Carbonate-Catalyzed Reverse Water-Gas Shift to Produce Gas Fermentation Feedstocks for Renewable Liquid Fuel Synthesis

Chastity S. Li[†], Amy D. Frankhouser[†], and Matthew W. Kanan*

Department of Chemistry, Stanford University, Stanford, California 94305, United States

[†]Denotes equal contribution

Summary

Carbon-neutral liquid fuel generation is essential for decarbonizing sectors that cannot readily electrify. Recently commercialized acetogenic gas fermentation offers an alternative to conventional biofuels that circumvents efficiency limitations and land requirements, provided the requisite H_2/CO feedstocks can be generated efficiently using renewable inputs. CO₂ electrolysis to CO is under development for this purpose, but suffers from scalability challenges and impurity sensitivity. We describe an alternative that utilizes dispersed alkali carbonates as reverse water-gas shift (RWGS) catalysts to convert H_2 and CO₂ to an appropriate ratio of CO/CO₂/H₂ for acetogenic fermentation. Using a fixed bed reactor operating at industrially relevant space velocity, we demonstrate equilibrium RWGS conversion starting at 410 °C that remains stable over days, even with 50 ppm H_2S impurity. The combination of carbonate-catalyzed RWGS, water electrolysis, and gas fermentation could convert electricity to ethanol with nearly 50% energy efficiency, providing a compelling option for renewable liquid fuel production.

Introduction

Liquid fuels currently provide 30% of global energy demand and are likely to remain a major pillar of global energy supply for many decades.^{1,2} Achieving a carbon-neutral energy system will therefore likely require replacing fossil-derived liquid fuels with renewable alternatives made from CO₂, H₂O, and lowcarbon energy. At present, the only significant source of renewable liquid fuels are biofuels produced from agricultural products (e.g. corn, sugarcane, palm oil). Biofuel production is limited by the low efficiency of natural photosynthesis, which has a global average of $\sim 0.2\%$.³ As they are currently produced, biofuels also compete with food for arable land, which can lead to environmentally devastating land use changes. The conversion of renewable electric power to liquid fuel is an attractive alternative because it could take advantage of the relatively high efficiency and falling costs of low-carbon electricity and it would not require arable land. Renewable methanol synthesis has been demonstrated at the multi-kiloton yr^{-1} scale by combining geothermal-powered water electrolysis with thermal catalysis of CO₂ hydrogenation to methanol.⁴ A number of power-to-liquid fuel demonstration plants have been developed that utilize Fischer-Tropsch catalysis to produce hydrocarbon fuels. Starting from CO₂, these systems utilize high-temperature (>800 °C) reverse water-gas shift (RWGS) or solid oxide electrolysis to prepare the syngas (CO + H₂) required for Fischer-Tropsch catalysis and produce a wide range of hydrocarbon products.⁵ Despite decades of research, the efficient and selective production of a single multi-carbon fuel remains a major challenge.

Anaerobic gas fermentation is a process in which acetogenic microorganisms convert a C_1 feedstock (CO and/or CO_2) and an energy source (CO and/or H_2) into chemicals and fuels.⁶ Gas fermentation has been developed in industry over the past 20 years and recently commercialized as a technology to produce ethanol fuel from gas streams that are rich in CO, such as industrial off-gases or pyrolyzed biomass. The first commercial-scale gas fermentation plant uses CO-rich steel mill exhaust as the feedstock and has capacity of 46,000 tons ethanol yr⁻¹; several more plants of comparable scale are under construction.⁷ Ethanol can be blended with gasoline for light vehicles or upgraded to jet fuel using established technologies.⁸ These developments have created a new opportunity for power-to-liquid fuel synthesis starting from CO_2 and H_2O . The basic idea is to use renewable power to convert CO_2 and H_2O into a suitable

Figure 1: Hybrid synthetic/biological power-to-liquid-fuel. **A)** Schematic of C_{2+} liquid fuel synthesis from CO₂ and H₂O using gas fermentation. The gas fermentation feedstock could be prepared by a combination of H₂O and CO₂ electrolysis or H₂O electrolysis combined with RWGS. **B)** Gas ratios with the appropriate stoichiometry for saturated alcohol synthesis. Ratios with moderate CO content can be accessed by low-temperature RWGS and support high fermentation yields; **C)** Output CO:CO₂:H₂ gas ratios for a RWGS reactor operating at equilibrium single-pass conversion with an input ratio of 1:3 CO₂:H₂.

energy-rich $H_2/CO/CO_2$ feedstock gas and then use gas fermentation to convert this feedstock into ethanol (**Fig. 1A**). This hybrid approach is appealing because a synthetic system is used to perform the upfront conversion of renewable into chemical energy (the gas feedstock), which circumvents the efficiency limitations and land requirements of natural photosynthesis, but engineered microbes are used to perform selective C–C bond formation, which is a perennial struggle for synthetic gas-to-liquid conversion systems. With the growth of renewable electricity and the advent of commercial gas fermentation, the viability of such a process hinges on efficient preparation of the feedstock gas from industrially relevant CO_2 streams.

