
  

 

 

Quantitative spatiotemporal mapping of thermal runaway 
propagation rates in lithium-ion cells using cross-correlated Gabor 
filtering 

Anand N. P. Radhakrishnan,a Mark Buckwell,a,b Martin Pham,a,b Donal P. Finegan,c Alexander Rack,d 
Gareth Hinds,e Dan J. L. Bretta,b and Paul R. Shearing*,a,b 

Abuse testing of lithium-ion batteries is widely performed in order to develop new safety standards and strategies. However, 

testing methodologies are not standardised across the research community, especially with failure mechanisms being 

inherently difficult to reproduce. High-speed X-ray radiography is proven to be a valuable tool to capture events occurring 

during cell failure, but the observations made remain largely qualitative. We have therefore developed a robust image 

processing toolbox that can quantify, for the first time, the rate of propagation of battery failure mechanisms revealed by 

high-speed X-ray radiography. Using Gabor filter, the toolbox selectively tracks the electrode structure at the onset of failure. 

This facilitated the estimation of the displacement of electrodes undergoing abuse via nail penetration, and also the tracking 

of objects, such as the nail, as it propagates through a cell. Further, by cross-correlating the Gabor signals, we have produced 

practical, illustrative spatiotemporal maps of the failure events. From these, we can quantify the propagation rates of 

electrode displacement prior to the onset of thermal runaway. The highest recorded acceleration (≈ 514 mm s-2) was when 

a nail penetrated a cell radially (perpendicular to the electrodes) as opposed to axially (parallel to the electrodes). The 

initiation of thermal runaway was also resolved in combination with electrode displacement, which occurred at a lower 

acceleration (≈ 108 mm s-2). Our assistive toolbox can also be used to study other types of failure mechanisms, extracting 

otherwise unattainable kinetic data. Ultimately, this tool can be used to not only validate existing theoretical mechanical 

models, but also standardise battery failure testing procedures.

Introduction 

Lithium-ion batteries offer a convenient power source for a 

broad range of mobile technologies,1 as well as the potential to 

reduce greenhouse gas emissions, particularly in transport 

applications, if their life cycle is managed sustainably.2  They are 

also finding increasing use in residential and grid energy 

storage.3 However, their growing uptake poses a safety issue, 

owing to the potential for highly energetic failure events to 

occur. These can be triggered in a number of ways, such as 

electrically (short-circuiting),4  thermally (overheating),5  or 

mechanically (impact or penetration),6  and can ultimately lead 

to explosions, fires, and the release of toxic and flammable 

ejecta and gases.3,7 Although catastrophic failure is uncommon, 

occurring in around 1 in 10 million units,1 tens of billions of 

batteries enter the market each year, making the risk 

significant.8 This is a particular concern for ‘mission critical’ 

applications, for example in communications, electric vehicles 

and aerospace, in which the integration of lithium-ion batteries 

is hampered by concerns with their safety and reliability.9 

Therefore, to enable their continued uptake, it is crucial that 

lithium-ion battery failure is better understood, such that safer 

batteries may be engineered, with improved solutions and 

mitigation strategies for failure. 

X-ray radiography is a powerful tool for capturing the 

degradation of individual lithium-ion cells operando, under both 

standard operation and abuse testing conditions.4,5,10–12 Real-

time and high-speed (i.e., slow-motion) imaging offer a valuable 

insight into the mechanisms of failure, through directly 

observable changes to the cell structure. Additionally, the 

efficacy of hazard mitigation strategies, such as safety vents, 

separator shutdown and current interruption, and positive 

temperature coefficient devices, may also be investigated.4 

However, most failure/safety testing methods do not have 

accompanying high-speed X-ray radiography data, and the 

analysis and interpretation of any such available data has 

remained largely qualitative. This is due to the presence of 

multiple complex events, involving both gradual and sudden 

shifts of the electrodes, and their decomposition, as well as, in 

some cases, the movement of a large object such as a nail. This 

poses a significant image-processing challenge, for which there 

is currently no robust, quantitative analytical approach. 

Typically, videos are examined by eye, with frames of interest 

selected to produce a timeline of visible events. Although 

informative, this is a very slow method, owing to the large 

amounts of information present in a single video, and 

mechanisms are typically postulated from qualitative 

observations. By extension, a broad, statistically significant 

analysis of multiple videos using the same approach is not only 

extremely time-consuming, but also supremely challenging. 

Subtle yet key events may also not be apparent to the eye, and 

such manual observations are likely to be inconsistent between 

measurements (due to the stochastic nature of these failure 

events) and between researchers undertaking the data 

analysis.13 A robust analytical toolbox for quantifying the 

kinetics of cell failure is therefore required in order to fully 

exploit the information contained with existing and future X-ray 

radiography data that are now being collated in open-access 
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databases (e.g., the Battery Failure Databank hosted by the 

National Renewable Energy Laboratory14). 

The internal structure of a lithium-ion cell is typically an 

assembly of periodic electrode layers, current collectors and 

separators. In X-ray radiography, this produces a distinct image 

‘texture’, composed of bands of compositional contrast 

resulting from the different X-ray attenuation coefficients of 

each material. While a variety of feature-detection and object-

classification algorithms are available, X-ray radiography of 

lithium-ion cell failure poses a unique combination of 

challenges that hinder their applicability: 

i. Although the electrode texture is well-defined, it 

degrades unevenly across the field of view, 

disappearing as failure occurs. Frequency-domain 

analyses, such as fast Fourier transforms, that can 

identify the initial texture based on spatial or temporal 

frequencies,15 are unable to track the changes in phase 

and orientation in the spatial domain as failure 

progresses. 

ii. High frequency noise is typically present, making the 

identification of periodic or aperiodic features 

challenging. Pixel-based region-labelling algorithms 

fail in accurately deconvoluting the noise from the 

features of interest. 

iii. In some cases, for example during nail penetration 

testing, large objects are present in the field of view. 

These obscure objects introduce variations in the 

texture, leading to analytical artefacts. 

In this work, we apply Gabor filter banks and subsequent post-

processing algorithms to high-speed X-ray radiography data of 

lithium-ion cells undergoing abuse via nail penetration and ball 

compression testing. Gabor filter banks are commonly used in 

visual processing, owing to their sensitivity to the orientation 

(angle) and spacing (frequency) of edge features.16,17 They have 

been effective in the automated recognition of textures,18,19 

structural variations in electron microscopy images,20–23 

anatomical structures in X-ray computed tomograms,24,25 as 

well as human faces26 and fingerprints.27 Texture may be 

detected and quantified as a function of component feature 

size, orientation and distribution. The ability to control the 

frequency and orientation of the Gabor filters enables the user 

to selectively pick out the electrode texture and omit other 

objects. Furthermore, the filters can track changes in the spatial 

domain (directional sensitivity) as failure progresses within a 

cell. Ultimately, this approach produces frequency-sensitive 

spatial information, while at the same time being noise-

insensitive. Thus, it addresses the challenges outlined above 

and is a powerful and an appropriate technique for analysis of 

X-ray radiography data. 

We have developed an image processing toolbox outlined in the 

following manner: 

i. We firstly objectively identify the internal cell structure and 

nail as separate textures, representing them as Gabor-

filtered frames with features defined by distinct functions of 

angle and frequency. 

ii. The Gabor-filtered frames are then cross-correlated over 

time, facilitating the tracking of the degradation and failure 

of cells with a high spatiotemporal resolution and allowing 

us to estimate the displacement of electrode layers before 

failure. 

iii. Finally, from the conversion to spatiotemporal information 

we produce a single practical, and illustrative map of the 

failure events occurring in an entire video, from which we 

quantify the rate of propagation of failure both axially 

(parallel to the electrodes) and radially (perpendicular to the 

electrodes). 

Not only does our approach introduce a means of quantifying 

failure processes, but it may also facilitate the validation of 

existing mechanistic models. Our spatiotemporal maps reveal 

that the rate of electrode displacement (before the onset of 

failure) is higher when a nail propagates radially rather than 

axially. We also identify and track the onset of failure, which 

occurs at slower velocities than the electrode displacement and 

exhibits varied third-order kinetic behaviour. With the 

spatiotemporal maps, we may accurately describe not only 

‘where and when’ failure originates, but also ‘how’ it 

propagates over time. In the long term, we are confident that 

this toolbox can further the understanding of battery 

degradation mechanisms by coupling mechanical failure 

models28–30 with electrochemical thermal-runaway models.31 

Furthermore, our approach provides an open-source analytical 

toolbox developed on Python that may be readily implemented 

on video data from any instrumental setup, including legacy 

data from archives (toolbox available upon request). Not limited 

to visual assessments, any user may thus gain new perspectives 

on their data, from which they may readily distinguish 

interesting behaviours for further characterisation. Our 

technique is therefore extremely promising in advancing and 

strengthening the understanding of failure mechanisms of 

lithium-ion cells. 

