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We generalize the Kirkwood-Shumaker theory of protonisation fluctuation for an anisotropic dis-
tribution of dissociable charges on a globular protein. The fluctuations of the total charge and
the total dipole moment, in contrast to their average values, depend on the same proton occu-
pancy correlator, thus exhibiting a similar dependence also on the solution pH. This has important
consequences for the Kirkwood-Shumaker interaction and its dependence on the bathing solution
conditions.

I. INTRODUCTION

Electrostatic interactions are ubiquitous in proteina-
ceous systems and make an essential contribution to pro-
tein structure, folding, binding, and condensation [1].
Proteins differ in a fundamental way from many other
charged colloidal systems because their charge is not
fixed, but depends through the dissociation equilibrium
of constitutive AAs on local molecular geometry, dielec-
tric inhomogeneities, vicinal charges, and solution com-
position. As soon as any of these parameters is changed,
the protein charge responds in a process referred to as
charge regulation (CR), through which the same protein
acquires a different charge. CR effects are significant and
have been shown to qualitatively change the phase dia-
gram of protein solutions, including a liquid–liquid phase
separation based on CR [2], while self-assembled protein
structures appear to exhibit asymmetric constructs sta-
bilized due to global charge redistribution [3].

Understanding the charging mechanism of dissocia-
ble AAs has a long history, starting with Linderstrøm-
Lang of the Carlsberg Laboratory [4] and followed by
the early general studies of the acid-base equilibria in
polyelectrolytes by Lifson [5] and Marcus [6]. Protoni-
sation/deprotonisation dissociation equilibria were intro-
duced into protein electrostatics in the seminal works of
Kirkwood and Shumaker [7, 8] and Tanford and Kirk-
wood [9], and later developed further through detailed
simulation models of protein behaviour in biomolecu-
lar solutions [3, 10, 11]. The connection between the
protonisation/deprotonisation dissociation equilibria and
Poisson-Boltzmann electrostatics was developed by Nin-
ham and Parsegian [12], who introduced the CR mech-
anism as a self-consistent relationship between the local
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electrostatic potential and the dissociated state of charge-
able surface groups described by the Langmuir isotherm,
which has been recently extended to any adsorption
isotherm [13]. CR in the context of proteins [14] and its
development was authoritatively reviewed by Borkovec
et al. [15].

An important consequence of the CR mechanism is
the fact that the charging state of a protein is an an-
nealed variable and can therefore exhibit thermal fluctu-
ations, a theoretical prediction [7] borne out by experi-
ments [16]. These thermal protonisation/deprotonisation
fluctuations engender fluctuations of both the protein
charge as well as the protein dipole moment that in turn
lead to capacitance and polarizability of the protein. The
charge and the dipole moment are then together at the
origin of the fluctuation interactions usually referred to
as the Kirkwood-Shumaker (KS) forces [8]. They have
been quantified in detailed simulations of protein-protein
interactions by Lund and Jönsson [10, 14] and Barroso da
Silva and Dias [17]. Upgrading the original KS approach,
the fluctuation interactions were cast into a more ap-
propriate theoretical framework of monopole and dipole
Casimir-type thermal fluctuation interactions [18, 19] or
within the zero frequency Lifshitz term in the general
theory of van der Waals interactions [20, 21].

Apart from their effect on the interactions, calculations
of the protonisation fluctuation contribution to protein
capacitance and polarizability are scarce, which is why
we embark in this work upon a more detailed analysis
of their properties. Specifically, based on previously in-
troduced methodology [22, 23] we will investigate CR
effects of the protein net charge and net dipole moment
as well as the corresponding charge fluctuations, quanti-
fied by the capacitance response function, and the dipole
fluctuations, quantified by the dielectric response func-
tion. Our work generalizes some aspects of the seminal
approach of Kirkwood and Shumaker [7] and takes ex-
plicitly into account the electrostatic interactions on the
weak-coupling level in the calculations of the response
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functions.