The strategy used to prepare the feedstock gas must be informed by the gas ratio needed to sustain robust alcohol synthesis. The stoichiometry for CO₂ hydrogenation to any saturated acyclic alcohol corresponds to a 1:3 CO₂:H₂ ratio, whereas CO hydrogenation to alcohol requires a 1:2 CO:H₂ ratio. With CO₂, H₂O, and energy as the primary inputs, a $1:3 \text{ CO}_2:\text{H}_2$ feedstock is the easiest to prepare because it requires only water electrolysis. Unfortunately, a 1:3 CO₂:H₂ feedstock is not suitable for commercial alcohol production because most acetogens produce only acetate from this mixture and those that do produce alcohol have low growth rates, low productivity, and modest selectivity.^{9,10} A 1:2 CO:H₂ feedstock supports high microbial growth and alcohol productivity, but this mixture is the most difficult to prepare from CO_2 and H_2O . In between 1:3 CO₂:H₂ and 1:2 CO:H₂ are any number of CO:CO₂:H₂ ratios with the appropriate stoichiometry for alcohol synthesis (Fig. 1B). Recent developments indicate that relatively low CO:CO₂ ratios are sufficient for high gas fermentation alcohol productivity. Laboratory studies have shown that supplementing a 1:3 CO₂:H₂ feedstock with just 0.1 equivalent CO (i.e. a 0.1:1:3 CO:CO₂:H₂ ratio) in gas fermentation with C. autoethanogem increases the volumetric ethanol productivity by $5 \times$ and doubles the ethanol:acetate ratio.¹¹ Commercially viable gas fermentation has been demonstrated using gasified agricultural residues as the feedstock, which typically has a CO:CO₂ ratio of \sim 1:1.¹² Thus, gas fermentation can utilize relatively CO₂-rich gas streams that are not useful in other gas-to-C₂₊ technologies such as Fischer-Tropsch.

While the opportunity to utilize gas fermentation in a power-to-fuel process has been widely recognized, the only technology that has received substantial attention for preparing the requisite CO component is low-temperature CO_2 electrolysis.¹³⁻¹⁶ In this approach, a CO_2 electrolyzer would be combined with a H_2O

electrolyzer to prepare a target CO/CO₂/H₂ gas feedstock (**Fig. 1A**, Dual Electrolysis). Although significant progress has been made over the past decade, CO₂ electrolysis is still in an early stage of development and faces a number of major science and engineering challenges for use in fuel production (see below). An alternative strategy is to use H₂O electrolysis to produce H₂ and then convert CO₂ and H₂ into a CO/CO₂/H₂ feedstock by performing Reverse Water-Gas Shift (RWGS; **Eq. 1**) in a fixed-bed reactor (**Fig. 1A**, RWGS + Electrolysis). Water electrolysis is a well-developed and rapidly growing commercial technology; proton exchange membrane (PEM) electrolyzers can operate at ~80% energy efficiency at 2 A cm⁻².^{17,18} While RWGS has limited applications at present, the Water-Gas Shift (WGS) reaction (opposite of RWGS) is already performed industrially to adjust the gas ratio for 10⁸ ton yr⁻¹ steam reforming processes.¹⁹

$$CO_2 + H_2 \rightarrow CO + H_2O \ (\Delta H^o_{298K} = 42.1 \, kj \, mol^{-1})$$
 (1)

$$CO_2 + 4 H_2 \rightarrow CH_4 + 2 H_2O (\Delta H_{298K}^o = -252.9.1 \, kj \, mol^{-1})$$
(2)

The use of RWGS to prepare gas fermentation feedstocks requires a catalyst that meets a number of criteria. To minimize the process complexity and energy demand, the catalyst should operate at the equilibriumlimited single-pass conversion with an industrially relevant space velocity at the temperature needed to produce a suitable gas ratio. With an input of 1:3 CO₂:H₂, the equilibrium-limited RWGS conversion corresponds to a CO:CO₂:H₂ gas ratio of 1:1:5 at 504 °C. Given the apparent commercial viability of this ratio, we take 504 °C to be the maximum target temperature (Fig. 1C). Further developments in gas fermentation processes may make lower ratios and correspondingly lower temperatures viable, e.g. 1:2:8 at 375 °C. The RWGS catalyst must also avoid the thermodynamically preferred hydrogenation reaction to produce CH₄ (Eq. 2). Any CH₄ produced by the hydrogenation reactor would need to be vented or combusted to prevent its accumulation because acetogens cannot metabolize CH₄. Venting even a small percentage of CH₄ negates the carbon benefit because of the 25× higher global warming potential of CH₄ compared to CO₂.²⁰ Finally, the RWGS will need to operate in the presence of H₂S impurities. H₂S is a significant impurity in some of the most accessible emissions sources for CO₂ utilization, including offgases from ammonia production and corn ethanol fermentation.²¹ H₂S is also produced in the gas fermentation process itself and would be exposed to the RWGS catalyst because recycle loops are needed to maximize gas conversion.