Experimental 

Failure testing setup 

The nail penetration testing was performed as previously 

described by Finegan et al., 2017 6 inside a commercial nail 

penetration system (MTI Nail Penetration Tester, MSK-800-

TE9002, MTI, Richmond, CA, USA), modified to have X-ray 

transparent 2 mm thick aluminium front and rear panels for X-

ray imaging. The lithium-ion cells were held in place by hydraulic 

clamps that operated at 4 bar. The hydraulic piston nail 

penetrator was connected to a 5 bar air supply. All tests were 

carried out using the smart nail described by Finegan et al., 2017 
6 or a stainless steel ball of diameter 20 mm (see Table 1). 

Briefly, the smart nail is a 60 mm long stainless steel tube with 

an external diameter of 4 mm and an internal diameter of 2 

mm.32 The nail contains a thermocouple and has a conical tip 

that was sharpened using a lathe.  

 

Collection of X-ray radiography data 

X-ray radiography was carried out at beamline ID19 at the 

European Synchrotron Radiation Facility (ESRF). A 

polychromatic beam was used with a LuAG:Ce (Lu3Al5O12:Ce) 
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scintillator and a high-speed PCO.Dimax camera (PCO AG, 

Germany). Images were captured at 2000 fps with an exposure 

time of 457 μs and 10 μm pixel-size. The raw data were 

processed where flat-field correction was applied using a 

bespoke MATLAB code. The resulting videos are provided as 

Supplementary Videos (‘SI_Video_1’ – ‘SI_Video_4’). 

 

Processing of radiography data 

The pre-processed radiography data were opened in a bespoke 

analytical toolbox developed on Python 3 33 with the following 

packages installed: imageio,34 numpy,35 scipy,36 scikit-image,37 

matplotlib,38 and tkinter.39 An experimental dataset consisting 

of a single AVI/MP4 video or Tiff stack, or a folder of images, 

was loaded through the imageio package and presented on a 

graphical interface via tkinter, where the user can select the 

region of interest (ROI) and the set of frames to be analysed. For 

datasets, especially legacy data that have gone through video 

compression software, where the number of frames has been 

altered – either through the introduction of duplicate frames or 

dropped frames, the original frame rate of video capture cannot 

be used for temporal analysis. To this end, the original 

timestamp embedded in the frames can be analysed using 

Google’s optical character recognition engine, Tesseract,40 via 

Pytesseract,41 a wrapper for Python. Any duplicate frames were 

ignored from analysis based on the detected timestamps. 

For a set of frames loaded, we define t = 0 s as the first frame 

selected for analysis, unless otherwise stated, for which the 

electrode structure is assumed to be pristine and unaffected by 

any abuse process. ti is defined as the time of the ith frame, 

where i frames are included in the analysis. All spatial 

information has been presented in the Cartesian coordinate 

system, where x represents the position in the axial direction, 

along the X axis (parallel to the electrodes), and y represents the 

position in the radial direction, along the Y axis (perpendicular 

to the electrodes). Unless otherwise stated, the origin, x = 0 

mm, y = 0 mm, is the top-left corner of the rectangular ROI 

selected by the user. 

Upon converting the frames to an 8-bit greyscale format, the 

contrast range of each selected frame was normalised (lowest 

pixel value set to 0 and highest pixel value set to 255) and a 

morphological reconstruction step applied to smoothen noise.42 

Gabor filter banks were then applied as discrete sinusoidal 

waves modulated by a Gaussian function. This implementation 

consisted of a [9 × 9] pixel kernel, which scans across a frame 

(Fig. 1). The user can choose the most appropriate Gabor filter 

parameters (angle and frequency), which are then applied on all 

the selected frames of a dataset.  

Following the Gabor filtering step as shown in Fig. 1, post-

processing analyses were performed on the filtered frames (Fig. 

1c), to estimate electrode displacements and build temporal 

and spatiotemporal maps, enabling the extraction of cell failure 

kinetics. 

Results and discussion 

The cell types, the failure-testing modes, and the location of the 

tests are shown in Table 1. ‘SI_Video_1’ and ‘SI_Video_2’ 

involve radial penetration of the smart nail midway along the 

cell. ‘SI_Video_3’ entails axial propagation of the nail, where the 

nail penetrates through the base of the cell. ‘SI_Video_4’ 

involves compression of the electrodes by a ball, incident 

midway along the cell.

Table 1: The analytical toolbox was tested on four datasets that involved failure testing using mechanical objects incident with the cells at different locations and orientations.  

Dataset name Test type Cell type Incidence angle of object (with respect to the central axis 

of the electrode structure) 

Location of test (along the 

length of the cell) 

SI_Video_1.mp4 Nail penetration LG ICR18650S3 Perpendicular Middle 

SI_Video_2.mp4 Nail penetration LG ICR18650S3 Perpendicular Middle 

SI_Video_3.mp4 Nail penetration LG ICR18650S3 Parallel Bottom 

SI_Video_4.mp4 Ball compression LG ICR18650B4 Perpendicular Middle 

 

Texture detection using Gabor filters 

We firstly applied a Gabor filter bank to a video to determine 

the efficacy of capturing the texture in each frame, representing 

the electrodes. Fig. 1a shows an example video frame, for which 

a pair of Gabor-filtered output images are shown in Fig. 1b. In 

the foreground image, which has been filtered optimally (filter 

applied parallel to the electrodes, with a frequency similar to 

the electrode spacing), the electrode structure shows up as a 

strong signal (red – positive peak representing Cu/Al, blue – 

negative peaks denoting electrolyte or the graphite layer, and 

whites that represent the separator material or the Cu-anode/ 

Al-cathode interface). On the other hand, in the background 

image, which has been filtered poorly (filter applied 

perpendicular to the electrodes, with a low frequency), there 

are no features detected, aside from an artefact at the left side 

of the image. Taking a Y cross-section through the optimally 

filtered data, as shown in Fig. 1c, produces a very clear 

representation of the alternating electrode structure. So, by 

using an appropriate choice of filtering conditions (orientation, 

θ and frequency, f, for example from those shown in Fig. 1d), 

we acquire output data which do not contain the high-

frequency noise present in the raw image, with an electrode 

spacing and relative contrast that are extremely well-defined 

between large positive and negative values (normalised here, 

and in the rest of the manuscript, to ±1).



  

 

Fig 1. Directional texture classification using the Gabor filter. (a) A typical X-ray radiography frame captured at 2000 fps showing the electrode layers. The scale bar indicates 1 mm. 

(b) Images filtered using the Gabor kernel as shown in (d); the electrodes are filtered out when the filter (the sinusoidal harmonic function) is applied perpendicular to the electrodes 

(radially, θ = 0°), whereas the electrode structure is captured when filter is applied parallel to the electrode layers (axially, θ = 90°). (c) Y cross-section of the image filtered at θ = 90°, 

representing the output of the Gabor filter that is most sensitive to the structure of the electrodes. (d) Gabor kernels with a sinusoidal wavelet (3D projections) applied at varying 

angles (θ) and frequencies (f) on the inset image shown in (a). θ offers directional sensitivity to selectively filter ‘texture’ of the electrodes and the frequency (f) resolves the individual 

electrode layers (optimal at f = 0.10 pixels-1). The output signal is maximised for θ = 90° and f = 0.1, i.e., for the filter which best matches the orientation and spacing of the electrodes 

(orange inset). For filters that do not match with the electrodes, the output signal is reduced, and the texture is not well-represented (grey inset). For an appropriately filtered image, 

a Gabor signal of +1 represents the Cu/Al layers, –1 that of graphite/electrolyte and values around 0 represent the separator material or the Cu-anode interface/Al-cathode interface. 

Once we had chosen optimal Gabor filter parameters for a 

single frame of ‘SI_Video_1’, we applied the same process to 

each frame in the dataset and extracted the resulting cross-

sections for comparison. This allowed us to monitor the 

condition of the cell over time. Fig. 2a, 2d, and 2g show raw 

video frames of a nail gradually penetrating a cell and disrupting 

the electrodes. To the eye, there is a clear distinction between 

the nail and the electrodes, but to precisely define their relative 

arrangement is not trivial, particularly as the nail moves further 

into the cell and the electrodes deform. However, by filtering 

the images at θ = 0° (radially) and θ = 90° (axially), we were able 

to selectively identify the electrodes independently and filter 

out the nail. Fig. 2b, 2e, and 2h show the output frames filtered 

parallel to the nail. The signal is initially just noisy throughout 

the cell, i.e., the electrode texture is not picked out by the filter. 

When the nail enters, we observe the appearance of a 

corresponding texture perpendicular to the electrodes. 

