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Abstract1

Isotopologue identification or removal is a necessary step to reduce the number2

of features that need to be identified in samples analyzed with non-targeted analysis.3

Currently available approaches rely on either predicted isotopic patterns or an arbi-4

trary mass tolerance, requiring information on the molecular formula or instrumental5

error, respectively. Therefore, a Naive Bayes isotopologue classification model was6

developed that does not depend on any thresholds or molecular formula information.7

This classification model uses elemental mass defects of six elemental ratios and can8

successfully identify isotopologues in both theoretical isotopic patterns and wastewa-9

ter influent samples, outperforming one of the most commonly used approaches (i.e.,10

1.0033 Da mass difference method - CAMERA).11
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Introduction12

Non-target analysis (NTA) in combination with liquid chromatography high-resolution mass13

spectrometry (LC-HRMS) is a comprehensive approach for the characterization of unknown14

chemicals in complex sample matrices, originating from, for example, environmental or bi-15

ological backgrounds.1–6 These samples can contain thousands of structurally known and16

unknown chemicals. To identify these chemicals, the raw data files need to be processed17

to extract and group information that belongs to unique chemical constituents (i.e., parent,18

isotopologue, adduct, and (in-source) fragment ions).1 During this step, one approach to19

reduce the number of individual features requiring identification is the detection or removal20

of isotopologues (i.e., heavier versions of the same monoisotopic peak).21

22

For LC-HRMS data, two main approaches have been used to detect isotopologues.7,8 The23

first strategy relies on a predicted molecular formula, which can be translated to a predicted24

isotopic pattern.7,9 The main shortcoming of this approach is the difficulties associated with25

accurate and reliable molecular formula prediction for unknown chemical constituents. The26

wrong molecular formula could be assigned to a feature either due to instrumental error or27

absence of a chemical constituent in a database. These wrongly assigned molecular formulas28

could lead to identifying the potential isotopologues of a feature with the wrong isotopic29

pattern, resulting in higher false positive and false negative identification rates.30

31

On the other hand, a theoretical mass difference of n × 1.0033 Da (i.e., CAMERA)32

has been used.8,10 Here n equals the depth of the isotopopologue mass. For example, an33

isotopologue mass depth of four corresponds to the mass range of the monoisotopic peak34

plus three isotopologues. This approach, even though elegant given that it does not require35

information on the molecular formula, does require an arbitrary mass tolerance as input.36

This means that the mass tolerance changes, depending on the instrument used, and needs37

to be correctly provided by the user.38

2



39

In this manuscript, an isotopologue classification model is proposed that requires no40

prior knowledge of the molecular composition or arbitrary tolerances. The Naive Bayes41

classification model was generated using elemental mass defects, for which the potential in42

isotopologue detection was explored. For performance evaluation of the classification model,43

a comparison was made with an ”in-house” developed mass difference method. This com-44

parison was performed for both theoretical isotopic patterns and wastewater influent samples.45

46

Experimental Section47

LC-HRMS Analysis48

The fourty-four Wastewater influent and three quality control samples were analyzed with49

LC-HRMS. Briefly, samples were collected over a time window of 24 hours, using on-site50

autosamplers set to use the optimized conditions described by Ort et al.11 These samples51

were filtered, spiked with 10 ng L−1 of 19 labeled internal standards, and stored frozen until52

analysis. For analysis, 10 µL of the sample was injected on a biphenyl column at 45◦C and53

separated using a 10-minute gradient from 5 to 100% methanol with 0.1% formic acid. The54

eluent was analyzed using a QToF in positive ion mode with a mass range of 50 to 600 Da55

and collision energy of 10 eV. Further details on the analysis are provided elsewhere.1256

Data Processing57

The raw data files were converted to mzXML file format, using MSConvertGUI (64-bit, Pro-58

teoWizard13). Feature lists were generated with the self adjusting feature detection (SAFD)59

algorithm, using the following settings: 10 000 maximum number of iterations, a minimum60

intensity of 500, resolution of 20 000, 0.02 m/z minimum window size in the mass domain,61