Previously reported RWGS catalysts include supported transition metal nanoparticles, metal oxides, metal carbides, and metal sulfides.²² Among these many options, there is no single catalyst that has been shown to satisfy all of the above criteria for gas fermentation applications. Most catalysts have been developed for high-temperature RWGS (≥ 600 °C) and only a small subset have substantial activity in the 300 °C – 500 °C regime targeted here. To our knowledge, the most active known catalyst at these temperatures consists of Pt nanoparticles dispersed on TiO₂ (Pt/TiO₂), which has been reported to achieve near-equilibrium RWGS conversion with a 1:1 CO₂:H₂ input ratio at a weight hourly space velocity (WHSV) of 12,000 ml g^{-1} h⁻¹ from 300 °C – 600 °C.²³ However, as shown below, Pt/TiO₂ produces significant amounts of CH₄ with a 1:3 CO₂:H₂ feed. Metal carbides (Mo_xC, W_xC) have shown promising RWGS activity at low temperatures and various strategies have been described to optimize CO selectivity.²⁴⁻²⁶ However, CH₄ formation still accounts for a few percent of the CO₂ conversion with optimized metal carbide materials in long-term experiments. Moreover, while metal carbides are considered to be sulfur-tolerant catalysts in other transformations, rapid poisoning by low-ppm H₂S has been observed for Mo_xC under WGS conditions.²⁷ The mixed oxide formed from ZnO and Cr₂O₃ (ZnO/Cr₂O₃), which is a well-known syngasto-methanol catalyst at <300 °C, is a selective RWGS catalyst at >400 °C and has been reported to achieve equilibrium RWGS conversion at 500 °C and a gas hourly space velocity of 15,000 h^{-1.28} However, ZnO/Cr₂O₃ is also susceptible to H₂S poisoning,²⁹although the kinetics of poisoning are slower than for most transition metal catalysts. Lanthanum oxysulfides and Mo₂S are sulfur tolerant RWGS catalysts, but both of these have very low activity at $< 500 \,^{\circ}\text{C}.^{30,31}$

We recently showed that alkali carbonates (M₂CO₃) dispersed in mesoporous materials serve as base promoters for benzene carboxylation with CO_2 to form benzoate at ~400 °C.32 Dispersion disrupts the crystal lattice of M_2CO_3 , rendering an amorphous, high-surface area material that deprotonates the benzene C-H bond at ~400 °C, generating a putative carbanion intermediate that reacts with CO_2 . Since benzene has the same gas phase acidity (heterolytic bond dissociation energy) as H_2 ³³, we

wherein dispersed carbonate-catalyzed RWGS. A) Proposed catalytic cycle wherein dispersed carbonate deprotonates H_2 , and reduces CO_2 to CO via a formate intermediate. B) Reversible deprotonation of H_2S precludes catalyst poisoning.

hypothesized that dispersed carbonates would catalyze RWGS in a similar temperature regime via a cycle involving H₂ carboxylation to form formate (HCO₂⁻) and subsequent dehydroxylation to form CO (**Fig. 2A**). Because alkali cations have very weak affinity for CO,³⁴ dispersed carbonates should be incapable of reducing CO further to CH₄ during RWGS. While M₂CO₃ is likely to react with H₂S through acid–base chemistry, this process should be completely reversible under RWGS conditions because alkali sulfides are not stable in the presence of H₂O (**Fig. 2B**).^{35,36} Thus, we further hypothesized that dispersed carbonates would be highly selective and sulfur tolerant, making them well-suited for gas fermentation applications.

Early studies by Amenomiya and co-workers reported RWGS kinetics for catalysts composed of alkali oxides (M₂O) dispersed on Al₂O₃,³⁷ which can be expected to form dispersed carbonates upon CO₂ exposure. A linear correlation was observed between the reaction kinetics and the coverage of a surface formate species detected by IR. However, these studies were performed in a closed-loop reactor with active H₂O removal because H₂O was reported to completely inhibit RWGS on Al₂O₃ at low partial pressures.³⁸ We have also previously observed RWGS products under batch CO₂ hydrogenation conditions with unsupported, hydrated Cs₂CO₃ salts at elevated temperature and pressure.³⁹ To our knowledge, RWGS catalysis at steady-state using a dispersed carbonate material as the catalyst has not previously been evaluated. Here we show that Cs₂CO₃ dispersed in mesoporous supports is a highly active, selective, durable, and sulfur-tolerant RWGS in the temperature regime targeted for gas fermentation applications. A preliminary analysis indicates that integrating this catalysis with H₂O electrolysis and gas fermentation would enable nearly 50% power-to-liquid fuel energy conversion efficiency. The simplicity and robustness of these catalysts could greatly facilitate scale-up for fuel applications.

Results and Discussion

Evaluation of Carbonate-Catalyzed RWGS

Materials with a high degree of carbonate dispersion that are suitable for fixed bed reactors can be easily prepared from commercially available mesoporous TiO_2 , γ -Al₂O₃, and granular activated carbon (GAC) supports using incipient wetness impregnation. The surface areas of the support materials determined by

Figure 3: Dispersed carbonate catalysts. **A)** SEMs of Cs₂CO₃ dispersed in different supports. From left to right: Cs₂CO₃/Al₂O₃, Cs₂CO₃/TiO₂, Cs₂CO₃/GAC. **B)** IR spectra of Cs₂CO₃ dispersed in oxide supports in the C–O stretching region. Spectra obtained after continuous steady state operation over 44 h at 3:1 H₂:CO₂ (WHSV = 4800 ml g⁻¹ h⁻¹), 10 bar, 468 °C. Peak splitting is consistent with bridging/bidentate coordination of CO₃^{2–}.

