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Abstract

In the fabrication of organic solar cells, there has been a need for materials with

high power conversion efficiencies (PCE). Scharber’s model is commonly used to pre-

dict efficiency, however it exhibits poor performance with new non-fullerene acceptor

(NFA) devices (RMSE=2.53%). In this work, an empirical model is proposed that

can be a more accurate alternative for NFA organic solar cells. Additionally, many

screening studies use computationally expensive methods. A model based on using the

semi-empirical simplified time-dependent density functional theory (sTD-DFT) as an

alternative method can accelerate the calculations and yields similar accuracy. The

models presented in this paper, referred to as Organic Photovoltaic Efficiency Pre-

dictor (OPEP) models, have shown significantly lower errors than previous models,

with OPEP/B3LYP yielding errors of 1.53% and OPEP/sTD-DFT of 1.55%. The

proposed computational models can be utilized for fast and accurate screening of new

high-efficiency NFAs and donor polymer pairs.
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Photovoltaic research is a growing topic of both scientific and technological advancement

as a mechanism to inexpensively convert abundant solar energy.1 One of the most active

areas of research for organic solar cells is the design of more efficient materials for the ac-

tive layer. In recent years, there have been improvements in the design of non-fullerene

acceptors (NFAs), with power conversion efficiencies (PCEs) of single-junction devices sur-

passing 18%.2–4 To accelerate the discovery of materials with higher PCEs, computational

exploration of new materials is vital. Screening methods such as high-throughput virtual

screening (HTVS) and genetic algorithms have shown promise, due to their capabilities of

efficiently searching a large chemical space and finding promising candidates.5–11 The largest

HTVS study for organic photovoltaics (OPVs) is the Harvard Clean Energy Project that

screened 1.3 million donors12 and 51,000 NFA materials.6 These results, however, and simi-

lar research rely on Scharber’s model13 to evaluate the PCE of the materials.

While Scharber’s model is commonly used, and has proven to be a useful guide, it makes

many assumptions that lead to poor performance with non-fullerene acceptors.13 The model

was designed for fullerenes, which are poor absorbers of light, so there is no term to account

for acceptor light absorption, as in NFA materials. Additionally, it treats the donors as

inorganic solids, with the assumption that all photons above the band gap are absorbed,

which does not consider varying polymer/molecule absorption profiles. Lastly, it sets the

fill factor (FF) to a constant 65%; this parameter can drastically vary depending on device

fabrication and material compatibility (Figure S1).

A few other physically-motivated models have been developed to improve the PCE pre-

diction. Imamura’s model14 is a modified version of Scharber’s model where the LUMO

offset between the donor and acceptor is also considered. Additionally, the FF is set to 70%.

Alharbi’s model15 considers the acceptor’s absorption spectrum and exciton diffusion length,

as well as setting the FF as a function of the open-circuit voltage (VOC). A more detailed

explanation of these models can be found in Note S1 in the Supporting Information (SI).

To predict the PCE, an understanding of the photoconversion process is required, since
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many factors are relevant to overall device performance. Photons are converted to free

charge carriers through a series of five main processes: (1) absorption of the photon by

either the donor or acceptor, exciting an electron which results in an exciton, (2) this exciton

diffuses to the interface between the donor and acceptor, (3) if the donor absorbs the photon,

then the excited electron transfers from donor to n-type acceptor molecules; similarly if an

acceptor absorbs, holes transfer from the acceptor to p-type donor, (4) if there is enough of

a driving force between these energy levels, the exciton will split into free charges, (5) the

free charges diffuse through the active layer to either the cathode or anode.16,17 Throughout

these processes, there are multiple mechanisms where the exciton can recombine, resulting

in energy loss.18

In this work, we consider a data-driven model, drawing on real-world published experi-

mental performance, considering 47 descriptors that can play a role in photovoltaic device

performance to find trends in the PCE. While many factors are likely relevant to device effi-

ciency, the development of an empirical data-driven model can help to resolve which factors

are most relevant to predicting real-world device PCE. Figure 1 gives an overview of some of

the descriptors examined in this study and their method of calculation. Some descriptors an-

alyzed include the highest occupied molecular orbital, (HOMO), HOMO-1, lowest occupied

molecular orbital (LUMO), LUMO+1 eigenvalues, energy level offsets between the donor and

acceptor, optical band gap, transition energies, oscillator strengths, molecular planarity,19–21

and conjugation length.22 A complete list of descriptors and their explanations can be found

in Note S2 in the SI.