Conversely, when the filter is aligned with the electrodes, as in 

Fig. 2c, 2f, and 2i, the signal is initially very pronounced. Its 

magnitude then decreases in accordance with the texture 

changing as the nail enters and causes a region of deformation 

to spread from its entry point (see ‘SI_Video_5.avi’ for an 

animated comparison of the Gabor filter ranging from θ = 0° to 

180°). The outcomes of these contrasting outputs of the filters 

are highlighted in the bottom row of Fig. 2, which shows single-

pixel-wide Y cross-sections from the centres of the filtered 

images. So, the Gabor signal cross-sections allow us to compare 

distinct features by tracking, over time, the textures that best 

describe them. As the texture changes, such as the electrodes 

losing structural integrity, the corresponding signal changes. 

 

 

 



  

 

Fig 2. Selective Gabor kernel filtering of electrode ‘texture’ from the dataset ‘SI_Video_1’. The top row shows video frames at different times during nail penetration. The second 

row shows the results of applying the Gabor filter at θ = 0° to the video frames. The inner core of the smart nail is detected, while the electrodes are not. The third row shows the 

results of applying the filter at θ = 90° to the video frames. Here, the electrode texture is captured. However, as the nail penetrates the electrodes, it is filtered out because the 

texture is no longer aligned with the filter. Plots in the bottom row show the normalised Gabor signals of the electrode structure at θ = 90° (black lines) and θ = 0° (orange lines). As 

electrodes deform due to the nail (time = 0.437 s), the Gabor signal decreases accordingly due to reducing alignment of image features with the applied filter. The electrode signal 

in the central region of frame, at time = 0.51 s, has disappeared as the electrodes have been entirely displaced by the nail. A Gabor map of the nail and the electrode layers in frame, 

at time = 0.437 s, filtered from θ = 0° to 180° has been shown in the supplementary video ‘SI_Video_5.avi’.

Tracking the nail velocity 

To expand the functionality of our Gabor filtering approach, we 

quantified the nail velocity using the video frames between t = 

0.2075 s and t = 0.5445 s from ‘SI_Video_1’ (where t = 0 s refers 

to the first frame of analysis of the dataset shown in Fig 2a). Fig. 

3a shows a raw video frame, with the ROI cropped for nail 

tracking shown in Fig. 3a(i). The corresponding Gabor-filtered 

frame is shown in Fig. 3a(ii), where filter parameters of θ = 140° 

and f = 0.04 pixels-1 have been used in order to align the filter 

with the edge of the conical tip of the nail. The nail’s conical tip 

is clearly highlighted by the filter, isolated from the rest of the 

ROI, and appears as a distinctive peak in the Y cross-section, as 

shown in Fig. 3b (blue circle marker) at a given frame. Applying 

the filter to each cropped video frame and finding the position 

of this peak (black markers) allowed us to calculate the 

displacement of the nail tip over time, as shown in Fig. 3c. Thus, 

we may follow its trajectory and determine its velocity (see 

supplementary video ‘SI_Video_6.avi’). The nail pierces the cell 

casing and moves with a rather constant velocity of around 2.22 

mm s-1, balanced by the mechanical resistance of the 

electrodes. The electrodes then tear suddenly (t ≈ 0.4645 s), 

allowing the nail to accelerate to a peak velocity of 113 mm s-1 

under continued application of its driving force. It is worth 

noting that this is the first instance in which quantification of 

such information characterising cell failure has been reported. 

The understanding of safety testing procedures may therefore 

be enhanced by applying our toolbox to a range of failure 

scenarios. Such insight is likely to lead to improved cell safety 

standards, and thus engineering solutions for the production of 

safer cells.
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Fig 3. Tracking the velocity of a nail puncturing a cell. (a) A video frame was cropped around the nail (i) and a filter at θ = 140° and f = 0.04 pixels-1 applied (ii), to select one-half of 

the conical tip of the nail in the dataset ‘SI_Video_1’. (b) Y cross-section of the normalised Gabor signal from (a) (ii), where the peak represents the position of the edge of the nail. 

The blue circle marker denotes the peak at the current frame, whereas the small black circle markers denote the peak positions in the preceding frames (i.e., the path taken by the 

nail edge from t = 0.2075 s). (c) Displacement profile of the nail determined from the relative positions of the tip-edge peak. The vertical dotted line denotes the timestamp of the 

frame shown in (a) and (b). A temporal map of the nail and its displacement determination are available in the supplementary video ‘SI_Video_6.avi’. A peak nail velocity of 113 mm 

s-1 was estimated at t = 0.4645 s, i.e., the point when the electrodes fractured and the nail accelerated, leading to the steepest change in displacement.

Temporal cross-correlation of the Gabor signal 

To quantify changes to the cell structure over time, we tracked 

the Gabor signal at a single X cross-section over time, as shown 

in the top plot of Fig. 4a. This location was chosen from the 

dataset shown in Fig. 2, close to the surface of the nail (x ≈ 4.7 

mm). Fig. 4a shows how the electrode structure in close 

proximity to the nail shifts over time before finally failing 

mechanically. We then compared the signal at time ti to the 

initial signal at time t0 using cross-correlation, i.e., we calculated 

the similarity between the initial signal and signals from each 

subsequent frame. This is shown in the bottom plot of Fig. 4a, 

wherein the radial information (Y cross-section) at the chosen X 

cross-section in each frame is collapsed into a single value 

representing the ‘similarity’ with the first frame. When the 

cross-correlation is large and positive, the texture at ti 

resembles the initial texture at t0 (Fig. 4b, t1). When the value is 

large and negative, the signal appears inverted (Fig. 4b, t3), i.e., 

the electrodes have shifted a distance equal to half the 

electrode thickness from its original position. When the value is 

close to zero, there is either a complete misalignment between 

the signals (Fig. 4b, t2) or the Gabor signal is low at time ti, 

corresponding to the absence of electrode texture in the images 

(Fig. 4b, t4). 
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Fig. 4. Temporal cross-correlation of the electrode texture from the dataset ‘SI_Video_1’. (a) Top plot – 2D map showing the temporal evolution of the normalised Gabor signal at a 

fixed X position, and bottom plot – corresponding normalised temporal cross-correlation, where the Gabor signals at time ti is cross-correlated with that of time t0 (undisturbed 

electrode structure). (b) Comparison of Gabor signals at different times, ti (orange lines), with that of t0 (black lines). When the electrode texture has a high similarity with the 

undisturbed texture (t0), the correlation value is large and positive (normalised to +1), e.g., at t1 where t1 – t0 = 5 ms. When the electrode is displaced and so appears inverted 

compared with the initial texture at t0, the correlation is large and negative (normalised to –1), e.g., at t3 where t3 – t0 = 126 ms. When there is little or no similarity between the 

textures at ti and t0, the correlation value is close or equal to zero. This happens in two scenarios – when the electrode texture is displaced slightly but not inverted (e.g., at t2 where 

t2 – t0 = 43.5 ms) or when the electrodes are completely delaminated or expelled from the field-of-view (e.g., at t4 where t4 – t0 = 620 ms).

Until around 0.47 s in Fig. 4a, we can see that the electrodes 

shift gradually and linearly due to the mechanical force from the 

nail. From the temporal cross-correlation, this corresponds to 

the electrodes moving out of alignment and then realigning 

with neighbouring layers, giving a total shift of around 1.5 

electrode layers (i.e., 1.5 full ‘oscillations’ are present in the 

shifting signal). When, at ti, the Gabor peak of an electrode layer 

aligns with the t0 position of a neighbouring layer, the cross-

correlation value is large and positive, corresponding to one 

complete ‘electrode shift’, seen as the second maxima in the 

cross-correlation plot. The temporal cross-correlation also 

accurately indicates the time at which the electrode structure 

completely failed (i.e., when the correlation becomes a flat line 

around zero) at t ≈ 0.461 s. Although these processes may be 

observed in the raw video, they are challenging to quantify by 

eye, especially when thousands of frames must be examined. 

Instead, our toolbox can direct the user to the time-point 

corresponding to the failure event, as well as quantify the 

preceding behaviour as a function of time. 

 

Estimation of electrode displacement 

We extended our temporal cross-correlation to multiple X 

positions, which enabled us to observe the displacement of the 

electrodes along the length of the cell over time. We initially 

tried to identify and track individual peaks in the Gabor signal, 

but this proved problematic due to the disorderly nature of the 

failure; as electrode layers degraded, their corresponding peaks 

were lost, while new peaks were introduced by the cell casing 

entering the ROI due to the force of the nail. These issues 

produced mismatches in the peak tracking, rendering such 

algorithms impractical. 