Brunauer-Emmett-Teller (BET) N₂ sorption were 153 m²/g, 251 m²/g, and 608 m²/g, respectively (**Table S1**). Single loadings of an aqueous Cs₂CO₃ solution were used to prepare Cs₂CO₃ dispersed in TiO₂ (Cs₂CO₃/TiO₂) and Cs₂CO₃ dispersed in γ -Al₂O₃ (Cs₂CO₃/Al₂O₃) with final Cs₂CO₃ of 23 wt% and 34 wt%, respectively. A single loading of a methanolic Cs₂CO₃ solution was used to prepare Cs₂CO₃ dispersed in GAC (Cs₂CO₃/GAC) with a lower loading of 10 wt% because of the reduced solubility of Cs₂CO₃ in methanol (**Fig. 3A**). Infrared (IR) spectroscopy was performed to qualitatively assess the degree of carbonate surface dispersion and the nature of the CO₃²⁻ coordination environments.^{32,40} These measurements were performed after long RWGS runs (see below) to allow for any rearrangements that occur during operation. For both materials, the C–O stretching region is dominated by a pair of broad peaks centered at ~1570 and ~1340 cm⁻¹, which is indicative of reduced symmetry in the CO₃²⁻ coordination environment compared to the bulk crystalline lattice (**Fig. S2**). The magnitude of the peak splitting is consistent with a bidentate and/or bridging coordination to the Cs⁺ cation, as has been assigned previously based on IR spectra of K₂CO₃ dispersed in γ -Al₂O₃.⁴¹ These results indicate that a dispersed, non-crystalline carbonate is stable on the Cs₂CO₃/TiO₂ and Cs₂CO₃/Al₂O₃ materials under RWGS conditions. Excessive scattering by the GAC support material prevented IR characterization of Cs₂CO₃/GAC.

 CO_2 hydrogenation reactions were carried out in a custom stainless steel fixed bed reactor equipped with a vertical furnace (**Fig. S1**). For each reaction, 500 mg of catalyst was loaded into the reactor and heated while exposing to a flowing mixture of H₂ and CO₂ gas (10 bar pressure, 3:1 H₂:CO₂) at a rate of 40 sccm, which corresponds to a WHSV of 4,800 ml g⁻¹ h⁻¹. This WHSV was chosen to be within the range of values that are used in industrial applications of heterogeneously catalyzed gas-phase reactions while enabling convenient evaluation of multiple materials over long-duration experiments (see below). Water produced in the reaction was collected in a gravity trap, while the gaseous products were passed to a gas chromatograph (GC) for analysis at regular intervals. CO, CO₂, and CH₄ were quantified in each GC analysis based on independent calibration standards.

An initial survey was performed by stepping the reactor temperature from 355 to 515 °C in 25–30 °C increments, with each temperature step held for 3 h. These experiments revealed that the dispersed carbonates are highly active and selective RWGS catalysts at temperatures greater than ~400 °C. Figure 4A compares the steady-state CO yield at each temperature step for dispersed carbonates, unloaded oxide supports, and a commercial Pt catalyst. A control experiment with the empty reactor showed a small amount of CO production across the temperature screen, which reflects low levels of RWGS activity catalyzed by the stainless steel reactor walls. The unloaded TiO₂ support showed moderate CO production above this

background level, but was still far below the equilibriumlimited conversion even at the highest temperature evaluated. By contrast, the Cs_2CO_3/TiO_2 attained the RWGS equilibriumlimited CO yield at ≥465 °C (denoted by the black dashed line). Notably, TiO₂ is partially reduced under the H₂-rich in atmosphere used these experiments. reducible А support is not beneficial for carbonate-catalyzed RWGS, however, as seen by the results using an irreducible Al₂O₃

Figure 4: Catalyst comparison and temperature dependence. **A)** CO yield vs temperature at 40 sccm of 3:1 H₂:CO₂ (WHSV = 4800 ml g⁻¹ h⁻¹), 10 bar. Each temperature is held for 3 h. Equilibrium RWGS CO yield is indicated by the dashed black line. **B)** CO selectivity and total CO₂ conversion vs temperature. Note that both dispersed carbonate catalysts are overlapping at nearly 100% CO selectivity.

support. The unloaded γ -Al₂O₃ support itself showed considerably higher CO production than unloaded TiO₂, but did not reach the equilibrium-limited yield even at 515 °C. The Cs₂CO₃/Al₂O₃ catalyst was substantially more active than Cs₂CO₃/TiO₂, reaching the equilibrium-limited CO yield at ≥410 °C. Both Cs₂CO₃/TiO₂ and Cs₂CO₃/Al₂O₃ showed essentially 100% selectivity for CO (**Table S2**).