II. CHARGE REGULATION OF A CHARGED
DIELECTRIC SPHERE

We will treat globular proteins as impermeable dielec-
tric spheres with radius R, dielectric constant ε∞, and
carrying N charges qk, k = 1, . . . , N , located at positions
rk, |rk| = R. This gives rise to a surface charge density
on the protein,

σ(Ω) =
1

4πR2

∑

k

q±k
λk

sinhλk
exp(λk cos γk), (1)

where Ω = (ϑ, ϕ) comprises the azimuthal and polar an-
gle in spherical coordinates and γk is the great circle
distance between Ω and Ωk. We have associated with
each charge a finite size λk through a normal distribu-
tion on the sphere [24]; when λ → ∞, this reduces to
the Dirac delta function. For simplicity, we will assume
that λk = λ ∀k, and we set λ = 100, since the exact
choice of this parameter does not significantly influence
the results [23]. In Eq. (1), we have already made a dis-
tinction between the charges based on whether they ac-
quire a positive charge, q+

k = eηk, or negative charge,

q−k = e(ηk − 1); ηk ∈ [0, 1] determines the protona-
tion/deprotonation state of each charge. The surface
charge density can be expanded in terms of spherical har-
monics Ylm(Ω), with the expansion coefficients given by
σ(lm) = 4π

∑
k qk gl(λk)Y ∗lm(Ωk) [23], where we have de-

fined gl(λ) = λ il(λ)/sinhλ and il(x) =
√
π/2x Il+1/2(x)

are the modified spherical Bessel functions of the first
kind.

A. Free energy of the system

In the linearized Debye-Hückel (DH) approximation,
the electrostatic free energy of a charged, impermeable
dielectric sphere is [23]

FES [σ(lm)] =
1

32π2εwε0R

∑

l

C(l, κR)
∑

m

|σ(lm)|2,

(2)

where κ =
√

2en0/εwε0kBT is the inverse Debye screen-
ing length, n0 is the monovalent salt concentration, ε =
ε∞/εw, and εw = 80 is the dielectric constant of water.
In Eq. (2), C(l, x) is the multipole coupling function as
described in the Supplementary Information (SI) and in
Fig. S1 and it is important to note that it exhibits no
exponential screening, so that the different multipoles in
the electrostatic energy are coupled algebraically.

The electrostatic energy in Eq. (2) differs from and sim-
plifies the well-known Kirkwood expression [25–27] in two
ways: (i) the charges in the protein interior are not dis-
sociated and the position of the charges is thus confined
to the surface of the dielectric discontinuity; and (ii) the

charges are not point-like but have a finite angular size
described through a normal distribution on the sphere,
quantified by the parameter λ [24]. In addition, Kirk-
wood and Shumaker [7] consider the electrostatic inter-
actions either only through the electrostatic self-energy
or neglect them altogether.

The total free energy of the system is then composed of
the electrostatic (ES) and charge regulation (CR) com-
ponents and can be cast into the form [23]

βF [qk] = βFES [qk] + βFCR[qk]

= βFES [ηk] +
∑

k

βαkηk

+
∑

k

[ηk ln ηk + (1− ηk) ln(1− ηk)] , (3)

where βαi = ln 10(pH− pK(i)
a ) and pKa are the AA dis-

sociation constants. For the CR part of the free energy
we have chosen the form corresponding to the Langmuir-
Davies dissociation isotherm (related to the Henderson-
Hasselbalch isotherm) that is typically used to model
the CR process in proteins [28]. Other forms, such as
the Frumkin-Fowler-Guggenheim isotherm, would corre-
spond to more detailed models of the CR process [29].
The thermodynamic equilibrium solutions for ηk and the
corresponding charges qk are then obtained from an im-
plicit solution of

ηi =

[
1 + exp

(
ln 10(pH− pK(i)

a ) + β
∂FES [ηk]

∂ηi

)]−1

,

(4)
and the equilibrium free energy is thus given by

βF [qk] = βFES [ηk]−
∑

i

∂βFES [ηk]

∂ηi
ηi

−
∑

i

ln

(
1 + exp

(
−βαi − β

∂FES [ηk]

∂ηi

))
.(5)

In this way, we can express the total free energy of the
system through its electrostatic part and its derivatives,
and the form of Eq. (5) is universal for any form of FES .