One of the main applications for predictive descriptor models is in screening studies, in

which fast and accurate property predictions of molecules are desired. Typical evaluation

of excitation energies and oscillator strengths of electronic excitations use time-dependent

density functional theory (TD-DFT). An alternative method is simplified TD-DFT (sTD-

DFT),23 a semi-empirical method that can speed up calculations by 2-3 orders of magnitude

and with comparable accuracy.24 The calculated properties from DFT/TD-DFT and sTD-
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Figure 1: Diagrams labeling some descriptors used in this study and method of calcula-
tion. Using density functional theory (DFT), the difference between orbital eigenvalues is
calculated for the acceptor and donor molecules, as well as the polarizability, α, and dipole
moment, µ. TD-DFT calculated the absorption spectrum with oscillator strengths and ener-
gies of optical transitions, including to first excited singlet or triplet states. A python script
was written to calculate the planarity of the molecule using the distance of each atom to a
plane of best fit.

DFT are found to be in good agreement, as seen in correlation plots in Figure S2.

In this work, empirical descriptor models are proposed to predict FF, short-circuit current

(JSC), VOC, and PCE as alternatives to current models for NFA-based OPVs. The first

organic photovoltaic efficiency predictor (OPEP) model called OPEP/B3LYP is based on

ground-state DFT and TD-DFT B3LYP calculations, while the OPEP/sTD-DFT models are

based on sTD-DFT CAM-B3LYP calculations. OPEP/sTD-DFT was developed using the

same dataset as OPEP/B3LYP, while the related OPEP/sTD-DFT Expanded was trained

across a larger dataset containing molecules too large to compute with TD-DFT methods in

a reasonable time frame. These proposed models are then compared to existing models such

4



as Scharber, Imamura, and a modified version of Alharbi.

A dataset was prepared using 84 donor-acceptor pairs found in recent literature, compris-

ing of sixty-six NFAs, two fullerene acceptors, and six polymer donors (Table S1). Since the

main goal of screening studies is to find materials with high PCE, the models were trained

on experimental pairs with PCE greater than 9%, of which there are 59 pairs.

The authors note that experiments with FF below 40% were not included, since FF is

highly dependent on the manufacturing process and treatments, and low FFs may be an

indication that the processing conditions were not fully optimized for the donor/acceptor

materials and thus the measured PCE would be lower than in an optimized device.

Since many descriptors were calculated for each material, the least absolute shrinkage

and selection operator (LASSO) was utilized to eliminate descriptors and perform regression

analysis. The resulting models were 5-fold cross-validated.

Using LASSO and manual selection of descriptors to avoid overfitting, models were pre-

pared to predict FF, JSC, VOC, and PCE with B3LYP and with sTD-DFT CAM-B3LYP.

Two versions were prepared for each model, one with a wide range of experimental PCE

and another with experimental PCE above 9% (Eqs S13-S36). The equation to predict PCE

using B3LYP (OPEP/B3LYP) for high experimental PCE is:

PCE = −136.5+6.42ET1 +0.917∆µge +8.31ω−
D +0.00389ED

oscs−10−0.00047EA
oscs−0.0036αA

(1)

where ET1 is the electronic transition energy from the singlet ground state to the first triplet

excited state of the acceptor, in units of eV, ∆µge is the change in dipole moment from going

from the ground state to the first excited state of the acceptor, ω−
D is the electro-donating

power of the donor, ED
oscs−10 is the energy of transition with the largest oscillator strength

within the first 10 transitions from the ground state to the excited state of the donor, in units

of cm−1, EA
oscs is the lowest energy of electronic transition of the acceptor with an oscillator
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strength greater than 0.1, in units of cm−1, and αA is the polarizability of the acceptor in

units of a.u.