Instead, we estimated the electrode displacement using the 

temporal cross-correlation. This methodology was developed 

using ‘SI_Video_4’ as an ideal test case, involving compression 

of the electrodes by a ball (see Table 1), without subsequent 

mechanical failure or thermal runaway.  Fig. 5a shows the raw 

video frames at t0 and ti = 0.5 s, where the electrodes 

demonstrate a clear, symmetric shifting and bending under the 

incident ball. Fig. 5b shows three temporal cross-correlations at 

different X positions. At x2, corresponding to the centre of the 

ball, more electrode shifts (full oscillations in the cross-

correlation) are present in comparison to x1 and x3, at the edges 

of the ball. We estimated the electrode displacement by 

multiplying the number of shifts by the distance between 

electrodes, 66 ± 17 µm, which we calculated from the average 

distance between adjacent Gabor peaks in the ‘pristine’ 

structure, i.e., at t0.
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Fig. 5. Estimation of electrode displacement. (a) X-ray frames of a ball compressing the cell at t = 0 s (top) and 0.5 s (bottom) from dataset ‘SI_Video_4’. (b) The normalised temporal 

cross-correlation signals of the electrode structure at three positions, x
1
, x

2
, and x

3
 (vertical dotted lines in (a)), where each positive peak indicates one complete shift of the electrodes 

into alignment with the initial position of their neighbouring electrode layer. At t = 0.5 s, the electrodes at x
2
 have traversed 6.73 ‘electrode shifts’ from their original position. From 

the Gabor signal profiles at t = 0 s, the distance between electrode layers was estimated to be 66 ± 17 µm, so at t = 0.5 s, the electrode structure at x
2
 is displaced by an estimated 

444 ± 115 µm from its original position. (c) Electrode displacement at various X positions for the dataset ‘SI_Video_4’. (d) Electrode displacement at various X positions for the nail 

penetration dataset ‘SI_Video_1’, where the distance between electrode layers was estimated to be 111 ± 10 µm. Analysis was cropped at t = 0.6 s, when the electrode layers 

fractured. At x = 6.7 mm (near the surface of the nail), the electrode displacement is estimated to be 221 ± 21 µm, above which the Gabor signals were lost. Error bars denote ± 1 

standard deviation in the distance between electrode layers. 

Fig. 5c, shows the resulting electrode displacement across the 

video frame at six time-points between t0 and ti = 0.5 s. Directly 

below the centre of the ball, the displacement was the greatest, 

around 0.44 mm at 0.5 s. This drops off symmetrically in both x 

directions, to a minimum of around 0.08 mm at a distance of 

around 3.5 mm from the centre of the ball. We also note, from 

the broader colour bands in the centre of the plot (around x = 

3.5 mm), that the displacement had a larger acceleration 

directly below the ball. 

We applied a similar approach to the nail penetration dataset 

‘SI_Video_1’. Fig. 5d shows the displacement of the electrodes, 

wherein the nail (radius = 2 mm) is incident at the right side of 

the ROI (x = 6.7 mm). Here, the entire structure shifts 

homogeneously by around 0.1 mm over 0.36 s, before the 

displacement at the nail location becomes much more 

pronounced, and then stops at around 0.22 mm, when the 

Gabor signals were lost. This is an interesting contrast with the 

ball compression, which instead produced a continuous 

bending. The initial homogenous shifting of the electrodes in 

the nail penetration dataset resulted from the overall 

displacement of the cell as the nail made contact, followed by 

displacement of the electrodes as the nail pierced through. We 

note that this is in the plastic flow regime, where the volumetric 

stress withstood by the electrodes is a property of their tensile 

strength and Poisson ratio, as discussed by Wierzbicki and 

Sahraei, 2013.43 Subsequently, as discussed above, the 

mechanical resistance of the electrodes suddenly yields as their 

structure fractures, leading to an abrupt acceleration of the nail 

(to a maximum of 113 mm s-1 as shown in Fig. 3c). 

 

Constructing spatiotemporal failure maps 

We expanded our analysis by mapping the evolution of the cell 

structure in the ROI for the whole video in order to visualise the 

entire failure on a single spatiotemporal map. Fig. 6 shows the 

progression from cross-correlation information to mapping, 

using the dataset ‘SI_Video_1’. Fig. 6a shows the temporal 

cross-correlation plots at four X positions. Separately, these do 

not provide information on the failure propagation in the axial 

direction. However, to overcome this, we may plot the cross-

correlation at every X cross-section as a surface plot to yield a 
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spatiotemporal map, as shown in Fig. 6b. Such a map may be 

directly compared to the raw video frames, with time passing 

(positive vertical direction) as events develop across the X axis, 

(which is aligned with the width of the frames analysed). It is 

important to note that representing the data in this way 

captures the y information at each t as a single cross-correlation 

value. Regions of high similarity to the initial electrode texture 

appear red, and regions of inverted alignment appear blue. 

Regions of complete misalignment or disappearance of the 

texture from the ROI are intermediate and appear green. The 

map may then be interpreted as follows: 

 

i. Inspect the map for distinct features, such as continuous 

regions of a consistent colour (e.g., Event (1) in Fig. 6b), or 

abrupt axial discontinuities (e.g., Event (4) in Fig. 6b). 

ii. Continuous regions of colour characterise the behaviour of 

the electrodes across the length of the cell. Linear or non-

linear changes to such regions of a colour indicate changes 

to the electrode structure propagating across the X cross-

section over time. For example, the dark blue region near 

the bottom of Fig. 6b suggests that the electrodes are 

becoming misaligned with their initial structure, and that it 

propagates in the negative X direction, where the origin is 

the top left of the frames (x = 0, y = 0) and the nail enters at 

the right-edge of the ROI. On the other hand, areas of a 

constant colour indicate that the electrode structure is not 

changing. For example, the green region at the top right of 

Fig. 6b suggests the electrode structure has disappeared and 

no further change takes place (this corresponds to the 

presence of the nail in the cell once it has stopped moving). 

iii. Axial discontinuities characterise events that take place 

simultaneously across the distance corresponding to the 

width of the feature in X; at a single point in time, the colour 

changes homogeneously. For example, if the electrodes in a 

region delaminate altogether, the map would show an 

abrupt transition to green, as we observe at around 0.42 s 

in Fig. 6b. 

 

Using the map in Fig. 6b, we have identified four different 

events occurring in the electrode structure. These events 

overlap one another in time; a timeline of raw frames is shown 

in Fig. 6c. Firstly, the map highlights the point of entry of the nail 

(right edge of the cropped ROI, x ≈ 6.7 mm) at t ≈ 0.04 s, where 

the electrodes shift from the right edge to the left edge. Event 

(1), a region of inverted electrode alignment, represents the 

rate at which the nail pierces the cell casing and displaces the 

electrodes, although they have not failed structurally at this 

point. Event (2) highlights the onset of failure, where the top 3 

– 4 electrode layers are sheared by the nail, with the rest of the 

electrodes continuing to be displaced. This combination of 

failure-onset and electrode-displacement propagates non-

linearly between t = 0.19 s and t = 0.42 s. This also indicates the 

onset of Joule heating originating from the sheared top 3 – 4 

electrode layers, marking the increase in the internal cell 

temperature as reported by Finegan et al., 2017.6 The region of 

inverted cross-correlation marked as Event (3) represents the 

point at which the electrodes fail structurally by fracturing, 

leading to localised delamination, shown as Event (4). This 

occurs very rapidly; the colour transition in the mapping 

appears horizontal, indicating that the delamination occurred 

almost homogeneously over 4 mm along the X cross-section. 

This indicates the need to analyse the Gabor signals in the radial 

direction (as discussed in the sections below). 

Fig. 6 demonstrates the strength of spatiotemporal mapping of 

X-ray radiography data. We can now assess an entire dataset of 

thousands of video frames, and thus an entire failure 

experiment with multiple sub-events, in a single picture. From 

this, we can observe, directly, how each process propagates 

along the cell, without needing to scroll through the video 

manually, further validating our analytical technique. The 

mapping also reveals and resolves processes that may be 

missed by manual interrogation, such as the distinction 

between the electrodes shifting, as in Event (1), and the onset 

of failure, as in Event (2) in Fig. 6b. 