An oxide support is not essential for carbonate-catalyzed RWGS. Whereas a GAC support showed no increase in CO production relative to the empty reactor, the Cs₂CO₃/GAC catalyst came close to the equilibrium-limited CO yield (within a few percentage points) at \geq 450 °C (**Fig. S3**). Cs₂CO₃/GAC was less active than Cs₂CO₃/TiO₂ or Cs₂CO₃/Al₂O₃, but the carbonate loading was substantially lower in Cs₂CO₃/GAC (10 wt% vs 23–34 wt%) because of the need to use a methanolic Cs₂CO₃ solution with this more hydrophobic support. Increasing the loading would likely improve the performance with this material.

For performance comparison with transition metal-catalyzed RWGS, a commercial platinum nanoparticle catalyst (1 wt.% Pt/TiO₂) was examined. To our knowledge, Pt/TiO₂ is the most active previously reported RWGS catalyst (on a mol CO per g catalyst per s basis) in the 300–500 °C range.²³ As seen in **Fig. 4A**, the commercial Pt/TiO₂ catalyst showed considerable RWGS catalysis at all temperatures examined. In contrast to Cs₂CO₃/TiO₂ and Cs₂CO₃/Al₂O₃, however, Pt/TiO₂ never reaches the equilibrium-limited CO yield because of competitive CH₄ formation. **Fig. 4B** compares the CO₂ conversion and selectivity for CO vs temperature for Pt/TiO₂, Cs₂CO₃/TiO₂, and Cs₂CO₃/Al₂O₃. Whereas the dispersed Cs₂CO₃ catalysts are essentially 100% selectivity for CO across all temperatures, Pt/TiO₂ shows increasing CH₄ production as the temperature is increased, reaching ~5% (10% of C₁ products) at 515 °C. The exothermic methanation of CO₂/CO (**Eq. 2**) is a common competing reaction pathway for RWGS catalysts. The absence of CH₄ with dispersed carbonate catalysts is consistent with the notion that the low CO affinity of Cs⁺ precludes further reduction.

To assess their stability, Cs_2CO_3/Al_2O_3 and Pt/TiO₂ were compared in 44 h reactions performed under the same flowing conditions (3:1 H₂:CO₂, 10 bar, 4,800 WHSV) at 468 °C. Cs_2CO_3/Al_2O_3 maintained the equilibrium-limited CO yield without producing CH₄ for the entire run, with no detectable degradation in performance (**Fig. 5A**). In contrast, with Pt/TiO₂ the CH₄ increased after ~12 h on stream, rising from an initial level of ~2.4% yield to a final level of ~6%. The rise in CH₄ yield was coupled with a corresponding reduction in CO yield. This result suggests that there are rearrangements of the Pt nanoparticles on the

multi-hour timescale that change the distribution of active sites, which is a common phenomenon for transition metal nanoparticle-based catalysts.⁴²⁻⁴⁵

Finally, the effect of sulfurcontaining impurities was assessed by performing a 68 h stability test with a gas mixture in which 50 ppm of H₂S gas was introduced into the 1:3 CO₂:H₂ feed (**Fig. 5B**). For Pt/TiO₂, the presence of H₂S primarily attenuated CH₄ formation such that ~2% CH₄ yield was maintained throughout the run. In

Figure 5: Stability tests. **A)** Product yields vs time for dispersed carbonate and Pt/TiO₂ catalysts for long-duration run at 40 sccm of 3:1 H₂:CO₂ (WHSV = 4800 ml g⁻¹ h⁻¹), 10 bar, 468 °C; **B)** Product yields vs time under same conditions but with 50 ppm H₂S added to gas stream.

addition, the CO yield showed a slow decline from 40% to ~39% over the course of the run. Since the CH₄ production is essentially constant, we attribute this decline to a slow poisoning of the RWGS sites on the Pt particles, which is consistent with other studies of H₂S effects on Pt catalysts. In contrast, the performance of Cs₂CO₃/Al₂O₃ was completely unaffected by H₂S, with 100% selective, equilibrium-limited CO production maintained for the entire run.

We anticipate that other inorganic bases as well as different cations can be used to achieve robust and selective RWGS catalysis provided the materials are adequately dispersed in a support that is compatible with these conditions. Tailoring the support pore volume and surface area to enable maximal loading of dispersed bases is a straightforward strategy to maximizing RWGS activity. The ability to utilize different support materials also provides flexibility to tailor other catalyst properties relevant to industrial application such as thermal conductivity.

Estimation of Accessible Power-to-Alcohol Energy Efficiency

The demonstration of robust carbonate-catalyzed RWGS activity under application-relevant conditions motivates a preliminary assessment of the accessible energy conversion efficiency for a power-to-ethanol system that utilizes this technology (**Fig. 1A**, Electrolysis + RWGS). An estimate can be made by examining the energy requirements for each of the primary process steps: 1) electrolytic H₂ production, 2) RWGS, 3) fermentation, and 4) isolation of the product via distillation. Based on our results above, we assume a 1:1:5 CO:CO₂:H₂ gas ratio output from the RWGS unit operating at the equilibrium-limited CO₂ conversion at ~500 °C. Commercial PEM electrolyzers operate at 80% efficiency, requiring 364 kJ mol⁻¹ H₂ generated.¹⁸ The RWGS unit must supply the reaction enthalpy of 37.1 kJ mol⁻¹ CO produced at 500 °C. At the required process temperature, industrial electric heaters can approach 100% efficiency.⁴⁶ Based on the reported emissions intensity of acetogenic fermentation of syngas to ethanol,⁴⁷ estimates for utilities requirements and energy recovery place the total energy requirement for fermentation and distillation at 0.39 MJ mol⁻¹ ethanol. Accounting for the carbon efficiency of fermentation (91%)⁴⁷ and adjusting for the stoichiometry of ethanol production (i.e. 6 mol H₂ required per 1 mol CO produced via RWGS), the total baseline power requirement for the system is estimated at 2.82 MJ mol⁻¹ ethanol, corresponding to a 48.5% efficiency for power to fuel grade ethanol (see Supporting Information for further details).

