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Chandler Greenwell,1 Jan Řezáč,2 and Gregory J. O. Beran1, a)

1)Department of Chemistry, University of California, Riverside, California 92521,
United States
2)Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague,
Czech Republic

(Dated: 1 November 2021)

Second-order Møller-Plesset perturbation theory (MP2) provides a valuable alternative to density functional
theory for modeing problems in organic and biological chemistry. However, MP2 suffers from known lim-
itations in the description of van der Waals dispersion interactions and reaction thermochemistry. Here,
a spin-component-scaled, dispersion-corrected MP2 model (SCS-MP2D) is proposed that addresses these
weaknesses. The dispersion correction, which is based on Grimme’s D3 formalism, replaces the uncoupled
Hartree-Fock dispersion inherent in MP2 with a more robust coupled Kohn-Sham treatment. The spin-
component scaling of the residual MP2 correlation energy then reduces the remaining errors in the model.
This two-part correction strategy solves the problem found in earlier spin-component-scaled MP2 models
where completely different spin-scaling parameters were needed for describing reaction energies versus in-
termolecular interactions. Results on 18 benchmark data sets and two challenging potential energy curves
demonstrate that SCS-MP2D considerably improves upon the accuracy of MP2 for intermolecular interac-
tions, conformational energies, and reaction energies. Its accuracy and computational cost are competitive
with state-of-the-art density functionals such as DSD-BLYP-D3(BJ), revDSD-PBEP86-D3(BJ), ωB97X-V,
and ωB97M-V for systems with ∼100 atoms.

I. INTRODUCTION

Accurately modeling many chemically-interesting sys-
tems with electronic structure theory requires models
capable of describing diverse mixtures of covalent and
non-covalent interactions. Chemical reactions occur-
ring in enzyme active sites demand models that can
treat the thermochemistry associated with changes in
the substrate chemical bonding together with the hy-
drogen bonding, electrostatic, and dispersion interactions
that govern the substrate-protein interaction.1 Further-
more, the stabilities of molecular crystal conformational
polymorphs are governed by the competition between in-
tramolecular conformation and intermolecular packing.2

In principle, high-accuracy methods like coupled cluster
singles, doubles, and perturbative triples (CCSD(T)) can
provide the requisite accuracy for modeling systems like
these, but the steep O(N7) computational cost with sys-
tem size N frequently makes it cost-prohibitive in prac-
tice.

Instead, Kohn-Sham density functional theory (DFT)
has become the standard tool of choice for modeling such
systems. Many successful density functionals have been
developed over the years, some of which can approach
CCSD(T) accuracy. Large benchmark studies3,4 have
identified some of the best current functionals. These
include, for example, the hierarchy of functionals de-
veloped by Mardirossian and Head-Gordon: the range-
separated hybrid functional ωB97X-V,5 its hybrid meta-
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GGA variant ωB97M-V,6 and the double-hybrid meta-
GGA functional ωB97M(2).7 The family of dispersion-
corrected, spin-component-scaled double hybrid (DSD)
density functionals developed in the Martin group are
also highly competitive, both in their original8 and
recently-revised forms.9

At the same time, there have been many efforts to
achieve near-coupled cluster accuracy using wave func-
tion methods that are less computationally demanding
than CCSD(T). The domain-based local pair natural or-
bital variant (DLPNO-CCSD(T))10 achieves most of the
accuracy of CCSD(T) at far lower computational cost,
for example. At the other extreme, inexpensive machine
learning models that target CCSD(T) accuracy continue
to improve.11,12 Models based on second-order Møller-
Plesset perturbation theory (MP2), the least-expensive
correlated wavfunction method, have also garnered con-
siderable attention over the years. Although MP2 scales
O(N5) with system size, efficient density-fitting algo-
rithms mean that the computational cost of evaluating
the non-iterative MP2 correlation energy is small com-
pared to that associated with the underlying iterative
Hartree-Fock (HF) self-consistent field energy for many
systems. This means that MP2 can be computationally
competitive with modern state-of-the-art density func-
tionals for systems with up to ∼100 atoms.