We produced spatiotemporal maps using multiple datasets of 

nail penetration, as well as the ball compression test, to unravel 

the events occurring in each experiment (Fig. 7). The maps are 

interpreted as follows: 

 
(a) Radial nail penetration  

Fig. 7a and 7b show the spatiotemporal map of the datasets 

‘SI_Video_1’ (also shown in Fig. 6b) and ‘SI_Video_2’, 

respectively, where the nail enters the cell in the radial 

direction. It has been previously reported that the tip of the nail 

can reach 820 °C under these conditions,6 with such tests 

expected to result in hard-shorting that gradually relaxes due to 

the large surface area of the nail. Here, we chose the ROI such 

that the nail centre was at the right edge in Fig. 7a (‘SI_Video_1’) 

and at the left edge in Fig. 7b (‘SI_Video_2’). The spatiotemporal 

maps illustrate similar electrode displacements processes. In 

Fig. 7b the nail enters the ROI at t ≈ 0.1 s. The gradual shift in 

the electrodes, similar to Event (1) in Fig. 6b-6c (‘SI_Video_1’), 

is apparent from the regions of transition from yellow to green 

between 0.1 s and 0.17 s. This has not previously been resolved 

quantitatively in the literature. After the nail penetrates the cell 

casing, the top electrode layers are pierced, and the onset of 

failure is captured between t = 0.17 s and 0.38 s. This non-linear 

region is similar to Events (2) and (3) in Fig. 6b to 6c 

(‘SI_Video_1’), potentially due to the combined effect of failure 

of the top 2 – 3 electrode layers and the displacement of the 

rest of the layers. It has been reported that the onset of this 

hard-shorting effect is marked by the increase in internal 

temperature due to Joule heating,6 which has been captured by 

our technique as the rapid non-linear trends in Fig. 7a and 7b – 

Events (2) and (3). At t = 0.38 s in Fig. 7b, there is a horizontal 

shift in cross-correlation from x = 1 mm to the right edge of the 

frame, representing a rapid failure of the electrode structure 

(fracture of electrode layers). This dataset, however, did not 

exhibit localised delamination, in contrast to our observation of 

Event (4) in the dataset Fig. 6b to 6c. 
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Fig. 6.  Various events captured by the spatiotemporal cross-correlation map in the dataset ‘SI_Video_1’. (a) Normalised cross-correlation plots at four X cross-sections, x
1-4

 (vertical 

dotted lines in (b) showing varying effects experienced by the electrodes due to the nail. (b) The 2D spatiotemporal map plotted by calculating the normalised cross-correlation 

values at every X position (shown in Fig. 7a). (c) Timeline of frames capturing various events picked out from the spatiotemporal map, namely: (1) Nail pierces cell casing and starts 

pushing the electrodes; (2) The top 3 – 4 electrode layers are mechanically sheared with the onset of failure propagation, while the rest of the electrode structure continue to be 

displaced. The apparent non-linearity is potentially due to the combination of the mechanical force from the nail and the failure propagation of the top 3 – 4 electrode layers from 

the nail (right edge) towards the left edge of the frames; (3) Nail fully pierces the electrode layers, which completely fracture, leading to the localised delamination (4) of the bottom 

4 – 5 electrode layers, captured between x = 0 and 4 mm, and t = 0.45 and 0.62 s. 

(b) Axial nail penetration: 

Fig. 7c shows the spatiotemporal map for the dataset 

‘SI_Video_3’ in which the nail enters in the axial direction, 

piercing the bottom of the cell. In previous work it was shown 

that this orientation leads to the highest internal cell 

temperature during testing (>900 °C), and indeed the cell fails 

similarly to that of a thermal abuse condition.6 This dataset 

demonstrates the functionality of our analytical approach, 

irrespective of the direction of incidence of mechanical objects 

with respect to the electrode structure. Here, the red area in 

the bottom left corresponds to the bottom of the cell (x = 0 mm 

to 2.3 mm), with high similarity due to the negligible electrode 

shifting, as the nail pierces only the cell casing until around 0.13 

s. The blue area between x = 2.5 mm and 3.2 mm is outside the 

cell (and the cross-correlation is appropriately close to 0 as the 

Gabor signals are ≈ 0). The entry of the nail causes a gradual 

shift of the electrodes, so the correlation values reduce, shown 

as a transition from red to green between 0.13 s and 0.34 s. This 

is in agreement with the observations of Finegan et al., 20176 

that there was no electrode fracturing due to the minimal 

tensile strain on the electrode with the parallel propagation of 

the nail.   

At around 0.34 s, the decrease in cross-correlation speeds up, 

with a transition from green to blue as the nail begins pushing 

the electrodes. A sudden shift (seen from the horizontal dark 

blue line) indicates the mandrel detaching from the bottom of 

the cell, though thermal runaway has still not initiated. This is 

followed by another region of decreasing cross-correlation 

close to 0.39 s, where the onset of thermal runaway has been 

captured with the mandrel starting to disintegrate. It is worth 

noting that the slope of this region represents the rate of 

propagation of thermal runaway for this dataset between 0.39 
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s and 0.8 s. Subsequently, there was a release of gas into the 

base of the cell, leading to the bulging of the base plate that 

then escaped through the vent. 

 
(c) Radial ball compression: 

For the ball compression test in Fig. 7d, we observe a clear 

symmetrical electrode displacement centred on the incident 

location of the ball, x = 3.5 mm. There is a widening pattern of 

alternating positive (green) and negative (blue) correlation with 

time. This characterises the shifting of the electrodes under the 

ball, directly proportional to the distance from the centre of the 

ball, as previously discussed in Fig. 5a to 5c. It is interesting to 

note that this testing condition did not result in thermal 

runaway, probably due to the relatively large surface area of the 

ball that distributed the tensile strain axially along the cell. The 

experimental condition may also not have reached the 

maximum load-bearing capacity of the cell, as discussed by 

Wierzbicki and Sahraei, 2013.43    

 

Fig. 7. 2D spatiotemporal cross-correlation mapping as a quantitative technique to track failure propagation. (a) Spatiotemporal map for the same dataset as in Fig. 6b, that of 

‘SI_Video_1’. The map shows the nail entering at the right edge (x = 6.7 mm), causing a more pronounced displacement of the electrodes (Fig. 5d). The map also shows multiple 

events that are distinct from the electrode displacement, such as failure propagation and localised delamination. (b) Spatiotemporal map of dataset ‘SI_Video_2’, where the nail 

enters the left edge of the analysed X-ray frames (x = 0 mm) at t ≈ 0.1 s. (c) Spatiotemporal map of dataset ‘SI_Video_3’, where the nail traverses in the axial direction, piercing the 

bottom of the cell. The electrode structure is located between x = 0 and ≈ 2 mm. At t = 0.34 s, the core (mandrel) detaches from the bottom of the cell as the nail pierces through 

the cell, displacing the electrodes. (d) Spatiotemporal map of the dataset ‘SI_Video_4’, where a ball compresses the electrode structure. The map indicates that the centre of the 

ball, x ≈ 3.45 mm, starts displacing the electrodes from t ≈ 0.04 s, where the extent of displacement reduces radially due to the circular profile of the ball. 

 

Comparing the three nail penetration and ball compression 

datasets, we observed reproducible spatiotemporal cross-

correlation patterns (especially in the radial direction), which 

may be distinguished as electrode shifting, failure propagation, 

and rapid delamination, among others. This methodology 

emphasises the distinct effects that mechanical objects, such as 

a nail, have on each region of a cell, along with the axial intra-

cell effects leading to the propagation of failure within the 

electrodes. This toolbox, therefore, has the potential to extract 

and elucidate multiple failure mechanisms that may initiate 

under abuse testing. 

 

Quantifying the kinetics of failure 

Qualitative assessment of failure has been well-documented in 

literature and has advised several preventative and mitigative 

safety considerations for the use of lithium-ion cells. We have 

demonstrated that, via spatiotemporal mapping of the cross-

correlation values, the user obtains a greatly enhanced map of 

events to produce a more robust understanding of failure. In 

this section, we realise the true potential of such maps by 

tracing the trends of multiple events identified in Fig. 6 and Fig. 
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7 for the three nail penetration test conditions described in 

Table 1, to advance our mechanistic understanding of the onset 

of cell failure. From the spatiotemporal maps, we extracted the 

(x, t) coordinates of each distinctive event described by either a 

negative cross-correlation region, a positive cross-correlation 

region, or a sloping region (Fig. 8). We performed third order 

polynomial regression, equivalent to the Newtonian equations 

of motion, on these coordinates, to extract the initial jerk (3rd 

order coefficient), initial acceleration (2nd order coefficient), 

initial velocity (1st order coefficient) and origin of each event (x 

intercept). Since the propagation of failure occurs due to the 

combination of the force imparted by the nail and the initiation 

of exothermic thermal runaway,1,44–48 to capture the changing 

forces/stresses we assume that the rate of propagation of 

failure can be characterised under a time-dependent 

acceleration condition, such that: 

𝑗(𝑡) =  
𝑑𝑎

𝑑𝑡
=  𝑗0 (1) 

where, 𝑎 is the acceleration with time, 𝑡, and the rate of change 

of acceleration is jerk, 𝑗, assumed to be constant. Further, this 

can be extended to a well-known form: 

𝑑𝑎

𝑑𝑡
=  

𝑑2𝑣

𝑑𝑡2
=

𝑑3𝑥

𝑑𝑡3
 (2) 

where 𝑣 is the velocity and 𝑥 is the position. In polynomial 

terms, we can therefore express the change in position over 

time as: 

𝑥(𝑡) =  𝑥0 + 𝑣0𝑡 + 𝑎0

𝑡2

2
+ 𝑗0

𝑡3

6
 (3) 

change in velocity over time as: 

𝑣(𝑡) =  𝑣0 + 𝑎0𝑡 + 𝑗0

𝑡2

2
 (4) 

and change in acceleration over time as: 

𝑎(𝑡) =  𝑎0 + 𝑗0𝑡 (5) 

We used three methods to determine the coordinates of each 

trend, depending on whether we were tracing peaks or valleys. 