0.75 minimum regression coefficient, a maximum signal increment of 5, a signal to noise ratio62
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of 2, and a minimum and maximum peak width in the time domain of 3 and 200 s, respec-63

tively.12 These feature lists were used for the performance evaluation of the classification64

model on real samples.65

66

Theoretical Isotopic Patterns67

The isotopic patterns used for setting up the probabilistic isotopologue classification model68

were calculated for 737 594 chemicals from the DDS-TOX database.14 These chemicals con-69

sist of a curated list of compounds relevant to environmental and human health. The isotopic70

patterns were obtained using pyOpenMS9 (v2.6.0), combining both the isotopic masses from71

the fine15,16 and coarse9 isotope pattern generator. The fine isotope pattern generator cal-72

culates the hyperfine isotopic pattern that is obtained when the mass defect of isotopes in73

taken into account.9 This mass defect equals the difference between the actual mass of an74

atom and the sum of the building blocks (e.g., neutrons) the atom is comprised of. From75

this method, isotopologues with a maximum unexplained probability of 0.01% was used.76

On the other hand, the coarse isotope pattern generator calculates the unit mass isotopic77

patterns, using the summed probability for each isotopologue peak, ignoring the hyper-78

fine structures. For this, a maximum isotopic tree depth was required that corresponds to79

one plus the maximum number of isotopes that could be present in a single molecule.1680

Considering the fact that an increasing number of isotopes within a molecule results in a81

lower occurrence probability (i.e., intensity), a maximum isotopic tree depth of 6 was chosen.82

83

The full isotopic pattern for a compound was comprised of the fine and coarse isotopic84

patterns, excluding duplicate isotopologues from the coarse isotopic pattern that had a mass85

difference of ≤ than 0.003 Da with any of the other isotopologues, which is the typical mass86

error observed in LC-HRMS experiments.17 In this manuscript, a monoisotopic parent ion87

with one of its isotopologues is referred to as an mono-iso pair. For example, if a monoiso-88
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topic parent ion has 5 theoretical isotopologues, 5 mono-iso pairs are obtained. In total,89

2 691 244 mono-iso pairs were generated, which were employed for training (85% of the90

mono-iso pairs) and testing (15% of the mono-iso pairs) of the probabilistic isotopologue91

classification model (available on figshare).1892

93

Elemental Ratio Calculations94

To construct the probabilistic isotopologue classification model, elemental mass defects95

(EMDs) were used. The assumption here is that the monoisotopic and isotopologue mass96

have the same EMD because they have the same molecular structure with the isotopologue97

having one or more of its atoms being replaced with heavier versions (i.e., isotopes) of the98

same elements. To calculate the EMD for both the monoisotopic and isotopologue mass,99

the elemental mass (EM ) needs to be calculated according to equation 1. Here, the ionmass100

can either be the monoisotopic or the isotopologue mass and the ermass (i.e., elemental ra-101

tio mass) depends on the elemental ratio used. For the classification model the elemental102

ratios CO, CCl, CN, CS, CF, and CH were used, which have an ermass of 27.995, 46.969,103

26.003, 43.972, 30.998, and 13.008, respectively. These values are the sum of the elemental104

masses of each element for a single elemental ratio. For example, the ermass of CO equals105

the monoisotopic mass of a carbon atom plus that of an oxygen atom (i.e., 12.000 + 15.995106

= 27.995). The selected elemental ratios were chosen based on both the frequency they107

were encountered in the DDS-Tox database (Table S1) and the fact that only 0.007% of the108

database entries contain none of the selected elements.109

110

After the EM is calculated, the EMD for the monoisotopic and isotopologue mass can111

be obtained according to equation 2 (i.e., EMDmono and EMDiso, respectively). These EMD112

values are used to calculate the delta EMD (dEMD) for an mono-iso pair (Equation 3). It is113

important to note that the EMDmono should always be subtracted from the EMDiso and not114
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vice versa when using the probabilistic isotopologue classification model described in this115

paper. An example case for calculating the dEMD value can be found in figure 1C. The full116

set of isotopologue and monoisotopic EMD values for the DDS-Tox database can be found117

on figshare.18118

119

EM = ionmass ×
rounded ermass

exact ermass

(1)

EMD = roundedEM − exactEM (2)

dEMD = EMDiso − EMDmono (3)

120

121
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Figure 1: Section A shows the Workflow for the construction of the Naive Bayes isotopologue
classification model, which requires calculations of the dEMD values (section C) for the
mono-iso pairs. The workflow for the use of the classification model for the example mono-
iso pair in C is shown in section D. Finally, B contains a list of abbreviations.