B. Linearized CR approximation

Since the electrostatic free energy is based on the DH
approximation, valid for small electrostatic potentials
and thus necessarily for small electrostatic interactions,
we can expand Eq. (4) in terms of the electrostatic con-
tribution to obtain [23]

qi = q
(0)
i − c

(0)
i

∂FES [ηk]

∂eηi
, (6)

where the bare charge q
(0)
i and the bare capacitance c

(0)
i

of the i-th moiety are defined in the SI. In this context,
we use the term “bare” to denote that the electrostatic
contribution to these quantities has not been taken into
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account. From Eq. (2), we obtain the derivative of the
free energy with respect to the chargeable moieties:

βe0
∂FES [ηk]

∂ηi
=
∑

k

ξik qk, (7)

with the electrostatic coupling matrix defined as

ξik =
`B
R

∑

l

(2l + 1) gl(λi)
2 C(l, κR)Pl(cos γik). (8)

Here, `B = βe2
0/4πεwε0 is the Bjerrum length in water

and cos γkt = cosϑk cosϑt + sinϑk sinϑt cos(ϕk − ϕt) is
the cosine of the spherical distance on the sphere. Note
that the magnitude of ξik is determined by the ratio of
κ`B and κR. The charges in the linearized CR approx-
imation that follow from Eq. (6) are then obtained by
solving a linear system of equations [23]

∑

k

(
δik + c

(0)
i ξik

)
qk = q

(0)
i , (9)

giving the charges qk as a function of the capacitance and
the electrostatic coupling matrix.

III. PROTEIN PROTONISATION
FLUCTUATIONS

A. Fluctuations around the charge regulated
thermal average

Fluctuations around the thermodynamic equilibrium
solution [Eq. (3)] are obtained as

βF [qk + δqk] = βF [qk] +
1

2

∂2(βF [ql])

∂qk∂qt
δqkδqt + . . . , (10)

where δqi = qi − qi is the deviation from the mean-field
solution. We introduce the proton occupancy correlator
〈δqkδqt〉 as the average over fluctuations around the equi-
librium value as

〈δqkδqt〉 =
∏

k

∫
dδqk (δqmδqn)

× exp


−1

2

∑

k,t

∂2(βF [ql])

∂qk∂qt
δqkδqt


 . (11)

To determine the proton occupancy correlator matrix
〈δqkδqt〉, we note that

〈δqkδqt〉 =
1

2
kBT

(
∂2F

∂qk∂qt

)−1

=

e2

2

(
ξkt +

e2δkt
|qk|(e− |qk|)

)−1

. (12)

where we have used ∂q = (1/e)∂η. In practice, we use
a special case of the Woodbury matrix identity to deter-
mine the inverse [30]. The proton occupancy correlator

matrix describes the correlations between the protonisa-
tion sites on the protein. From Eq. (12), it follows that
proton occupancy fluctuations are anisotropic due to the
electrostatic interaction coupling matrix ξkp [Eq. (8)].

B. Charge and dipole moment fluctuations

Charge and dipole moment fluctuations around the
thermal equilibrium values for a charge distribution on
a sphere can be defined as δq = R2

∫
dΩ δσ(Ω) and

δp = R2
∫

dΩ δσ(Ω) rΩ, respectively, where δσ(Ω) =
σ(Ω) − σ(Ω) and we have taken into account that the
charges are confined to the surface of a sphere [31]. To
calculate the fluctuations in the total charge of the pro-
tein around the mean-field solution, we have

δq =
1

4π

∫
dΩ

∑

l,m

δσ(lm)Ylm(Ω) =
∑

k

δqk g0(λk),

(13)
due to the orthonormality of spherical harmonics. As
g0(λ) = 1, it follows that

〈δq2〉 =
∑

k,t

〈δqkδqt〉 =
e2

2

∑

k,t

(
ξkt +

e2δkt
|qk|(e− |qk|)

)−1

.