Furthermore, MP2 inherently includes exact exchange
and does not suffer from the issues of self-interaction er-
ror/delocalization error that plagues approximate den-
sity functionals.13,14 Delocalization error leads to the
underestimation of dissociation energies15–17 and bar-
rier heights,18–21 for example. In the context of organic
molecular crystals, delocalization error can cause spuri-
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ous proton transfer in multi-component crystals22 and
problematic conformational energies that produce highly
incorrect polymorph stabilities.23–26

Despite its advantages, MP2 has its own significant
deficiencies which manifest in systems with strong static
correlation (e.g. stretched covalent bonds) or in systems
where van der Waals dispersion interactions are impor-
tant (e.g. benzene dimer). The second-order correlation
energy can be partitioned into contributions arising from
same-spin (αα and ββ) and opposite-spin (αβ and βα)
electron pairs. The same-spin contributions are more
connected with long-range static correlation, while the
opposite-spin ones are more important for the dynamic
correlation that is associated with dispersion. The MP2
perturbation series is biased toward the same-spin corre-
lation and frequently overestimates its contribution.27 In
2003, Grimme’s spin-component-scaled MP2 (SCS-MP2)
model28 demonstrated how scaling the same-spin and
opposite-spin energy components of the MP2 correlation
energy with constant coefficients improves the accuracy
of MP2 on systems that would otherwise be poorly de-
scribed, without any increase in the computational effort
required. The SCS-MP2 prescription greatly improves
upon canonical MP2 for predicting reaction thermochem-
istry.

However, it soon became apparent that the spin-
component scaling coefficients appropriate for one type
of chemical problem do not always transfer well to other
chemical problems. For example, the original SCS-MP2
model scales the same-spin correlation energy by css =
1/3, while the opposite-spin correlation energy is scaled
up by css = 6/5.28 These values were initially determined
from studying reaction energies, though subsequent work
established a theoretical basis for these scaling param-
eter values.27,29,30 Studying the S22 benchmark set a
few years later, Distasio and Head-Gordon found optimal
scaling coefficients css = 1.29 and cos = 0.40 for molec-
ular interactions (MI), denoting the resulting model as
SCS(MI)-MP2.31 These SCS(MI)-MP2 css and cos scal-
ing coefficients are nearly reversed compared to those
found in the original SCS-MP2.

Given that no single set of spin-scaling coefficients can
fully address the MP2 problems, a few strategies for SCS-
MP2 models have emerged over the years. One approach
tailors the SCS coefficients for specific chemical systems,
such as for nucleic acid base pair interactions,32 ethy-
lene dimers,33 or ionic liquids34. Such models can poten-
tially work well, though this parameterization strategy
inherently limits transferability of the model. Another
approach adapts the spin-component scaling coefficients
to each given system on the fly. This has been done
via spin-ratio scaled spin components (SRS-MP2)35 or
by machine learning the optimal scaling parameters as
in SNS-MP2.12 Adaptive spin-scaling approaches can be
more universal, though care must be taken to ensure that
the coefficient adaptations retain smooth and continuous
potential energy surfaces. Moreover, adaptive schemes
can still have limited applicability: the design of the neu-

ral network-based SNS-MP2 model limits its application
to dimer intermolecular interactions, for instance. Other
SCS models seek to exploit the greater computational ef-
ficiency associated with the opposite-spin correlation,36

to improve the long-range behavior of SCS methods,37

or to apply these ideas to higher-levels of theory such
as MP3,38 coupled cluster models,39,40 and excited state
approaches.41–44

The fundamental challenge for existing spin-
component-scaled MP2 methods is that they attempt
to use spin component scaling to address multiple,
physically distinct weaknesses inherent in MP2 simulta-
neously. These limitations can generally be partitioned
into the suitability of MP2 pair correlations for covalent
bond chemistry (termed “thermochemistry” here for sim-
plicity) versus the problems associated with describing
van der Waals dispersion in non-covalent interactions.
The former typically include more significant amounts of
static correlation energy, while the dispersion interaction
arises from dynamical correlation. The differences
between the optimal scaling coefficients in SCS-MP2
and SCS(MI)-MP2 highlight the challenge associated
with addressing both problems simultaneously with
spin-component scaling.