EMD Probability Distributions122

To generate the EMD probability distributions for the classification model, both true posi-123

tive (TP) and true negative (TN) mono-iso pairs were required (Figure 1A). The mono-iso124
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pairs in the training set were used as the true positive cases and true negative cases were125

generated based on the mono-iso pairs from the training set with a randomly added mass126

error between 0.01 to 1 Da to the isotopologue mass. For all mono-iso pairs in the TP127

and TN training set, the dEMDs were calculated for the selected elemental ratios (Equation128

3). These dEMD values were used to construct the TP and TN probability distributions129

for each of the six elemental ratios. To build these probability distributions, the generated130

dEMD values were binned, using a range between -1 and 1 Da with a 0.002 Da step size.131

For each dEMD bin, the number of occurrences plus one was used. This prevented that a132

dEMD range could have a probability equal to zero, in case no occurrences for that specific133

dEMD were found in the training set. Finally, the probability distributions were calculated134

by dividing the occurrence distribution values by the total number of occurrences.135

136

Naive Bayes Classification137

Naive Bayes classification was used to develop a probabilistic isotopologue detection model,138

using the TP and TN dEMD probability distributions obtained for the selected elemental139

ratios (i.e. CO, CCl, CN, CS, CF, and CH). To calculate the posterior probabilities (i.e.,140

P(A|B)) for classifying a potential mono-iso pair as TP or TN, Bayes theorem is used (Equa-141

tion 4).19 Here, P(A) is the probability of an mono-iso pair being TP or TN, P(B) is the142

occurrence likelihood for a specific dEMD value, P(B|A) is the probability for a dEMD value143

in case of A, and n equals the number of elemental ratios used, which would be six for our144

model (i.e., CO, CN, CCl, CS, CF, and CH).145

146

P (A|B) =
n∏

i=1

P (B|A)i × P (A)i
P (B)i

(4)

Since P(B) is a marginal probability (i.e., constant probability normalizing factor), equa-147
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tion 4 can be rewritten to equation 5. Additionally, a uniform distribution is assumed for148

the prior P(A), further reducing the formula to equation 6.149

150

P (A|B) ∝
n∏

i=1

P (B|A)i × P (A)i (5)

P (A|B) ∝
n∏

i=1

P (B|A)i (6)

Lastly, for the classification of the potential mono-iso pair, the TP and TN probabilities151

are obtained using equation 6. These probabilities were converted to probability percentages152

(i.e., on a scale of 0 to 100). Due to the wide range of values that can be obtained for the153

TP and TN probabilities, a scoreEMD is used instead for the evaluation (Equation 7). Here154

P(TP) and P(TN) equal the true positive and true negative probabilities, respectively. This155

scoreEMD ranges between 1 and minus infinity. In case the potential mono-iso pair has a156

scoreEMD above a set threshold, the potential isotopologue is classified as a correct isotopo-157

logue of the monoisotopic ion. An example for the calculation of the scoreEMD can be found158

in figure 1D159

160

scoreEMD = 1− P (TN)

P (TP )
(7)

161

162

Performance Assessment163

For the performance assessment, the test set was used. In this instance, TN cases were also164

generated based on the mono-iso pairs from the test set with a random mass error added165

to the isotopologue mass of 0.01 to 1 Da. For both the TP and TN cases, the scoreEMDs166
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were calculated (Equation 7). To select a suitable scoreEMD cut-off value and assess the167

performance of the classification model, the TP and false positive (FP) rates were calculated168

for a range of scoreEMD values. The scoresEMD fromm 0.7 to 1 Da with a step size of 0.002169