(14)
Similarly, the integrals for the fluctuations in the dipole
moment vanish for all l 6= 1, and we obtain

〈δp2〉 = R2 (λ cothλ− 1)2

λ2

∑

k,t

cos γkt〈δqkδqt〉. (15)

In the limit where we have no electrostatic contribution
to CR, we have ξik = 0 and thus

〈δp2〉 =
e2R2

2

(λ cothλ− 1)2

λ2

∑

k

ηk(1− ηk), (16)

which is the result obtained by Kirkwood and Shumaker
[7]. Our theory is clearly a generalization of the latter
in the sense that it takes into account the electrostatic
energy of the fluctuating states. Note again that the
derivations presented here are general, and FES can be
substituted with any form of electrostatic free energy of
a given system.

From the definitions of 〈δq2〉 and 〈δp2〉 it transpires
that the pH dependence in both cases is given solely
by the correlator 〈δqkδqt〉. The conclusion would there-
fore be that both have a similar dependence on pH, the
only difference being in the summation over the arclength
cos γkt in Eq. (15). For a vanishing electrostatic coupling
(vanishing ξkt), the charge and dipole fluctuations be-
come proportional in the lowest order,

〈δp2〉 = R2〈δq2〉, (17)

where we have assumed for simplicity a Dirac-like distri-
bution on a sphere, λ→∞. The electrostatic part ξkt is
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thus the one that underpins the difference between the
pH dependence of 〈q2〉 and 〈p2〉. The stronger the elec-
trostatic coupling in Eq. (12), the more the fluctuations
deviate from locality and exhibit a collective behavior
which acts to screen out the details in this dependence.

C. Capacitance and polarizability due to
protonisation fluctuations

Since thermodynamic fluctuations in an annealed ther-
modynamic variable predict the response of the system,
it follows that charge and dipole moment fluctuations are
generally connected with capacitance and polarizability
response functions, respectively. The Johnson-Nyquist
fluctuation-dissipation formula, as an example of the gen-
eral linear response theory, can be cast as [10]

〈δq2〉 = −kBT
∂〈q〉
∂φ

∣∣∣∣
φ=0

= kBT C, (18)

where φ is the electrostatic potential. Equation (18) pro-
vides the connection between the differential capacitance
response function C and charge fluctuations [28]. It can
be derived from thermal fluctuations of the electrostatic
potential by the Einstein formula [32]. From the linear
approximation of Eq. (4) the differential capacitance re-
sponse function can be rewritten as

C =
βe0

ln 10

∂〈q〉
∂ pH

. (19)

Protonisation fluctuations in addition instigate dipole
moment fluctuations, which in turn lead to a correction of
the dielectric constant of the protein εp through a variant
of the Kirkwood formula [33, 34], derived by consider-
ing protonation-induced dipole fluctuation of a spherical
cavity of radius R with an isotropic dielectric response
ε∞ [35]. The relation between dipole fluctuations and
the excess polarizability response function α is then

〈δp2〉 = kBT
∂〈p〉
∂E0

∣∣∣∣
E0=0

= kBT α, (20)

where E0 is the external electrostatic field. Taking into
account the difference between the internal field E and
the external field, we can write

∂〈p〉
∂E0

=
∂〈p〉
∂E

∂E

∂E0
= 4πR3ε0

(εp − ε∞) εw
2εw + ε∞

. (21)

Here, ε∞ refers to all high frequency contributions—such
as electronic and vibrational—excluding the protonisa-
tion fluctuations. As a caveat, configurational fluctua-
tions of the average dipole moment are not included at
this level.