A similar approach can be used to analyze the efficiency of a system that uses CO_2 electrolysis instead of RWGS to supply the requisite CO for gas fermentation (Fig. 1A, Dual Electrolysis). The basic steps of this

system are 1) electrolytic CO production, 2) PEM electrolysis to provide H₂, 3) fermentation, and 4) isolation of the product fuel (note that steps 3 and 4 are the same as those for the RWGS process outlined above). For a direct comparison, we again assume a 1:1:5 CO:CO₂:H₂ gas ratio supplied to the fermentation unit. State-of-the-art reported performance for low-temperature CO₂ electrolysis has been achieved using a gas diffusion electrode (GDE) cell containing an anion exchange membrane. Under steady-state conditions, this cell operates at 200 mA cm⁻² with a full-cell potential of 3 V and a CO Faradaic efficiency of 98%, corresponding to an energy requirement of 0.60 MJ mol⁻¹ CO.⁴⁸ A small amount of H₂ (0.02 mol per mol CO) is co-produced in the electrolysis. The remaining 4.98 mol H₂ that must be supplied for each mole of electrogenerated CO can be supplied by the PEM electrolyzer, corresponding to an energy demand of 1.81 MJ mol⁻¹ ethanol. As before, the energy requirement for fermentation and distillation is 0.39 MJ mol⁻¹ ethanol. In total, the energy demand for the process comes to 2.86 MJ mol⁻¹ ethanol, representing an overall power-to-fuel efficiency of 47.9%.

While this high-level analysis indicates that their accessible energy efficiencies are comparable, the RWGS approach utilizing the carbonate catalysts described here has substantial advantages over a system that utilizes CO₂ electrolysis with respect to process complexity and scalability. Low-temperature CO₂ electrolysis is currently in a lab/pre-pilot stage of development.^{14,49,50} State-of-the-art CO₂ electrolyzers utilize specialized components that have never been produced at a large scale (CO₂ reduction gas diffusion electrodes and anion exchange membranes) and high loadings of precious metal anodic catalysts (e.g. IrO₂) to minimize overpotential losses and avoid corrosion.⁴⁸ Achieving efficient mass transport is uniquely challenging for a CO₂ electrolyzer because it requires delivering a gaseous reactant and removing both gaseous (CO, unreacted CO₂) and liquid (H_2O) products. Given these complexities, CO₂ electrolyzers are likely to cost at least as much as PEM water electrolzyers on a per-electrode area basis, but their 10×10^{10} lower current density necessitates a $10 \times$ higher electrode area for the same current output. Finally, the coinage metals (typically Ag) that are used as the cathodic catalyst for selective CO₂ reduction to CO are irreversibly poisoned by low levels of H_2S , which is produced in the fermentation reactor. Because the single-pass conversion of gas fermentation is not 100%, recycle loops are needed to avoid wasting carbon. The recycle stream would need to be desulfurized to a very low level to feed the CO_2 back into the CO_2 electrolyzer, which adds considerable process complexity.

In contrast to CO₂ electrolysis, the reactor design principles for large-scale, heterogeneously catalyzed gasphase processes are very well-established from many decades of their use in the chemical and fuel industries. The dispersed carbonate RWGS catalysts described here are trivial to prepare from readily available, non-precious materials (e.g. Cs_2CO_3 and γ -Al₂O₃). The H₂S tolerance of carbonate-catalyzed RWGS could obviate the need for desulfurization, reducing the overall process complexity and energy demand. While further testing will be needed to establish performance in larger reactors and over much longer durations, the performance already demonstrated with Cs_2CO_3/Al_2O_3 demonstrates no significant liabilities at this stage.

Conclusions

Acetogenic fermentation is a promising liquid fuel generation technique that currently relies on limited high-energy syngas sourced from biomass or steel mill exhaust. The above results demonstrate how carbonate-catalyzed RWGS can be used to remove this dependency by transforming H_2 and CO_2 into a suitable source. Dispersed carbonates can produce the necessary gas output via equilibrium-limited RWGS at useful space velocities for at least days of operation with no apparent degradation and no H_2S sensitivity. Additionally, such catalysts are trivial to synthesize and can be readily scaled for rapid deployment. These results provide a compelling case for utilizing carbonate-catalyzed RWGS to bridge the gap between H_2

and gas fermentation to ethanol or other C_{2+} alcohols as fermentation technology develops. By upgrading the alcohol products to jet fuel, this strategy could be used to produce sustainable aviation fuel without harvesting biomass.

