the photocatalytic allylation of aldehydes with alkenes.9 
In their work, an electron-rich alkene substrate is first oxidized by 
an excited-state photocatalyst to form a transient alkene radical 
cation. The allylic C–H bonds in this radical cation are markedly 
acidified and can be favorably deprotonated by a weak Brønsted 
base to generate an allylic radical.8b,10 This stabilized radical 
intermediate is then captured by a Cr(II) co-catalyst to furnish an 
allylchromium(III) complex. In the presence of an aldehyde 
electrophile, nucleophilic addition occurs via a cyclic transition 

Figure 1. (a) Challenges in developing contra-thermodynamic 
positional olefin isomerization. (b) This work: light-driven 
contra-thermodynamic positional olefin isomerization via 
selective excited-state electron transfer. 
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state leading to branched homoallylic alcohol products with high 
levels of diastereo- and regioselectivity (Figure 2a).11 We 
questioned whether intercepting the same allylchromium 
intermediate with an appropriate proton donor would result in 
similarly regioselective protodemetalation at the more substituted, 
internal carbon of the allylchromium intermediate, selectively 
delivering the less substituted olefin isomer. This hypothesis finds 
support in the independent work of Castro and Kato, wherein allylic 
chloride electrophiles are treated with excess Cr(II) salts in the 

presence of aliphatic alcohols.12 Under these conditions, the 
resulting allylchromium intermediate undergoes in situ 
protodemetalation via an SE2’ process with the alcohol proton 
donor, producing a terminal olefin product with exceptional   
regioselectivity (Figure 2b). 

We reasoned that combining these precedents would furnish a 
catalytic mechanism for contra-thermodynamic positional olefin 
isomerization jointly mediated by a photoredox catalyst, a Brønsted 
base, a chromium(II) complex, and an alcohol proton donor. In this 
scheme, excited-state electron transfer, allylic C–H deprotonation, 
and radical capture by Cr(II) would form a nascent 
allylchromium(III) intermediate from the olefin starting material as 
described above. Subsequent protodemetalation of the 
allylchromium(III) via an SE2’ process in the presence of a  proton 
donor would occur regioselectively through a cyclic transition state 
to furnish the desired less stable olefin product in accord with 
Kato’s findings. The resulting Cr(III) complex can then accept an 
electron from the reduced state of the photocatalyst while the 
alkoxide can be protonated by the conjugate acid of the Brønsted  
base to close the catalytic cycle (Figure 2c). Importantly, we 
anticipated that the significant differential in oxidation potentials 
between the more substituted and less substituted alkene isomers 
would provide a means to maintain selectivity for the contra-
thermodynamic alkene product. Specifically, an appropriately 
chosen excited-state oxidant should be able to oxidize the more 
substituted and thermodynamically stable olefin isomer selectively 
(Ep/2  ~1.3 & ~0.7 V vs Fc+/Fc in MeCN for styrenes and 
tetrasubstituted alkyl olefins, respectively), while not being 

thermodynamically competent to engage in electron transfer with 
the less-substituted isomeric alkene product (Ep/2 > 2.0 V vs Fc/Fc+ 
in MeCN for 1,1-disubstituted alkenes and terminal alkenes) 
(Figure 1c).13 In this way, the less-substituted (and less 
thermodynamically stable) olefin isomer should be inert to further 
reaction and thus be able to accumulate in solution as the reaction 
progresses.  

We began our investigations using conditions adapted from the 
aldehyde allylation studies with silyl enol ether 1 as a model 
substrate (Ep/2 = +1.26 V vs Fc/Fc+ in MeCN). We were pleased to 
find that a combination of 4 mol% of [Ir(dF(CF3)ppy)2(5,5′-
d(CF3)bpy)]PF6, (E1/2*Ir(III)/Ir(II) = +1.30 V Fc+/Fc in MeCN), 10 
mol% CrCl2, 25 mol% 2,6-lutidine, and 5 equivalents of MeOH 
under blue light irradiation in a solvent mixture of MeCN and 
dioxane (4:1 v/v) successfully afforded the isomerized allylic ether 
1a in 82% yield (Table 1, entry 1).9a A survey of proton donors 
revealed that primary aliphatic alcohols were particularly effective, 
with methanol proving optimal (entries 1, 2). More sterically 
demanding secondary alcohols (entry 3) and more acidic 
fluorinated alcohols (entry 4) proved less efficient. The use of 
carboxylic acids as proton donors was ineffective and resulted in 
the decomposition of acid-labile 1 (entry 5). Reactions using 
trifluoroacetate (entry 6), benzoate (entry 7), or inorganic bases 
(entries 8, 9) were effective but afforded 1a in diminished yields.  
Other heterocyclic bases were also examined (entries 10, 11) with 

a Optimization reactions were performed on 0.05 mmol scale. b 
Internal temperature of the reaction mixture under 34W LED 
irradiation (456 nm) (see SI for details). c Yields were 
determined by 1H NMR analysis of crude reaction mixtures 
relative to an internal standard. 