D. Fluctuation interactions

The response functions of two proteins, separated by
a fixed distance and coupled via a screened electrostatic

potential, imply a fluctuation-driven interaction in the
standard second order perturbation theory. The domi-
nant contribution comes from monopole charge fluctua-
tions and the subdominant term from the dipole charge
fluctuations. For two proteins located at r1,2, the ex-
cess electrostatic free energy as a functional of the local
electrostatic potential configuration can be written as

H[φ(r)] = H0[φ(r)] +

∫

V

d3r ρ̃(r)φ(r)

+
1

2

∫∫

V

d3rd3r′ φ(r)C̃(r, r′)φ(r′), (22)

where H0[φ(r)] is the electrostatic free energy of the
bathing ionic solution that is taken in its approximate
DH form, with external charges composed of a charge
monopole and dipole

ρ̃(r) =
∑

i=1,2

(ei + pi ·∇) δ(r− ri) =
∑

i=1,2

qi δ(r− ri).

(23)
The generalized response function can similarly be writ-
ten as composed of the capacitance Ci = C = β〈δq2〉 and
the polarizability αi = α = β〈δp2〉 response functions

C̃(r, r′) =
∑

i=1,2

(
Ci + ∇αi∇′

)
δ(r− ri)δ(r

′ − ri). (24)

Writing the partition function of this system in the form
of a Hubbard-Stratonovich field functional integral, one
remains to the lowest (Gaussian) order in the electro-
static potential fluctuations with free energy of the form

βF2[qi, ri] = q1q2V0(r1, r2)

− 1
2

(
C̃1C̃2 + q2

1C̃2 + q2
2C̃1
)
V 2

0 (r1, r2) + . . . ,(25)

where we have introduced C̃i = Ci + ∇αi∇′. Here,
V0(r, r′) is the effective electrostatic interaction be-
tween two Coulomb charges, equal either to the bare
Coulomb interaction for two proteins in a pure sol-
vent, V0(r, r′) = 1/4πεwε0|r − r′|, or to the DH po-
tential for two proteins in a monovalent electrolyte,
V0(r, r′) = e−κ|r−r

′|/4πεwε0|r − r′|. For αi → 0, the
result of Eq. (25) coincides with the KS interaction as
derived by Lund and Jönsson [10]. It also resembles the
recently calculated charge fluctuation Casimir interac-
tion between dielectric spheres [21], but without the CR
model.

When the average charge and dipole moment of two
identical proteins vanish and in the limit of large screen-
ing, κ|r1 − r2| � 1, we have in the leading order in the
separation distance

βF2[ri] ' −
β2

2

[
〈δq2〉+ 〈δp2〉κ2

]2
V 2

0 (r1, r2) + . . .(26)

In this case, the effective strength of the KS interactions
is additive in CR-generated capacitance and polarizabil-
ity of the protein, mediated crucially by the screening
length. This finding is distinct from both the original [25]
and subsequent treatments of the KS interactions [10].
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Figure 1. (a) An example of a globular protein, hisactophilin (PDB:1HCD), consisting of N = 60 charged AAs with different
pKa values. Coloured in red and in blue are the AAs which can become positively or negatively charged, respectively. The
charge distribution of the protein can be mapped onto its circumscribed sphere with radius R = 2.44 nm. (b)–(d) Elements
of the proton occupancy correlator matrix 〈δqkδqt〉 of hisactophilin at pH = 4 (a), 7 (b), and 10 (c). System parameters are
ε∞ = 4 and n0 = 100 mM. For easier discernibility, we show the square root of the elements of the matrix, and the sign of the
original matrix elements is preserved. Charge indices k, t refer to the dissociable AAs of the protein.