The distribution of errors of the predicted values for FF, VOC, JSC, and PCE for the

proposed OPEP / B3LYP and OPEP/sTD-DFT models, as well as Scharber, Imamura, and

Alharbi’s models are shown in Figure 2. Examination of the predicted FF in Figure 2a shows

large deviations and underestimation of FF for Scharber’s and Imamura’s models, resulting

from the selection of constant FFs of 65% and 70%, respectively. While these values are

close to the median FF of 67% from the sampling of 107 OPV devices (Figure S1), they can

not adequately describe the complex FF parameter. As data-driven regressions, our models

have small deviations close to zero for FF while Alharbi’s model consistently overestimates

the FF, with a median deviation of approximately 12%. The OPEP models for both B3LYP

and sTD-DFT have large distributions close to zero deviation, however, the height of the

distribution suggests that there are frequent outliers.

As illustrated in Figure 2b, Scharber and Imamura have the same distributions, since they

use the same equation to predict VOC. Alharbi’s model again significantly overestimates this

parameter, with a high positive deviation. The proposed OPEP models have many deviations

close to zero, therefore outperforming the previous models.

In Figure 2c, Scharber and Imamura’s predictions have large negative deviations, with

some more than 20 mA/cm2, and a wide distribution of these deviations, which is understand-

able since these models consider only one or two parameters for Scharber’s and Imamura’s

models, respectively. Alharbi’s full model for JSC was not implemented in this work, since

it treats optical effects in the films.

Examination of the PCE in Figure 2d demonstrates that Scharber, Imamura, and a

modified version of Alharbi’s model (Scharber’s JSC was substituted in the calculations)

mostly underestimate the PCE. The OPEP models perform significantly better with fewer

outlier points. The OPEP models trained on all experimental ranges of PCE had slightly

larger errors, however performed better than the other models (Figure S3)
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Figure 2: Violin plots showing the distribution of deviation (predicted-experimental values)
for (a) FF, (b) VOC, (c) JSC, and (d) PCE. Experimental values were used for donor-acceptor
pairs with PCE greater than 9%. In 2d, the modified Albarbi model refers to using Scharber’s
JSC for the calculation of PCE.

Comparisons of the predicted PCE from each model against the experimentally reported

PCE can be seen in Figure 3. R2 is the correlation coefficient and compares the predicted data

points to a horizontal line. R2 is typically in the range 0 to 1, but can be below zero when the

fit of the data points is worse than the average. In Figure 3, the 5-fold cross validated R2 is

negative for all of the previous models, suggesting that these models are inferior to just setting
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the average PCE of the experimental values as the predictions. Both OPEP models show

significant improvements in the correlation of predicted PCE versus the experimental PCE.

The OPEP/B3LYP model has R2 of 0.640 ± 0.006, the highest of all the models examined,

while OPEP/sTD-DFT has R2 of 0.630 ± 0.005, essentially indistinguishable. The OPEP

models trained on high experimental PCE were used to predict the PCE for low performing

devices (Figure S4) and performed worse with R2 of 0.36± 0.08, 0.30± 0.06, and 0.35± 0.08

for OPEP/B3LYP, OPEP/sTD-DFT, and OPEP/sTD-DFT Expanded, respectively. While

higher correlations would be desirable, the performance of the OPEP models are notable

since they do not directly include predictors of film morphology, crystal packing, or charge

transport, among other properties. Future work to include some or all will undoubtedly

improve the accuracy of the OPEP models.
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Figure 3: Correlation plots comparing predicted PCE of models versus the experimental
PCE for pairs with experimental PCE greater than 9%.

A statistical analysis of all the models to predict FF, JSC, VOC, and PCE was performed.

The R2, mean absolute error (MAE), root mean square error (RMSE), and mean absolute

percent error (MAPE) were calculated and 5-fold cross-validated for each model. MAE,

RMSE, and MAPE are measures of the average magnitude of the error, while RMSE is

commonly used to give larger weight to the larger errors. Figure 4 shows the comparison
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of MAE and RMSE for each model with every parameter. For all parameters, the OPEP

models have much lower MAE and RMSE, with RMSE reaching around 1.5% for predicting

PCE.
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Figure 4: Statistical analysis of models for predicting OPV parameters with experimental
PCE above 9%. The error bars are from the standard error of 5-fold cross-validation.

The full statistical analysis is displayed in Table 1. For FF, our models have signifi-

cantly lower RMSE than the previous models, indicating OPEP can predict the FF more

appropriately than previous models. The lowest RMSE achieved was 4.19 ± 0.05% for the

OPEP/B3LYP model. However, this FF RMSE is still relatively high. This is most likely
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due to the lack of efficient descriptors in the model, such as charge transport properties,

dielectric constants, and solubility, which can be challenging to predict.