Da were employed to calculate the TPr and FPr (Equation 8 and 9, respectively). Here, the170

TPs equal the number of cases from the test set that were correctly classified as an isotopo-171

logue, FNs are the number of cases that were incorrectly classified as not an isotopologue,172

TNs are cases that were correctly classified as not an isotopologue, and FPs are the that173

were wrongly classified as isotopologues.174

175

TPr =
TP

TP + FN
∗ 100 (8)

FPr =
FP

TN + FP
∗ 100 (9)

176

177

Mass Difference Method178

The mass difference method is a commonly used approach for automated isotopologue detec-179

tion in LC-HRMS data. This method has already been implemented in different open access180

algorithms such as CAMERA and MZmine.8,10 Here, an ”in-house” developed mass differ-181

ence strategy was employed to benchmark our classification model against. For the mass182

difference method, to asses if a signal is an isotopologue of a monoisotopic peak, first the183

mass difference between the signal and monoisotopic ion was calculated. Then, the residue184

of the division of the mass difference by 1.0033 Da is obtained. For example, if the mass185

difference is 2.0081 Da, the residue would be 0.0015 Da. In case the residue is lower than186

the specified mass tolerance, the signal is accepted as an isotopologue of the monoisotopic187
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mass. For the mass difference method, when dealing with the training set a mass tolerance188

of ± 0.0001 Da was used based on the assumption that the theoretical isotopologues do not189

contain any mass error. On the other hand for the wastewater samples, this mass tolerance190

was increased to ± 0.01 Da to better reflect the inherent mass error in such data caused by191

background signal and instrumental fluctuations.192

193

Isotopologue Detection Performance for Wastewater Samples194

To test the isotopologue classification model on real samples, the isotopologue detection195

performance was evaluated for the feature lists obtained from forty-four wastewater influent196

samples and three quality control samples. Additionally, a reference compound list com-197

prised of forty-five chemicals was used, containing the monoisotopic masses (i.e., protonated198

molecular mass), retention times, and parent isotopologue distributions (Table S3). The iso-199

topologue distributions for these chemicals were obtained from the isotope pattern preview200

tool in MZmine2 (v2.53), using the protonated molecular formula, a minimum intensity of201

0.01%, a merge width of 0.0001 Da, and a charge of 1,which showed to cover an isotopologue202

mass depth of six.10203

204

The presence of a reference compound was confirmed based on the reference retention205

time ± 0.1 minutes and the monoisotopic parent mass with a mass tolerance of 0.01 Da.206

When a reference compound monoisotopic parent mass was present, all features within a time207

range of ± 0.1 minutes were extracted. If a feature’s mass was higher than the monoisotopic208

mass and lower than the monoisotopic mass plus 1.0033 × 6 (i.e., isotopologue mass depth209

of six), it was evaluated as a potential isotopologue with both the classification model and210

the mass difference method. When a model correctly identifies an isotopologue according to211

the reference parent isotopologue distribution, it is considered a TP case. Whereas the FP212

cases are incorrectly identified isotopoloues and the FN cases are the TP cases that were not213
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detected by a model. With these cases, the TPr and FDr were calculated for the classifica-214

tion model and mass difference method (Equation 8 and 10, respectively), which were used215

to compare the two isotopologue identification methods.216

217

FDr =
FP

TP + FP
∗ 100 (10)

218

219

Calculations and Code Availability220

All calculations were performed using a personal computer running Windows 10 Education221

with 12 cores and 32 GB of memory. For obtaining the theoretical isotopologues of the DDS-222

Tox database Python (v3.9.4) was used and for calculations related to the classification model223

Julia (v1.6.0) was used. The mzXML files were imported in julia using the MS Import pack-224

age, which is available at https://bitbucket.org/SSamanipour/ms import.jl/src/master/. The225

code for the probabilistic isotopologue classification model is available at https://bitbucket.org/Denice van Herwerden/emdforiso/src/master/.226