IV. EXAMPLES: GLOBULAR PROTEINS

We explore the results of our work on four well-studied
globular proteins: bovine β-lactoglobulin (PDB:3NPO),
hen egg-white lysozyme (PDB:3WUN), hisactophilin
(PDB:1HCD), and calmodulin (PDB:3CLN). These four
proteins were chosen as charge regulation effects in them
have been studied previously both in theory and simula-
tion [10, 14, 36] and as their shape can be approximated
reasonably well by a sphere. In extracting their charge
distributions (see the example in Fig. 1a), we follow pre-
viously established methods [22, 23]; details of the proce-
dure are given in the SI. Using the four proteins as exam-
ples, we analyze their average charge and the correspond-
ing charge fluctuations, their average dipole moment and
the dipole moment fluctuations, their polarizability and
the associated dielectric constant of the protein, and the
strength of the generalized KS charge fluctuation inter-
actions. In what follows, the charges qi in the presence

of CR are calculated from Eq. (6) and charges q
(0)
i in the

absence of CR are obtained from Eq. (S3) in the SI.

A. Charge and dipole moment fluctuations

Figure 2a shows how the total charge on hisactophilin
changes as a function of pH when ε∞ = 4 and n0 = 100
mM, both in presence and in absence of CR. In this par-
ticular case, the inclusion of CR effects does not signifi-
cantly alter the predicted isoelectric point of the protein,
pI ≈ 7.45 (CR) compared to pI ≈ 7.35 (no CR). The
largest predicted difference at the same system parame-
ters occurs for β-lactoglobulin, where the isoelectric point
increases by more than half a unit in presence of CR,
pI ≈ 5.55 (CR) compared to pI ≈ 4.95 (no CR)—see
Fig. S4 in the SI. This slightly overestimates the mea-

sured values [37, 38]. We note that even in the absence
of CR, certain structural and continuum electrostatic ef-
fects are included in the calculation as the dissociation
constants of the AAs are determined by PROPKA [39]
(see also the SI).

Furthermore, Fig. 2a shows the changes in the square
root of the charge fluctuations as a function of pH. We
observe two things: charge fluctuations are clearly max-
imal when the total charge changes the most with pH,
and are minimal when the change in the total charge
plateaus. This is, of course, a direct consequence of the

4 6 8 10

0

20

40

Q
[e

]

(a)

CR

bare

0.8

1.0

1.2

√
〈δ
q
2
〉[
e]

4 6 8 10

pH

50

100

150

p
[D

]

(b)

CR

bare

75

100

125

150

√
〈δ
p

2
〉[
D

]

Figure 2. (a) Total charge Q and (b) total dipole moment
p in presence (full line) and absence (dashed line) of CR as
a function of pH (left y-axes). Right y-axes of panels (a)

and (b) show the square root of charge fluctuations
√

〈δq2〉
and dipole fluctuations

√
〈δp2〉, respectively. Shown for his-

actophilin (PDB:1HCD) with ε∞ = 4 and n0 = 100 mM.
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theoretical derivation. However, the scale of the charge
fluctuations is always fairly small compared to the overall
charge on the proteins.

The changes in the dipole moment of hisactophilin as
a function of pH are shown in Fig. 2b, again both in
presence and in absence of CR. Figure 2b also shows the
changes in the square root of dipole moment fluctuations
as a function of pH. Here, the fluctuations are often max-
imal when the dipole moment is minimal and vice versa,
although this does not seem to be a general rule. An-
other observation, stemming directly from our theoreti-
cal calculations, is that the pH dependence of the dipole
moment fluctuations is essentially the same as the depen-
dence of total charge fluctuations, which can be seen from
comparing panels (a) and (b) of Fig. 2. This is a simple
consequence of the fact that the total charge as well as
the total dipole moment fluctuations depend on the same
proton occupancy correlator 〈δqkδqt〉 (see the examples
in Fig. 1 and Figs. S2 and S3 in the SI), which displays
positive values for the diagonal terms (self energy) and
negative values (anticorrelation) for off-diagonal terms.
The intermittency in the diagonal components is due to
full neutralization of some charged groups at those solu-
tion conditions. These observations are characteristic of
all four proteins studied, which can be seen from Figs. S4
and S5 in the SI.