Acknowledgements

We thank the U.S. Department of Energy (DE-SC0020394) and the TomKat Center for Sustainable Energy for support of this research. A.D.F. acknowledges support from a NASA Space Technology Research Fellowship. Characterization studies were performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award ECCS-1542152.

Declaration of Interests

The authors have filed a provisional patent application based on the catalysts described in this work.

References

- 1 U.S. Energy Information Administration. *International Energy Outlook 2021*.
- 2 Majumdar, A. & Deutch, J. Research opportunities for CO₂ utilization and negative emissions at the gigatonne scale. *Joule* **2**, 805-809 (2018).
- Barber, J. Photosynthetic energy conversion: natural and artificial. *Chem. Soc. Rev.* **38**, 185-196 (2009).
- 4 Marlin, D. S., Sarron, E. & Sigurbjörnsson, Ó. Process advantages of direct CO₂ to methanol synthesis. *Frontiers in Chemistry* **6**, 446 (2018).
- 5 Dieterich, V., Buttler, A., Hanel, A., Spliethoff, H. & Fendt, S. Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch-fuels: a review. *Energy Environ. Sci.* **13**, 3207-3252 (2020).
- 6 Bengelsdorf, F. R. *et al.* in *Advances in applied microbiology* Vol. 103, 143-221 (Elsevier, 2018).
- 7 Gehrmann, S. & Tenhumberg, N. Production and Use of Sustainable C_2 - C_4 Alcohols An Industrial Perspective. *Chemie Ingenieur Technik* **92**, 1444-1458 (2020).
- 8 Wang, W.-C. *et al.* Review of Biojet Fuel Conversion Technologies. (United States, 2016).
- 9 Molitor, B. *et al.* Carbon recovery by fermentation of CO-rich off gases-turning steel mills into biorefineries. *Bioresour. Technol.* **215**, 386-396 (2016).
- 10 Mock, J. *et al.* Energy conservation associated with ethanol formation from H₂ and CO₂ in Clostridium autoethanogenum involving electron bifurcation. *J. Bacteriol.* **197**, 2965-2980 (2015).
- 11 Heffernan, J. K. *et al.* Enhancing CO₂-Valorization Using Clostridium autoethanogenum for sustainable fuel and chemicals production. *Front. Bioeng. Biotechnol.* **8**, 204 (2020).
- 12 Ciliberti, C. *et al.* Syngas derived from lignocellulosic biomass gasification as an alternative resource for innovative bioprocesses. *Processes* **8**, 1567 (2020).
- 13 Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO 2 electrolysis and fermentation. *Nat. Catal.* **1**, 32 (2018).
- 14 Krause, R. *et al.* Industrial Application Aspects of the Electrochemical Reduction of CO₂ to CO in Aqueous Electrolyte. *Chemie Ingenieur Technik* **92**, 53-61 (2020).
- 15 Stoll, I. K., Boukis, N. & Sauer, J. Syngas Fermentation to Alcohols: Reactor Technology and Application Perspective. *Chemie Ingenieur Technik* **92**, 125-136 (2020).
- 16 Köpke, M. & Simpson, S. D. Pollution to products: recycling of 'above ground' carbon by gas fermentation. *Curr. Opin. Biotechnol.* **65**, 180-189 (2020).
- 17 Carmo, M., Fritz, D. L., Mergel, J. & Stolten, D. A comprehensive review on PEM water electrolysis. *Int. J. Hydrog. Energy* **38**, 4901-4934 (2013).
- 18 Ayers, K. The potential of proton exchange membrane–based electrolysis technology. *Curr. Opin. Electrochem.* **18**, 9-15 (2019).