The OPEP JSC models have RMSE almost 2 mA/cm2 less than the other published mod-

els, with the best RMSE of 1.78 ± 0.02 mA/cm2 for OPEP/sTD-DFT. Since JSC is known to

be primarily controlled by charge generation and charge transport processes, incorporating

descriptors such as the sum of the oscillator strengths and an absorption figure of merit

that gives higher weight to transitions in the regions with higher solar radiation intensity

increases the accuracy of these proposed new models over treatments such as Scharber.

For the VOC models, Scharber and Imamura have RMSE of 0.08 ± 0.01 V, and Alharbi

has RMSE of 0.09 ± 0.01 V. The OPEP models have lowered this error to 0.058 ± 0.002 V

and 0.063 ± 0.002 V for OPEP/sTD-DFT and OPEP/B3LYP, respectively. These models

include descriptors such as electrodonating power and polarizability. What is interesting to

note is that none of the OPEP models include the energy between the donor HOMO and

acceptor LUMO eigenvalues, the only descriptor in Scharber’s model. Development of the

OPEP models shows that while this descriptor can contribute, other descriptors can be more

predictive of the VOC (i.e., the LASSO technique includes them preferentially).

Lastly, for comparing the PCE, both OPEP models have RMSE around 1.5%, and RMSE

as low as 1.53± 0.01% for OPEP/B3LYP. Results of a T-test indicate that the performance

of the OPEP models are indistinguishable (p=0.98). For every statistic in Table 1, the

standard error of the mean (SEM) for the OPEP models is much lower than that of other

models. This is further evidence that these proposed models can serve as replacements for

Scharber’s model for NFA screening studies.

While the proposed models are a useful alternative to Scharber’s model for NFA OPVs,

they can be improved as more experimental data becomes available. Low-performing device

efficiencies are rarely reported, yet are required to develop more accurate models and estab-

lish design rules. Moreover, many NFA experimental studies use the same donor materials.

A larger dataset containing 77 acceptor-donor pairs with PCE over 9% and FF below 40%
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Table 1: Statistical analysis of all models by comparing R2, mean absolute error (MAE),
root mean squared error (RMSE). All models are cross-validated with experimental PCE
greater than 9%. The format is the predicted value ± standard error of the mean (SEM).
Units for MAE and RMSE for each parameter are: FF is %, JSC is mA/cm2, VOC is V, and
PCE is %.

Model R2 MAE RMSE

OPEP/B3LYP 0.399 ± 0.016 3.186 ± 0.041 4.185 ± 0.053

OPEP/sTD-DFT 0.307 ± 0.008 3.528 ± 0.053 4.492 ± 0.027

Alharbi 0.050 ± 0.056 4.070 ± 0.260 5.000 ± 0.300

Imamura -0.120 ± 0.063 4.510 ± 0.260 5.430 ± 0.310

FF

Scharber -0.120 ± 0.063 4.510 ± 0.260 5.430 ± 0.310

OPEP/sTD-DFT 0.739 ± 0.004 1.444 ± 0.014 1.778 ± 0.015

OPEP/B3LYP 0.662 ± 0.003 1.700 ± 0.009 2.024 ± 0.008

Imamura -0.920 ± 0.618 3.150 ± 0.200 3.730 ± 0.200
JSCJSCJSC

Scharber -0.920 ± 0.618 3.150 ± 0.200 3.730 ± 0.200

OPEP/sTD-DFT 0.610 ± 0.027 0.044 ± 0.001 0.058 ± 0.002

OPEP/B3LYP 0.552 ± 0.025 0.050 ± 0.001 0.063 ± 0.002

Imamura -0.010 ± 0.224 0.060 ± 0.010 0.080 ± 0.010

Scharber -0.010 ± 0.224 0.060 ± 0.010 0.080 ± 0.010

VOCVOCVOC

Alharbi -0.230 ± 0.089 0.070 ± 0.010 0.090 ± 0.010

OPEP/B3LYP 0.642 ± 0.006 1.240 ± 0.010 1.526 ± 0.012

OPEP/sTD-DFT 0.630 ± 0.005 1.226 ± 0.016 1.553 ± 0.011

Alharbi -0.120 ± 0.171 2.080 ± 0.210 2.460 ± 0.210

Scharber -0.230 ± 0.212 2.210 ± 0.210 2.530 ± 0.170

PCE

Imamura -0.230 ± 0.212 2.210 ± 0.210 2.530 ± 0.170
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was created. This dataset includes 20 donor oligomers, all as hexamers, as opposed to the

six donors in the original dataset. This larger dataset was not calculated with DFT and TD-