External parameters—namely, salt concentration and
protein background dielectric constant—influence the
fluctuations to various degrees. In general, changes in
either of the two do not modify the pH dependence of
the fluctuations to a significant extent, as can be seen
from Figs. S6 and S7 in the SI on the examples of β-
lactoglobulin and lysozyme, respectively. Changes in salt
concentration tend to lead to somewhat larger changes in
the magnitude of the fluctuations compared to changes in
protein dielectric constant (Fig. S6), although the differ-
ence depends on the protein in question (Fig. S7). More-
over, while charge fluctuations depend only on the dimen-
sionless parameter κR (through the electrostatic coupling

4 6 8 10

pH

20

40

60

80

ε p

3NPO

3WUN

1HCD

3CLN

Figure 3. Contribution to the protein dielectric constant εp
due to dipole fluctuations [Eq. (27)] for all four proteins stud-
ied. System parameters are ε∞ = 4 and n0 = 100 mM.

matrix ξik), dipole fluctuations are in comparison more
sensitive to the choice of the protein radius, as they fea-
ture an explicit quadratic dependence on R in the lowest
order [Eq. (17)].

B. Capacitance, polarizability, and thermal
fluctuation interactions

Equations (20) and (21) allow us to determine the cor-
rection to the dielectric constant of the proteins due to
the dipole component of the protonisation fluctuations.
Namely, we have that

εp = ε∞ +
β〈δp2〉
4πε0R3

2εw + ε∞
εw

. (27)

This correction is shown in Fig. 3 for all four proteins
studied here and for the background protein dielectric
constant ε∞ = 4 and salt concentration n0 = 100 mM.
The correction to the dielectric constant is very large and
exceeds εp & 10 for most of the pH range studied. This
trend persists even at higher values of ε∞ or lower values
of n0 (Fig. S8 in the SI).

Capacitance and polarizability of the protein also addi-
tively combine in the dominant term in the separation de-
pendence of the fluctuation interaction between two iden-
tical proteins, which differs from the original KS form.
The relative contribution of the two is further weighted
by the screening length of the bathing solution. Figure 4
shows the scaled strength of the fluctuation interactions
1+κ2〈δp2〉/〈δq2〉 [see Eq. (26)] on the example of calmod-
ulin for different values of ε∞ and n0. Regardless of these
two parameters, polarizability of the protein appears to
be the dominant contribution to the interaction. The
relative contributions of charge and dipole fluctuations
are modified by changes in εp and n0, somewhat more
so by the latter. And while the relative contributions of

4 6 8 10

pH

18.0

18.2

18.4

18.6

18.8

19.0

1
+
κ

2
〈δ
p

2
〉/
〈δ
q
2
〉

ε∞ = 4, n0 = 10 mM

ε∞ = 4, n0 = 100 mM

ε∞ = 40, n0 = 10 mM

ε∞ = 40, n0 = 100 mM

Figure 4. Relative contributions of charge fluctuations and
dipole fluctuations to the fluctuation interactions between
two identical proteins [Eq. (26)]. Shown on the example of
calmodulin (PDB:3CLN) for different values of protein di-
electric constant ε∞ and salt concentration n0.
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polarizability and capacitance to the fluctuations differ
from protein to protein (Fig. S9 in the SI), the former is
always dominant.