The 2D maps in Fig. 8a – 8c are the spatiotemporal maps that 

have been transposed to display time in the horizontal axis and 

X position on the vertical axis. Our primary approach was to find 

the peaks (or troughs) of the cross-correlations along x for each 

point in time. Alternatively, we found the peaks (or troughs) of 

the correlations along time for each X position. This resulted in 

multiple X positions for a given time, where multiple 𝑥 values at 

each 𝑡 were averaged and the standard deviation, 𝜎𝑒𝑥𝑝 , in 𝑥 was 

applied as experimental uncertainty of the data. Our final 

method, in the case that we needed to trace a gradual shift in 

the correlation values as opposed to a sudden shift (used for 

trend (iv) in Fig. 8), was to threshold the colour scale to the 

correlation values associated with the trend. This isolated a 2D 

shape containing the trend data, from which we could find the 

mid-point at each X position. Multiple 𝑥 values at each 𝑡 were 

also averaged and the experimental uncertainty, 𝜎𝑒𝑥𝑝 , in 𝑥 

estimated, as in the case above. The bottom row of Fig. 8 shows 

the resulting data points with the 3rd order polynomial fits. The 

coefficients of the fits are shown in Table 2.  

A non-linear least-squares fitting method was used to fit Eq. (3) 

to the averaged 𝑥 data. The fitting coefficients were constrained 

such that 𝑣0 is positive, i.e., we define that the events progress 

in the positive 𝑥 direction due to the expected unidirectional 

movement from the nail surface propagating away from the 

nail. 𝑥0 was constrained 0 ± 2 mm, i.e., events begin within the 

region defined by the diameter of the nail. For each fit, the 

model uncertainty (± 1 standard deviation) was calculated from 

the square root of the diagonal of the covariance matrix.  The 

corresponding R2 of the fits was also estimated.  

Trends (i) and (iv) represent the shifting of the electrodes prior 

to structural failure for nail penetration in the radial direction. 

Trend (i) has 𝑗0 = 0, i.e., there is no jerk present and the 

acceleration is constant, whereas trend (iv) has an initial jerk of 

2570 mm s-3. Trend (i) has an initial velocity of 91.7 mm s-1 but 

decelerates at 578 mm s-2. We note that this deceleration term 

has quite a large error of ± 29 mm s-2, which might result from 

the noise in the data. Conversely, trend (iv) has an initial velocity 

of zero, but accelerates rapidly at 515 mm s-2 resulting in 

𝑣(𝑡0.31) ≈ 250 mm s-1 at t = 0.31 s. This highlights the intrinsic 

variation between the mechanical processes occurring during 

nail penetration tests carried under the same conditions. 

Trends (ii), (iii) and (v) correspond to the combined effects of 

failure propagation and electrode shifting. There are also 

distinct differences in the acceleration and initial velocity of 

these processes. Trends (ii) and (iii) have accelerations of 108 

mm s-2 and -282 mm s-2, and initial velocities of 22.7 mm s-1 and 

24.6 mm s-1, respectively. They accelerate to a velocity of 

𝑣(𝑡0.42) ≈ 62 mm s-1 and 𝑣(𝑡0.45) ≈ 135 mm s-1. Trend (v) 

appears to be much slower, with an initial velocity of 9.5 mm s-

1 decelerating at -34.5 mm s-2. This again emphasises the broad 

range of cell failure kinetics that result from nail penetration 

tests, although inspection of the videos might lead one to 

conclude that the processes leading up to full electrode 

destruction are quite similar. 

Trend (iii) has a large initial jerk of 3210 mm s-3, although (ii) and 

(v) have 𝑗0 = 0. Trend (iii) has a high jerk potentially due to the 

rapid delamination of the bottom 3-4 electrode layers captured 

in the video, leading to a sudden inflexion in the x data. We note 

that fitting higher order polynomials is sensitive to input data, 

which in our case are peak traces from spatiotemporal maps 

extracted from legacy data. This may be overcome with 

acquisition of higher resolution images at higher frame rates, 

improving the quality of the peak traces. 

We also observe abrupt transitions at 0.42 s in Fig. 8a and 0.37 

s in Fig. 8b as the cells fail across their length, which effectively 

ends trends (iii) and (v). From the spatiotemporal maps the 

shape of the trends appears to diverge at these points. This end 

point corresponds to the nail reaching the middle of the cell as 

the electrodes fracture, so the spreading in the colour map 

likely indicates a rapid final shift of the electrodes away from 

the nail before they are destroyed. 

Trends (vi) and (vii) characterise the electrode response for the 

case in which the nail entered the cell in the axial direction, 

causing reduced tensile strain on the electrodes in comparison 
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to entering in the radial direction. 𝑎0 and 𝑗0 are relatively low in 

comparison to those for the nail entering in the radial direction. 

Trend (vi) has 𝑗0 = 0 mm s-3, while trend (vii) has 𝑗0 = 872 mm 

s-3. They have accelerations of 4.9 mm s-2 and -92.4 mm s-2, and 

initial velocities of 2.5 mm s-1 and 7.5 mm s-1, respectively. We 

also do not observe a near-homogeneous electrode shift across 

the cell. We suspect that this contrast in behaviours is due to 

the difference in mechanical resistance of the electrode layers 

in each case. It is interesting to compare this behaviour to the 

ball compression in ‘SI_Video_4’, wherein the electrodes do not 

fracture and there is no thermal runaway. Likewise, axial 

penetration of the nail does not stress the electrodes into 

fracturing, thus it is likely that when thermal runaway occurs it 

results from internal shorting caused by the nail. 

 

 

 

 

 

 

Fig. 8. Quantification of the kinetics of events in three nail penetration datasets. The 2D spatiotemporal maps have been transposed such that time is on the horizontal axis and X 

cross-section is on the vertical axis. (a) The regions of low and high cross-correlation values of three events (described in Fig. 6) in the dataset ‘SI_Video_1’, traced using a simple yet 

robust maxima/minima finding algorithm and their corresponding 3rd order polynomial fits shown in the bottom panel (trends i – iii). (b) Two events relating to electrode shifting 

and propagation of failure in the dataset ‘SI_Video_2’, identified and traced. The bottom panel shows the 3rd order polynomial fits of these traces (trends iv, v). (c) The rates of 

electrode shifting in the dataset ‘SI_Video_3’, where the nail traverses along the axial direction of the electrodes, have been quantified as shown in the bottom panel (trends vi, vii). 

The results of the 3rd order polynomial fitting, corresponding to Newton’s equations of motion, are shown in Table 2. Note that (vi) is composed of two smaller sections, due to 

difficulty in reliable peak-tracing.

Table 2: Results from the 3rd order polynomial fits of the seven trends shown in Fig. 8 from three different nail penetration datasets. The 3rd order polynomial was of the form 𝑥(𝑡) =

 𝑥0 + 𝑣0𝑡 + 𝑎0
𝑡2

2
+ 𝑗0

𝑡3

6
, where 𝑣0 is the initial velocity term, 𝑎0 is the initial acceleration, 𝑗0 is the jerk and 𝑥0 is the x-intercept representing the origin of the event. *The type of 

the event refers to the ones described in Fig. 6. Event (1) denotes electrode displacement before onset of failure, Events (2-3) denote the onset of failure propagation and further 

electrode displacement leading to fracture or delamination.