This package includes both the probabilistic isotopologue classification model and functions227

to use the model with feature lists obtained either from SAFD12 or other algorithms. The228

code for SAFD is available at https://bitbucket.org/SSamanipour/safd.jl/src/master/.229

230

Results and Discussion231

Exploring the EMD probability distributions232

Calculating the EMD values for the theoretical isotopologues showed that the EMD values233

for the monoisotopic and isotopologue masses were similar. Figure 2 shows the EMD values234
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for the theoretical isotopic distribution of carbamazepine. In this example, a minimum and235

maximum absolute difference in EMD(i.e., dEMD) of 0.003 and 0.020 Da were found, respec-236

tively. Additionally, an increase in dEMD between the EMDmono and EMDiso was observed237

for isotopologues with a higher isotopologue mass depth. Even though the elements S and F238

are not present in the molecular formula of carbamazepine, a similar EMD trend is observed239

as for the elements O, N, CL, and H. On the other hand, figure S1 and S2 show that the240

presence of other elements (e.g., Br and P) in the molecular formula also do not influence241

the EMD values.242

243

Overall, similar trends were observed for all theoretical isotopologue distributions with244

EMD values ranging from -0.5 to 0.5 Da for all six elemental ratios. To evaluate this245

trend, the Pearson correlation coefficients between the EMDmono and EMDiso values were246

obtained.20 These coefficients were calculated separately for each elemental ratio and iso-247

topologue mass depth of 1 till 6 (Table S2). The highest correlation of 1.00 was found for248

the elemental ratio CN with an isotopologue mass depth of 1 and the lowest value was 0.86249

for both the elemental ratios CCl and CS with an isotopologue mass depth of 5 (Figure S3250

and S4, respectively). Overall, the Pearson correlation coefficient decreases with a higher251

isotopologue mass depth except for an isotopologue mass depth of 6. It is expected that this252

was due to a relatively low number of mono-iso pairs with a depth of 6 (Table S2). These253

results showed that similar EMD values for mono-iso pairs were obtained throughout the254

theoretical dataset.255

256

After calculating all dEMD values for the mono-iso pairs of both the TP and TN cases,257

the TP and TN probability percentage distributions were obtained for the selected elemental258

ratios (Figure 3). For the TP probability distributions, there were 2 regions for which the TP259

probabilities were higher than the TN probabilities. The first region being around a dEMD260

of 0, which is in accordance with the hypothesis that the monoisotopic and isotopologue mass261
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Figure 2: Isotopic distribution of carbamazepine with the corresponding log10 probabil-
ity percentages. For the monoisotopic (236.095 Da) and each isotopologue peak (237.098,
238.102, 239.105, 240.108, and 241.112 Da), the EMD values are shown above in Da for the
elemental ratios CO, CN, CCl, CS, CF, and CH. Additionally, the elemental ratios that are
present in the molecule are marked in green and the ones that are not are marked in red.
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of the same compound obtain similar EMD values. As for the second region, dEMD values262

close to 1 and -1 Da were found. For the TN probability distributions, a small decrease263

in probability was observed around a dEMD of 0 Da, which was caused by the minimum264

added mass error to the isotopologue mass of the TN mono-iso pairs (i.e., 0.01 Da). Overall,265

these plots showed that the dEMD could be used to differentiate between isotopologue and266

non-isotopologue masses.267

268

Figure 3: TP and TN probability distributions for the dEMD values for the selected elemental
ratios CN, CCl, CO, CS, CF, and CH.

Classification Model Performance269

A receiver operator curve was generated for selection of the scoreEMD threshold. This curve270

showed the TPr versus the TN rate for scoresEMD between 0.7 and 1 (Figure S5). Based on271

this plot a scoreEMD threshold of 0.9997 was selected. This corresponded with a TPr and272

FPr of 99.0 and 1.8%, respectively.273

274
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Comparison with existing method275

To evaluate the performance of the classification model with that of the existing mass differ-276

ence method, the performance for the in-house mass difference method was evaluated for a277

mass tolerance of 0.0001 Da. The mass tolerance was selected based on the assumption that278

there is no error present in the theoretical mono-iso pairs and the full receiver operator curve279

can be found in sectionS4. For a mass tolerance of 0.0001 Da, a TPr and FPr of 16.2 and280