Table 1. Optimization studiesa 

Figure 2.  (a) Photoredox and chromium co-catalysis enabled al-
lylation of aldehydes with alkenes. (b) Regioselective pro-
todemetalation of allylchromium intermediates.  (c) Prospective 
catalytic cycle for positional olefin isomerization. 
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collidine proving similarly effective to 2,6-lutidine. A further 
survey of solvents revealed modest improvements in yield when a 
combination of 4:1 v/v MeCN and  trifluorotoluene (PhCF3) was 
employed (entry 12). Lastly, while CrCl2 is poorly soluble in this 
solvent mixture, we observed solution homogeneity when pyridine 
bases were employed, suggesting a potential ligation process.14 On 
the basis of these observations, we evaluated common pyridyl 
ligands for chromium and observed that reactions with 15 mol% of 
4,4’-di-tert-butyl-2,2’-dipyridyl (dtbbpy) furnished 1a in nearly 
quantitative yield (entry 13). In these reactions, we hypothesize that 
the excess dtbbpy ligand may also function as the Brønsted base in 
the deprotonation of the allylic radical cation. Control experiments 
indicated that there was no conversion in the absence of 
photocatalyst or blue light irradiation (entries 14, 15). Similarly, 

only a low yield of 1a was observed in the absence of the dtbbpy 
base/ligand (entry 16). The absence of CrCl2 resulted in the 
complete decomposition of 1 (entry 17). In the absence of 
methanol, only trace product was observed and 1a was found to 
undergo partial decomposition (entry 18). Additional details 
regarding the optimization process are presented in the Supporting 
Information.  
With these optimized conditions in hand, we set out to investigate 
the generality of this isomerization process for a variety of enol 
ether substrates (Table 2). On the preparative scale, silyl enol 
ethers derivatized from aldehydes (1) or ketones (2–7) were 
amenable to isomerization, including phenyl-substituted 3, 

a Reactions were run on 0.5 mmol scale. Reported yields are for isolated and purified material and are the average of two experiments. The 
internal reaction temperature in the reaction setup was measured to be ~40 °C. Details are provided in the Supporting Information. b Condition 
A was used. c Condition B was used. d 36 h reaction time. e 48 h reaction time. 

Table 2. Isomerization of enol ethers and enamidesa 
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electron-rich aryls (4–6), and indole derivative 7. In addition to 
enolsilanes, benzyl (8) and aryl enol ethers (9) were also 
accommodated. We then investigated the isomerization of enamide 
substrates. Unfortunately, the optimal conditions for the enol ethers 
were less efficient and resulted in partial decomposition of the 
substrate and low yields of the desired allylic amine products. 
Further study revealed that employing the less oxidizing 
photocatalyst [Ir(dF(CF3)ppy)2(bpy)]PF6 (E1/2*Ir(III)/Ir(II) = +0.94 
V vs Fc+/Fc in MeCN) and CrCl3 in dichloromethane solution 

resulted in improved reaction outcomes (condition B).15 Under 
these modified conditions, we expect that the CrCl3 is reduced in 
situ by the photocatalyst, enabling numerous enamides to be 
effectively isomerized, including oxazolidinone 10, secondary 
amide 11, and lactam 12. Gratifyingly, we found that more complex 
substrates such as estrone derivative 13 and telmisartan derivative 
14 could also be isomerized in good yields. 
We next explored the isomerization of non-heteroatom substituted 

alkenes, such as styrenes, tetrasubstituted olefins, and 1,3-dienes 
(Table 3). Due to differences in the redox properties of these alkene 
classes, we conducted further photocatalyst optimization studies 
and identified photocatalyst [di-tBu-Mes-Acr]BF4 (A) (E1/2 
*1Acr+/Acr• = +1.72 V vs Fc+/Fc in MeCN) as the most efficient 
photocatalyst for styrene and tetrasubstituted alkene substrates, 
while the less oxidizing photocatalyst 4CzIPN (B) (E1/2 *PC/PC•− 

= +1.05 V vs Fc+/Fc in MeCN) proved optimal for 1,3-diene 
substrates (Table 3).16 As in the enamide examples above, the use 
of CH2Cl2 and CrCl3 was found to be most efficient for these 
substrate classes (see Supporting Information for details). With 
these modified conditions identified, we studied the isomerization 
of numerous styrenes (15–21) and vinyl heteroarenes (22–24, 30–
32) on the preparative scale. Electron-rich styrenes, such as 16 and 
17, were well tolerated, providing excellent yields of the 
deconjugated allyl arene products. Notably, for styrene 18 bearing 
an electron-withdrawing ester substituent, we observed 
competitive anti-Markovnikov hydromethoxylation, presumably 
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Table 3. Isomerization styrenes, 1,3-dienes, and tetrasubstituted alkenesa 