Dataset SI_Video_1 SI_Video_2 SI_Video_3 

Trends i ii iii iv v vi vii 

Type of event* (1) (2-3) (2-3) (1) (2-3) (1) (1) 

Jerk 

[mm s-3] 
0.0 0.0 

3209.2 ± 

102.8 

2572.43 ± 

23.25 
0.0 0.0 871.69 ± 4.74 

Acceleration 

[mm s-2] 
-578.0 ± 29.3 

108.43 ± 

10.01 

-281.48 ± 

8.31 
514.46 ± 1.41 -34.51 ± 0.71 4.91 ± 0.17 -92.39 ± 0.45 

Initial velocity 

[mm s-1] 
91.66 ± 0.53 22.72 ± 0.38 24.58 ± 0.28 0.0 ± 0.04 9.46 ± 0.03 2.49 ± 0.01 7.49 ± 0.02 

Origin of event along x 

[mm] 
0.13 ± 0.01 0.64 ± 0.01 0.64 ± 0.01 0.61 ± 0.01 0.07 ± 0.01 1.75 ± 0.01 1.28 ± 0.01 

R2 0.82 0.98 0.93 0.98 0.94 0.99 0.99 
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From our quantification of the failure kinetics, we note that the 

propagation of structural damage (i.e., at the onset of 

catastrophic failure or uncontrolled thermal runaway) is slower 

than previously believed. Ignoring the abrupt and total cell 

failure, and if a certain specific trend propagation were to travel 

the entire length of a cell (in our case 65 mm), we may 

extrapolate the model to estimate the velocities the failures 

would accelerate to. In the case of trend (iv), the electrodes 

would be displaced at a maximum velocity of 396 mm s-1 (𝑣0 =

0 mm s-1) by t = 0.578 s, traversing the entire length of an 18650 

cell, whereas, a failure trend involving a delamination event, 

e.g., trend (iii), would traverse the entire length of an 18650 cell 

by t = 0.7 s, reaching a maximum velocity of 163 mm s-1 (𝑣0 =

24.6 mm s-1). This reinforces the view previously put forward by 

the authors that, counter-intuitively, failure due to nail 

penetration may not be as severe a mode of failure/abuse as 

has been reported in the literature. 

 

Tracking the radial propagation of failure processes 

So far, we have quantified the propagation of failure and the 

intra-cell effects in the axial direction. However, it is clear from 

the spatiotemporal maps that some events happen abruptly, 

homogeneously across the X cross-section. In these cases, we 

cannot track the shape of a cross-correlation trend because it 

describes a process occurring in the radial direction; the 

transformation from Gabor signals to cross-correlation 

collapses the information in the y direction into single values at 

each x position. Thus, events that appear instantaneous on the 

(x, t) cross-correlation maps can only be quantified by accessing 

the y coordinate system. 

Fig. 9a shows the temporal Gabor signal from the ‘SI_Video_1’ 

dataset (nail travelling in the radial direction), 3.7 mm from the 

nail surface (x ≈ 1 mm); similar to that of Fig. 4a which 

represents the temporal map at the nail surface (x ≈ 4.7 mm).  

Until around 0.5 s, the electrode structure remains intact with 

just a gradual shift due to the nail. However, there is then a 

sudden shift and loss in magnitude in the lower electrode layers, 

from y = 2.75 mm to 6 mm, which indicates the localised 

delamination captured in this dataset (Fig. 6b, Event (4)). In 

order to extract the kinetics of this event, which was very abrupt 

on the (x, t) spatiotemporal maps, we tracked the net shift of 

each Gabor peak in the temporal Gabor map (along the y axis). 

Fig. 9b shows data manually cropped from Fig. 9a, 

corresponding to the delamination. This region appears 

disordered, with electrodes shifting in the positive y direction at 

different rates. In order to characterise how this failure 

propagates, we studied the distribution of electrode-shift 

velocities by capitalising on the power of Gabor filter banks 

again. We applied a further Gabor filter bank (θ = 100° to 160°) 

on the temporal Gabor signal data, with a fixed frequency 

equivalent to the electrode width. For each orientation we 

obtained an output image highlighting the most prominent 

trajectory taken by each electrode over time (see 

‘SI_Video_7.avi’). Fig. 9b shows the segments picked out at 

three angles, where we can observe a range of trajectories 

taken by each electrode layer. However, the filter produced 

some signal even for features that are slightly misaligned with 

the orientation. The output signals were therefore binarized in 

order to convert the trajectories into single-pixel-wide skeletal 

lines, on which a linear regression was performed to extract the 

velocities. By summing all the pixels of the Gabor-filtered 

trajectory images for every angle, we also obtain a signal 

intensity (Fig. 9c, top panel), wherein a higher signal indicates a 

greater presence of structure aligned with the filter. For a range 

of velocities of the electrodes per orientation, as shown in Fig. 

9c bottom panel, we may use the signal intensity to guide the 

user to obtain the velocity distribution for angles that produce 

high signal intensities. Fig. 9c shows the signal intensity plot and 

associated velocity distribution. Interestingly, there were two 

distinct peaks in the intensity, at θ = 110° and 155°. At θ = 100° 

we captured the top electrode layers at the onset of 

delamination with a velocity of around 4 mm s-1, while at θ = 

162.5° we captured the bottom-most electrodes that 

delaminated the fastest, at a velocity of 140 mms-1 leading on 

to delamination. Above θ = 162.5°, the extracted Gabor lines 

were that of the noise from the filter and not representative of 

the temporal electrode shifts. The orientation at θ = 130° was 

representative of the delamination velocities of most of the 

electrodes in the cropped ROI, with an average velocity of 13 

mm s-1. We suggest that this delamination velocity acts as a 

point of transition between the electrode shifting due to the 

force from the nail, and a fully uncontrolled thermal runaway 

process. 

Conclusions 

We have demonstrated for the first time that the texture-

sensitivity of Gabor filtering is very well-suited to quantifying X-

ray radiography data of lithium-ion cell failure tests. We have 

built an assistive toolbox for the rapid and reproducible analysis 

of both legacy X-ray synchrotron radiography data and future 

data, where the user is guided to the exact location and time-

point at which interesting events occur. Using the directional 

sensitivity of the Gabor filter, we were able to not only 

selectively filter the electrodes, but also select and study other 

objects, such as estimating the penetration velocity of a nail. 

Further, upon estimating the displacement profiles of 

electrodes before failure, we have established a platform that 

extensively analyses and resolves multiple failure events 

occurring concurrently. These events have been 

spatiotemporally mapped on a quantitative scale, where an 

entire failure testing dataset has been condensed and projected 

onto a single 2D map with distinguishable events. 

The true novelty of this analytical technique is the amount of 

kinetic information that may now be extracted, relating to the 

events propagating axially and radially in these datasets. 

Through proof-of-concept validation of our method, we 

observed that the nail penetration event occurs more slowly 

than previously supposed, indicating that the slower onset of 

electrode failure might render them less dangerous than 
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instantaneous short-circuiting events or thermally induced 

degradation events. 

With an automated, user-friendly toolbox that helps to reduce 

human-induced error, several X-ray radiography datasets are 

currently being processed to elucidate the mechanisms and 

rates of failure induced by a range of thermal, electrical and 

mechanical sources. It is worth noting that unique events such 

as mechanical delamination, gas generation and gas-induced 

electrode shifting can now be robustly identified and their 

propagation rates quantified. The toolbox can be applied to 

existing data available from databanks, such as the one hosted 

by the National Renewable Energy Laboratory, which can help 

standardise abuse testing procedures. As a first step, the 

toolbox directly outputs empirical data describing the 

mechanics of failure, presenting an opportunity for these data 

to be applied to mechanical as well as thermal runaway multi-

physics models of Li-ion batteries. 

Furthermore, this toolbox will be powerful in helping to couple 

mechanical models with electrochemical thermal runaway 

models, when used in conjunction with other electrochemical 

techniques, such as fractional thermal runaway calorimetry 

(FTRC). Despite the lower sampling resolution of FTRC 

compared to high-speed imaging, with advances in calorimetry 

measurements, it may be possible for high-resolution FTRC data 

to be used in conjunction with our toolbox to advance 

understanding of battery degradation. 

 

Fig. 9. Estimation of rate of failure/delamination in the radial direction from the dataset ‘SI_Video_1’. (a) 2D temporal Gabor map showing the evolution of the electrode structure 

over time (normalised) ≈ 3.7 mm away from the nail surface (x ≈ 1 mm), similar to that of Fig. 4a (at the nail surface). The point of delamination has been shown in the inset box, 

which was cropped to extract radial propagation velocities, as shown in (b). (b) The radial shift in electrodes over time was extracted by tracing the Gabor signals over a range of 

Gabor angles 100° – 165° (see ‘SI_Video_7.avi’). The most prominent Gabor traces were skeletonised to single-pixel wide lines that denote the rate of delamination. (c) The 

delamination velocity of each electrode layer was calculated by performing linear regression on the skeletonised lines at every Gabor angle and the distribution plotted. 

Conflicts of interest 

There are no conflicts to declare.  

Acknowledgements 

This work was supported by the Engineering and Physical 

Sciences Research Council (EP/R020973/1); and the Faraday 

Institution (Faraday.ac.uk; EP/S003053/1, grant numbers 

FIRG024 and FIRG028). P. R. S. acknowledges funding from the 

Royal Academy of Engineering (CiET1718\59). This work was 

also supported by the National Measurement System of the UK 

Department for Business, Energy & Industrial Strategy; and was 

authored in part by the National Renewable Energy Laboratory, 

operated by Alliance for Sustainable Energy, LLC, for the U.S. 