- 19 Häussinger, P., Lohmüller, R. & Watson, A. M. Hydrogen, 2. Production. in Ullmann's Encyclopedia of Industrial Chemistry (Wiley-VCH Verlag GmbH & Co. KGaA, 2011).
- 20 Fuglestvedt, J. S. *et al.* Transport impacts on atmosphere and climate: Metrics. *Atmos. Environ.* **44**, 4648-4677 (2010).
- 21 Xu, Y., Isom, L. & Hanna, M. A. Adding value to carbon dioxide from ethanol fermentations. *Bioresour. Technol.* **101**, 3311-3319 (2010).
- 22 Daza, Y. A. & Kuhn, J. N. CO₂ conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO₂ conversion to liquid fuels. *RSC Adv.* **6**, 49675-49691 (2016).
- Kim, S. S., Lee, H. H. & Hong, S. C. The effect of the morphological characteristics of TiO₂ supports on the reverse water–gas shift reaction over Pt/TiO₂ catalysts. *Appl. Catal. B* **119**, 100-108 (2012).
- 24 Liu, X., Pajares, A., Calinao Matienzo, D. J. D., Ramírez de la Piscina, P. & Homs, N. Preparation and characterization of bulk Mo_xC catalysts and their use in the reverse water-gas shift reaction. *Catalysis Today* **356**, 384-389 (2020).
- 25 Morse, J. R., Juneau, M., Baldwin, J. W., Porosoff, M. D. & Willauer, H. D. Alkali promoted tungsten carbide as a selective catalyst for the reverse water gas shift reaction. *J CO*₂ *Util.* **35**, 38-46 (2020).
- ²⁶ Juneau, M. *et al.* Assessing the viability of K-Mo₂C for reverse water–gas shift scale-up: molecular to laboratory to pilot scale. *Energy Environ. Sci.* **13**, 2524-2539 (2020).
- 27 Schaidle, J. A., Lausche, A. C. & Thompson, L. T. Effects of sulfur on Mo₂C and Pt/Mo₂C catalysts: Water gas shift reaction. *J. Catal.* **272**, 235-245 (2010).
- 28 Park, S.-W., Joo, O.-S., Jung, K.-D., Kim, H. & Han, S.-H. ZnO/Cr₂O₃ catalyst for reverse-watergas-shift reaction of CAMERE process. *Korean J. Chem. Eng.* **17**, 719-722 (2000).
- 29 Wood, B. J., Isakson, W. E. & Wise, H. Kinetic studies of catalyst poisoning during methanol synthesis at high pressures. *Ind. Eng. Chem. Prod. Res. Dev.* **19**, 197-204 (1980).
- 30 Valsamakis, I. & Flytzani-Stephanopoulos, M. Sulfur-tolerant lanthanide oxysulfide catalysts for the high-temperature water–gas shift reaction. *Appl. Catal. B* **106**, 255-263 (2011).
- 31 Osaki, T. *et al.* Kinetics of reverse water gas shift (RWGS) reaction on metal disulfide catalysts. *J. Mol. Catal. A Chem.* **125**, 63-71 (1997).
- 32 Xiao, D. J. *et al.* A closed cycle for esterifying aromatic hydrocarbons with CO₂ and alcohol. *Nat. Chem.* **11**, 940-947 (2019).
- 33 Anslyn, E. V. & Dougherty, D. A. *Modern physical organic chemistry*. (University Science Books, 2006).
- 34 Hadjiivanov, K. I. & Vayssilov, G. N. Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. *Adv. Catal.* **47**, 307-511 (2002).
- 35 Kaeser, J. A., Tanaka, J., Douglass, J. C. & Hill, R. D. Hydrosulfides of group I and group II metals. *Inorg. Chem.* **12**, 3019-3020 (1973).
- 36 Licht, S. Aqueous solubilities, solubility products and standard oxidation-reduction potentials of the metal sulfides. *J. Electrochem. Soc.* **135**, 2971-2975 (1988).
- 37 Amenomiya, Y. & Pleizier, G. Alkali-promoted alumina catalysts. 2. Water-gas shift reaction. *J. Catal.* **76**, 345-353 (1982).
- 38 Amenomiya, Y. Active sites of solid acidic catalysts: II. Water-gas conversion on alumina and some other catalysts. *J. Catal.* **55**, 205-212 (1978).
- 39 Banerjee, A. & Kanan, M. W. Carbonate-promoted CO₂ hydrogenation to multi-carbon oxygenates. *ACS Cent. Sci.* **4**, 606-613 (2018).
- 40 Busca, G. & Lorenzelli, V. Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. *Materials Chemistry* **7**, 89-126 (1982).
- 41 Kantschewa, M., Albano, E., Ertl, G. & Knozinger, H. Infrared and x-ray photoelectronspectroscopy study of K₂CO₃/γ-Al₂CO₃. *Appl. Catal.* **8**, 71-84 (1983).

- 42 Rodriguez, J. A. & Hrbek, J. Interaction of sulfur with well-defined metal and oxide surfaces: unraveling the mysteries behind catalyst poisoning and desulfurization. *Acc. Chem. Res.* **32**, 719-728 (1999).
- 43 Bartholomew, C. H. Mechanisms of catalyst deactivation. *Appl. Catal. A* **212**, 17-60 (2001).
- 44 Wang, X., Gorte, R. J. & Wagner, J. P. Deactivation mechanisms for Pd/ceria during the watergas-shift reaction. *J. Catal.* **212**, 225-230 (2002).
- 45 Goguet, A. *et al.* Study of the origin of the deactivation of a Pt/CeO₂ catalyst during reverse water gas shift (RWGS) reaction. *J. Catal.* **226**, 382-392 (2004).
- 46 Perkin, R. M. in *Ullmann's Encyclopedia of Industrial Chemistry* (Wiley-VCH Verlag GmbH & Co. KGaA, 2012).
- 47 Handler, R. M., Shonnard, D. R., Griffing, E. M., Lai, A. & Palou-Rivera, I. Life cycle assessments of ethanol production via gas fermentation: anticipated greenhouse gas emissions for cellulosic and waste gas feedstocks. *Ind. Eng. Chem. Res.* **55**, 3253-3261 (2016).
- 48 Liu, Z., Yang, H., Kutz, R. & Masel, R. I. CO₂ electrolysis to CO and O₂ at high selectivity, stability and efficiency using Sustainion membranes. *J. Electrochem. Soc.* **165**, J3371 (2018).
- 49 Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. *Nat Commun* **11**, 5231 (2020).
- 50 Küngas, R. Electrochemical CO₂ Reduction for CO Production: Comparison of Low-and High-Temperature Electrolysis Technologies. *J. Electrochem. Soc.* **167**, 044508 (2020).