 



 

via the addition of methanol to the electrophilic alkene radical 
cation as documented by Nicewicz and coworkers.17 Interestingly, 
when methanol was omitted from these reactions, the isomerization 
of 18 still proceeded efficiently, presumably mediated by proton 
transfer to the allylchromium from the conjugate acid of the dtbbpy 
base. Tetrasubstituted styrenes (20, 21) were also found to be 
efficient substrates. Numerous vinyl heteroarenes, such as pyrazole 
22, imidazole 23, and indazole 24 were also successfully 
rearranged using catalyst A. In addition, several tetrasubstituted 
alkyl olefins (25, 26) could be isomerized into their corresponding 
1,1-disubstituted isomers in excellent yields. We were pleased to 
discover that 1,3-diene substrates (27–29) could undergo selective 
deconjugation reactions, delivering skipped 1,4-diene products 
with high selectivity. Similar to the case of 18, we observed 
undesired hydromethoxylation in the reactions of 28 and 29 under 
the initially optimized conditions. Further experimentation 
revealed that in the absence of methanol, the reactions of 28 and 29 
proceeded most efficiently in dimethylformamide. Under these 
modified conditions, 28a was obtained in 90% yield as a 10:1 
mixture of E:Z isomers. Similarly, the isomerization of 29 produced 
29a in an excellent yield of 96%. Lastly, functionalized substrates 
30–32 were also effective in the isomerization reaction.  

To evaluate the proposed mechanism, we conducted a series of iso-
topic labeling and kinetic isotope effect (KIE) experiments (Figure 
3a). We first employed CD3OD (5 equivalents) in the isomerization 
of styrene 15 under otherwise standard photocatalytic conditions 
and observed 84% deuteration at the newly formed benzylic 
C(sp3)–H position of product 15a. Notably, no detectable deuter-
ation was observed at any other position in 15a or in the recovered 
starting material 15. These observations indicate both that deproto-
nation of the allylic radical cation is irreversible and that the pro-
todemetalation step is highly regioselective.  Next, we studied the 
stoichiometric reduction of (E)-(3-bromo-2-methylprop-1-en-1-
yl)benzene 33 using excess CrCl2 under conditions similar to those 

employed in the catalytic protocol but without either the photocata-
lyst or visible-light irradiation. With CD3OD, we observed 97% 
deuteration exclusively at the newly formed benzylic C(sp3)–H po-
sition of the product 15a. We attribute this modest difference in 
deuteration efficiency to the in situ generation of CD3OH under the 
photocatalytic conditions via deprotonation of the allylic C–H 
bonds in the alkene radical cation. We next conducted competition 
kinetic isotope experiments for both the catalytic and the stoichio-
metric reactions using a mixture of 1:1 CH3OH and CD3OD (10 
equivalents each). In both cases, we observed a H/D ratio of 76:24 
for incorporation of the hydrogen isotopes at the newly formed 
benzylic C(sp3)–H position of 15a. The correspondence between 
the competition KIE values in the photocatalytic and stoichiometric 
conditions is consistent with selectivity-determining protodemeta-
lation of a common allylchromium(III) intermediate in both reac-
tions. Notably, when parallel reactions are carried out using either 
CH3OH or CD3OD under the photocatalytic conditions, the ratio of 
observed rates (kH/kD) was ~1.2, indicating that protodemetalation 
occurs after the rate-limiting step of the catalytic cycle.18  Lastly, 
computational assessment (CBS-QB3) of the isomerization ther-
mochemistry for selected substrates demonstrates the ability of this 
light-driven protocol to selectively furnish the thermodynamically 
less stable olefin products (Figure 3b).  

In conclusion, we have developed a method for the contra-
thermodynamic positional isomerization of isopropylidene-
containing olefins utilizing photoredox and chromium co-catalysis. 
Selectivity in this process occurs through the in situ formation and 
consumption of a key allyl organometallic intermediate, while the 
thermodynamics are driven by excited-state electron transfer 
events. These results further highlight the ability of photoredox 
catalysis to enable energetically unfavorable reactions of 
significance in organic synthesis that may be challenging to achieve 
using conventional thermal catalysts. Efforts to expand the scope 
and generality of this protocol are ongoing.  
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Figure 3.  (a) Isotope labeling and competition kinetic isotope ef-
fect experiments under catalytic and stoichiometric conditions. (b)  
Computational assessment of thermochemistry for selected sub-
strates. 
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