DFT methods due to slow convergence of the larger oligomers. With this expanded dataset,

sTD-DFT was used to see if the model is improved by adding more data. The resulting

model, known as OPEP/sTD-DFT Expanded, is:

PCE = −33.08 + 4.26∆EA
H + 1.377ΣfA − 0.459ΣfD + 0.174AbsDFOM + 2.45ω−

D + 9.5 × 10−4ED
g (2)

where ∆EA
H is the energy difference between the HOMO and HOMO-1 of the acceptor, ΣfA

and ΣfD are the sums of the oscillator strengths of the acceptor and donor, respectively,

AbsDFOM is a new descriptor proposed that takes into account the oscillator strengths of the

donor and the solar spectrum, ω−
D is the electro-donating power of the acceptor, in units of

eV, and ED
g is the optical band gap of the donor in units of cm−1.

The performance of OPEP/sTD-DFT Expanded can be seen in Table 2. Comparisons be-

tween OPEP/sTD-DFT Expanded and the original OPEP/sTD-DFT show the performance

is statistically indistinguishable (p=0.88) and either model can be used for the prediction of

PCE with similar accuracy.

Table 2: Statistical analysis of OPEP/sTD-DFT Expanded. The model was cross-validated
and based on experimental PCE greater than 9%. The format is predicted value ± standard
error of the mean (SEM). Units for MAE and RMSE for each parameter are: FF is %, JSC

is mA/cm2, VOC is V, and PCE is %.

R2 MAE RMSE

FF 0.310 ± 0.003 3.531 ± 0.020 4.446 ± 0.010

JSCJSCJSC 0.682 ± 0.011 1.557 ± 0.021 1.924 ± 0.032

VOCVOCVOC 0.519 ± 0.014 0.047 ± 0.001 0.061 ± 0.001

PCE 0.552 ± 0.021 1.297 ± 0.025 1.601 ± 0.036

Further improvement of PCE prediction models can come from the inclusion of relevant

factors to FF and JSC such as solubilities and charge transport properties such as Marcus
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reorganization energies. Solubility is crucial to the domain size, which in turn is directly

related to the exciton recombination rate and overall PCE of the device. If the solubility

between conjugated polymers and NFAs can be predicted, better FF models can be estab-

lished. Improvements in these predictions can be achieved if more experimental solubility

data between small molecules and conjugated polymers is available, as well as easily ac-

cessible computational methods to calculate interaction parameters. According to Marcus

theory, reorganization energies are related to the driving force for exciton dissociation and

can influence the electron and hole mobility throughout the active layer,22,25 yet calculating

this parameter requires lengthy calculations. A machine learning method recently developed

by Abarbanel and Hutchison shows the potential for efficient screening of reorganization

energies of polythiophenes26 and is promising for future application towards NFAs.

In summary, new data-driven models to predict the FF, JSC, VOC, and PCE for OPV

devices incorporating NFAs are proposed. The use of experimental data can help to reflect

the critical balance of factors relevant in determining device efficiency. A model based

on DFT and TD-DFT with B3LYP (OPEP/B3LYP) and a model with a larger dataset

using sTD-DFT CAM-B3LYP (OPEP/sTD-DFT Expanded) are presented, both with higher

accuracy than previous models. OPEP/B3LYP can predict the PCE with an RMSE of

1.52 ± 0.01%, while the sTD-DFT model with the expanded dataset can predict the PCE

with RMSE of 1.60 ± 0.04%. Using sTD-DFT is a useful alternative to standard DFT and

TD-DFT calculations and shows similar accuracy. The OPEP models provide a simple route

to pre-screen NFAs before synthesis or to evaluate candidates in computational material

searches, and we intend to update them with reliable community data.
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