Department of Energy (DOE) under Contract No. DE-AC36-

08GO28308. The views expressed in the article do not 

necessarily represent the views of the DOE or the U.S. 

Government. The failure testing experiments were performed 

in a controlled environment at ID19 at the ESRF (Grenoble, 

France). 



ARTICLE  

16 |  

References 

1 D. Doughty and E. P. Roth, Electrochem. Soc. Interface, 2012, 21, 

37–44. 

2 S. R. Golroudbary, D. Calisaya-Azpilcueta and A. Kraslawski, 

Procedia CIRP, 2019, 80, 316–321. 

3 A. R. Baird, E. J. Archibald, K. C. Marr and O. A. Ezekoye, J. Power 

Sources, 2020, 446, 227257. 

4 D. P. Finegan, E. Darcy, M. Keyser, B. Tjaden, T. M. M. Heenan, R. 

Jervis, J. J. Bailey, R. Malik, N. T. Vo, O. V. Magdysyuk, R. Atwood, 

M. Drakopoulos, M. DiMichiel, A. Rack, G. Hinds, D. J. L. Brett and 

P. R. Shearing, Energy Environ. Sci., 2017, 10, 1377–1388. 

5 D. P. Finegan, M. Scheel, J. B. Robinson, B. Tjaden, I. Hunt, T. J. 

Mason, J. Millichamp, M. Di Michiel, G. J. Offer, G. Hinds, D. J. L. 

Brett and P. R. Shearing, Nat. Commun., 2015, 6, 6924. 

6 D. P. Finegan, B. Tjaden, T. M. M. Heenan, R. Jervis, M. Di Michiel, 

A. Rack, G. Hinds, D. J. L. Brett and P. R. Shearing, J. Electrochem. 

Soc., 2017, 164, A3285–A3291. 

7 M. Onuki, S. Kinoshita, Y. Sakata, M. Yanagidate, Y. Otake, M. Ue 

and M. Deguchi, J. Electrochem. Soc., 2008, 155, A794. 

8 J. Xu, H. R. Thomas, R. W. Francis, K. R. Lum, J. Wang and B. Liang, 

J. Power Sources, 2008, 177, 512–527. 

9 T. Kawamura, A. Kimura, M. Egashira, S. Okada and J. I. Yamaki, 

J. Power Sources, 2002, 104, 260–264. 

10 D. P. Finegan, E. Darcy, M. Keyser, B. Tjaden, T. M. M. Heenan, R. 

Jervis, J. J. Bailey, N. T. Vo, O. V. Magdysyuk, M. Drakopoulos, M. 

Di Michiel, A. Rack, G. Hinds, D. J. L. Brett and P. R. Shearing, Adv. 

Sci., , DOI:10.1002/advs.201700369. 

11 S. M. Bak, Z. Shadike, R. Lin, X. Yu and X. Q. Yang, NPG Asia 

Mater., 2018, 10, 563–580. 

12 D. P. Finegan, J. Darst, W. Walker, Q. Li, C. Yang, R. Jervis, T. M. 

M. Heenan, J. Hack, J. C. Thomas, A. Rack, D. J. L. Brett, P. R. 

Shearing, M. Keyser and E. Darcy, J. Power Sources, 2019, 417, 

29–41. 

13 J. Lamb and C. J. Orendorff, J. Power Sources, 2014, 247, 189–

196. 

14 Battery Failure Databank, URL 

https://www.nrel.gov/transportation/battery-failure.html. 

15 E. Cao, A. N. P. Radhakrishnan, R. bin Hasanudin and A. Gavriilidis, 

Ind. Eng. Chem. Res., 2021, 60, 10489–10501. 

16 R. Mehrotra, K. R. Namuduri and N. Ranganathan, Pattern 

Recognit., 1992, 25, 1479–1494. 

17 H. Kaur and L. Kaur, Int. J. Sci. Res., 2014, 3, 1879–1886. 

18 A. Kumar and G. K. H. Pang, IEEE Trans. Ind. Appl., 2002, 38, 425–

440. 

19 A. C. Bovik, M. Clark and W. S. Geisler, IEEE Trans. Pattern Anal. 

Mach. Intell., 1990, 12, 55–73. 

20 P. Toth, A. B. Palotas, E. G. Eddings, R. T. Whitaker and J. A. S. 

Lighty, Combust. Flame, 2013, 160, 909–919. 

21 M. J. Hÿtch, E. Snoeck and R. Kilaas, Ultramicroscopy, 1998, 74, 

131–146. 

22 M. Pourfard, K. Faez and S. H. Tabaian, J. Nano Res., 2015, 31, 

40–61. 

23 A. Talukder and D. P. Casasent, Wavelet Appl. V, 1998, 3391, 336–

347. 

24 M. Freyer, A. Ale, R. B. Schulz, M. Zientkowska, V. Ntziachristos 

and K.-H. Englmeier, J. Biomed. Opt., 2010, 15, 036006. 

25 N. Homma, K. Takei and T. Ishibashi, WSEAS Trans. Inf. Sci. Appl., 

2008, 5, 1227–1236. 

26 L. Wiskott, J. M. Fellous, N. Krüger and C. Von der Malsburg, Lect. 

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. 

Notes Bioinformatics), 1997, 1296, 456–463. 

27 J. Yang, L. Liu, T. Jiang and Y. Fan, Pattern Recognit. Lett., 2003, 

24, 1805–1817. 

28 J. Zhu, W. Li, T. Wierzbicki, Y. Xia and J. Harding, Int. J. Plast., 

2019, 121, 293–311. 

29 J. Zhu, M. M. Koch, J. Lian, W. Li and T. Wierzbicki, J. Electrochem. 

Soc., 2020, 167, 090533. 

30 C. Zhang, S. Santhanagopalan, M. A. Sprague and A. A. Pesaran, 

J. Power Sources, 2015, 298, 309–321. 

31 X. Feng, X. He, M. Ouyang, L. Wang, L. Lu, D. Ren and S. 

Santhanagopalan, J. Electrochem. Soc., 2018, 165, A3748–A3765. 

32 T. D. Hatchard, S. Trussler and J. R. Dahn, J. Power Sources, 2014, 

247, 821–823. 

33 G. van Rossum, Python tutorial, Technical Report CS-R9526, 

Amsterdam, 1995. 

34 S. Silvester, A. Tanbakuchi, P. Müller, J. Nunez-Iglesias, M. 

Harfouche, A. Klein, M. McCormick, OrganicIrradiation, A. Rai, A. 

Ladegaard, A. Lee, T. D. Smith, G. A. Vaillant, jackwalker64, J. 

Nises, rreilink, H. van Kemenade, C. Dusold, F. Kohlgrüber, G. 

Yang, G. Inggs, J. Singleton, M. Schambach, M. Hirsch, M. 

Komarčević, NiklasRosenstein, P.-C. Hsieh, Zulko, C. Barnes and 

A. Elliott, , DOI:10.5281/ZENODO.3931847. 

35 S. van Der Walt, S. C. Colbert and G. Varoquaux, Comput. Sci. 

Eng., 2011, 13, 22–30. 

36 T. E. Oliphant, Comput. Sci. Eng., 2007, 9, 10–20. 

37 S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, 

J. D. Warner, N. Yager, E. Gouillart and T. Yu, PeerJ, 2014, 2, e453. 

38 J. D. Hunter, Comput. Sci. Eng., 2007, 9, 90–95. 

39 F. Lundh, URL www. pythonware. 

com/library/tkinter/introduction/index. htm. 

40 Google, Tesseract, URL https//tesseract-ocr.github.io/. 

41 Pytesseract, URL https//pypi.org/project/pytesseract/. 

42 A. N. P. Radhakrishnan, M. Pradas, E. Sorensen, S. Kalliadasis and 

A. Gavriilidis, Langmuir, 2019, 35, 8199–8209. 

43 T. Wierzbicki and E. Sahraei, J. Power Sources, 2013, 241, 467–

476. 

44 M. Gikas and J. Beilinson, Consumerreports.org/, 2017. 

45 C. Lin, Y. Piao, Y. Kan, J. Bareño, I. Bloom, Y. Ren, K. Amine and Z. 

Chen, ACS Appl. Mater. Interfaces, 2014, 6, 12692–12697. 

46 P. Röder, N. Baba and H.-D. Wiemhöfer, J. Power Sources, 2014, 

248, 978–987. 

47 D. P. Abraham, E. P. Roth, R. Kostecki, K. McCarthy, S. MacLaren 

and D. H. Doughty, J. Power Sources, 2006, 161, 648–657. 

48 D. P. Finegan, M. Scheel, J. B. Robinson, B. Tjaden, M. Di Michiel, 

G. Hinds, D. J. L. Brett and P. R. Shearing, Phys. Chem. Chem. 

Phys., 2016, 18, 30912–30919. 

 