V. CONCLUSIONS

Based upon our previous work [23], we generalized the
KS theory of protonisation fluctuation [7] by calculat-
ing the electrostatic and CR free energy contributions
due to anisotropic distribution of dissociable charges on
a sphere circumscribed to a protein. This allowed us to
implement and solve for the weak-coupling CR bound-
ary condition as well as quadratic fluctuations around
it. We show that fluctuations in both the total charge
and the total dipole moment depend on the same pro-
ton occupancy correlator 〈δqkδqt〉. As a result, both the
capacitance (proportional to the charge fluctuations) as
well as the polarizability (proportional to the dipole fluc-
tuations) of the protein depend in a similar fashion on
the solution pH through the proton occupancy correla-
tor. This is surprising, as these two lowest multipoles,
i.e., monopole and dipole, describe two linearly indepen-
dent terms in the spherical harmonic expansion of the
electrostatic interaction energy; in fact, it is known that
their equilibrium values, q and p, show vastly different
pH behavior [22]. We also show that the strength of the
KS fluctuation interaction in the asymptotic regime of
protein-protein separation [10] is modified and depends
additively on the capacitance and polarizability of the
two interacting proteins. As a consequence, the strength

of the KS interaction acquires a strong pH and salt de-
pendence.

The model we presented here makes several simplify-
ing assumptions, such as linearization of both the elec-
trostatic and charge regulation contributions to the free
energy as well as treating the proteins as spherical ob-
jects. With this, we also assume that any conformational
changes do not contribute in a major fashion, which
should be a valid approximation for proteins, unlike, for
instance, in the case of polyelectrolyte chains [40, 41] or
protein-RNA complexation [42]. Nonetheless, this effect
should be investigated further also in proteins, and re-
cent advances in Monte Carlo and molecular dynamics
simulations that include efficient computations of charge
regulation effects should be of great aid in this [3, 43–45].
Constant-pH molecular dynamics simulations of protein
protonisation behaviour would also allow to explore the
question of protein protonisation fluctuations fully at the
appropriate level without any linearization assumptions
while providing a good comparison for the predictions of
our model.

ACKNOWLEDGMENTS

A.B. acknowledges funding from the Slovenian Re-
search Agency ARRS (Research Core Funding No. P1-
0055). R.P. acknowledges the support of the University
of Chinese Academy of Sciences and the funding from the
NSFC under grant No. 12034019.

[1] H.-X. Zhou and X. Pang, Electrostatic interactions in
protein structure, folding, binding, and condensation,
Chem. Rev. 118, 1691 (2018).

[2] B. Zheng, Y. Avni, D. Andelman, and R. Podgornik,
Phase separation of polyelectrolytes: The effect of charge
regulation, J. Phys. Chem. B 125, 7863 (2021).

[3] T. Curk and E. Luijten, Charge regulation effects in
nanoparticle self-assembly, Phys. Rev. Lett. 126, 138003
(2021).

[4] J. Schellman and C. Schellman, Kaj Linderstrom-Lang
(1896-1959), in Selected Topics in the History of Bio-
chemistry Personal Recollections. VI, Comprehensive
Biochemistry, Vol. 41, edited by G. Semenza and
R. Jaenicke (Elsevier, 2000) pp. 45–89.

[5] S. Lifson, Potentiometric titration, association phenom-
ena, and interaction of neighboring groups in polyelec-
trolytes, J. Chem. Phys. 26, 727 (1957).

[6] R. Marcus, Calculation of thermodynamic properties of
polyelectrolytes, J. Chem. Phys. 23, 1057 (1955).

[7] J. G. Kirkwood and J. B. Shumaker, The influence of
dipole moment fluctuations on the dielectric increment
of proteins in solution, Proc. Natl. Acad. Sci. USA 38,
855 (1952).

[8] J. G. Kirkwood and J. B. Shumaker, Forces between pro-
tein molecules in solution arising from fluctuations in pro-

ton charge and configuration, Proc. Natl. Acad. Sci. USA
38, 863 (1952).

[9] C. Tanford and J. G. Kirkwood, Theory of protein
titration curves. I. General equations for impenetrable
spheres, J. Am. Chem. Soc. 79, 5333 (1957).

[10] M. Lund and B. Jönsson, Charge regulation in biomolec-
ular solution, Q. Rev. Biophys. 46, 265 (2013).

[11] R. Lunkad, A. Murmiliuk, Z. Tošner, M. Štěpánek, and
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