0.02% was found, respectively. Compared to the results of the classification model (i.e., TPr281

of 99.0% and FPr of 1.8%), both methods performed well with regard to the FPr (i.e., ≤282

5%). However, the classification model outperformed the mass difference method for the TPr.283

284

Model Implementation for Real Samples285

To evaluate the model performance for real samples, isotopologue detection was performed286

for forty-four wastewater influent and three quality control samples. A total of 391 features287

were evaluated as potential isotopologues from the forty-fivev reference compounds in ques-288

tion. Overall, 212 TP cases, one FN case, and one FP case were found for the classification289

model, Resulting in an average TPr of 99.8% and an FDr of 0.5%. The FN case was caused290

by an 0.011 Da mass error between the monoisotopic and isotopologue mass, which is larger291

than the minimum mass error (i.e., 0.01 Da) assumed for the true negative cases that are292

used for training the model. As for the FP case, the detected isotopologue mass was 155.068293

m/z and the monoisotopic parent ion mass was 152.072 m/z. If the decreasing intensity for294

less likely isotopologues would have been taken into account, this ion would not have been295

included due to the absence of the isotopologues with a higher probability (e.g., 153.068 and296

154,075 m/z, Figure S7). From this, it can be concluded that the classification model can297

also be used for real data.298

299

For the mass difference method, a total of 203 TP, 10 FN, and 13 FP cases were found,300
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corresponding to an average TPr and FDr of 96.3 and 4.8%. For these cases, all FNs were301

caused by a mass error larger than 0.01 Da and all FPs were caused by the same reason as302

the FP of the classification model. Across multiple datasets a signal at 304.182 m/z was303

identified as an isotopologue of codeine, for which the monoisotopic mass was 300.159 m/z.304

Only in some cases, an isotopologue at 301.163 m/z was detected, which would still mean305

that there were no isotopologues with an isotopologue mass depth of 2 or 3 present with306

higher intensities than the signal at 304.182 m/z. To conclude, the classification model had307

a higher TPr and lower FDr than the mass difference method. However, if the decreas-308

ing intensity with lower isotopologue probabilities would have been taken into account, the309

methods would both have had an FDr of 0.0%.310

311

Potentials and Limitations312

The classification model provides a good alternative approach for the detection of isotopo-313

logues, requiring no information on the molecular formula or arbitrary thresholds. However,314

it should be noted that the classification model is unable to distinguish between isotopo-315

logues coming from different chemicals or signals with the same monoisotpic mass. This316

would require prior separation such as chromatography. Besides the reduction of total num-317

ber of features for identification, correct isotopologue identification can also assist in accu-318

rate molecular formula assignment. When multiple formula’s are possible for a monoisotopic319

mass, the isotopic patterns can be predicted and compared with the detected isotopologues320

masses to eliminate less likely candidates. Lastly, the model was built based on isotopic321

distributions with a tree depth of six, meaning that it might not be able to correctly classify322

ions with more than 6 isotopologues if these ions would be detected at all due to their low323

occurrence probabilities. However, if required, the EMDforIso package enables the user to324

retrain the classification model using different training sets and parameters.325
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Conclusion326

This manuscript demonstrated the potential of using elemental ratios for the detection of327

isotopologues. The classification model that was constructed based on the elemental ratios328

CO, CN, CCl, CS, CF, and CH, showed good performance for both theoretical isotopic329

patterns as well as real wastewater influent samples. For the theoretical mono-iso pairs,330

when assuming no error, the classification model outperformed the mass difference method331

with a TPr of 99.0% and FPr of 1.8% compared to a TPr of 16.2% and an FPr of 0.02%. As332

for the wastewater influent samples, the classification model, with a TPr of 99.8% and FDr333

of 0.5%, performed better than the mass difference method, with a TPr of 96.3% and FDr334

of 4.8%. However, if a decreasing intensity for a lower probability isotopologue was taken335

into account, both methods would have had an FDr of 0.0 %.336
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