In the language of intermolecular perturbation the-
ory, the dispersion problem arises from the uncoupled
Hartree-Fock (UCHF) description of dispersion that is
inherent in MP2.45 Hesselmann’s corrected MP2 model
(MP2C),46,47 addresses this by subtracting out the
UCHF dispersion energy and replacing it with a better
treatment computed at the coupled Kohn-Sham (CKS)
level of theory. MP2C has proved very successful,48

though its intermolecular perturbation theory formula-
tion limits its application to dimer intermolecular inter-
actions. We recently developed a new version of MP2C,
called MP2D,49 which recasts the MP2C dispersion cor-
rection in terms of Grimme’s D3 dispersion correction.50

MP2D is similar to the MP2 plus van der Waals approach
proposed by Tkatchenko et al;51 however, use of the D3
model in MP2D makes the dispersion correction more
straightforward to compute.

The MP2D dispersion correction computes the CKS
and UCHF dispersion contributions using atom-centered
dispersion coefficients which are inexpensively interpo-
lated from a small set of ab initio dispersion coefficients
computed for simple hydrides of the elements. Because
MP2D employs atomic dispersion coefficients, the dis-
persion correction is applicable to both intra- and inter-
molecular interactions. Its performance for intermolecu-
lar interactions is similar to that of MP2C, and it has
proved very useful in describing intramolecular inter-
actions that prove difficult for many widely used den-
sity functionals, such as in conformational polymorphs
of molecular crystals.24,25

The present study introduces spin-component-scaled
MP2D (SCS-MP2D). Because the MP2D dispersion cor-
rection already addresses the MP2 dispersion problems
for non-covalent interactions well, the spin-component
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scaling coefficients can focus solely on correcting the
residual problems beyond dispersion that impact MP2
performance for thermochemistry. The proposed SCS-
MP2D model employs seven global empirical parame-
ters, which is a modest number of parameters com-
pared to many models derived from big data and ma-
chine learning approaches. SCS-MP2D represents the
first spin-component-scaled MP2 model where a single
set of spin-scaling coefficients can describe a wide variety
of intra- and intermolecular organic chemistry. It ap-
pears highly transferable to new systems, despite only a
modest amount of benchmark data being used to fit the
empirical parameters.

The addition of spin component scaling to MP2D
makes it similar in many ways to the family of DSD
double-hybrid density functionals.8,9 Those density func-
tionals start from a hybrid functional DFT treatment
with a modest fraction of exact exchange, mix in some
amount of spin-component-scaled MP2-like correlation
(evaluated in terms of the Kohn-Sham orbitals), and in-
clude long-range Grimme dispersion. SCS-MP2D has
its foundation in HF (instead of DFT), includes spin-
component-scaled MP2 correlation from which the long-
range dispersion has been removed, and Grimme D3 dis-
persion. Starting from the exact exchange treatment in
HF circumvents the problems of DFT delocalization er-
ror. By subtracting the UCHF dispersion from the MP2
correlation energy before adding the Grimme dispersion
correction, SCS-MP2D also avoids any issues of double-
counting dispersion energy contribtutions that can hinder
dispersion-corrected DFT models.

As will be demonstrated below, the accuracy of SCS-
MP2D is competitive with some of the very best den-
sity functionals on a large set of benchmark data sets
of organic species that span intermolecular interactions,
conformational energies, and reaction energies. Fur-
thermore, SCS-MP2D outperforms several state-of-the-
art density functionals for two particularly challeng-
ing potential systems for which delocalization error is
known to be an issue: organic crystal polymorphs of the
ROY molecule and the photodimerization reaction of an-
thracene. The cost of SCS-MP2D is effectively identical
to that of MP2, and it is ∼2–2.5 times faster than top-tier
functionals such as ωB97X-V or ωB97M-V for systems
approaching ∼100 atoms. Overall, the results presented
below highlight how MP2-based wave function methods
offer a viable route toward high-accuracy quantum chem-
istry in organic systems.

II. THEORY

A. SCS-MP2D Energy

The canonical MP2 energy can be decomposed into the
HF energy plus the same-spin (ss) and opposite-spin (os)

correlation energies,

EMP2 = EHF + cosE
os
corr + cssE

ss
corr (1)

In canonical MP2, the spin-scaling coefficients cos and
css both equal one. Spin-component-scaled MP2 meth-
ods change those spin-scaling coefficients to improve the
performance of the model. Grimme’s original SCS-MP2
model employed cos = 6/5 and css = 1/3. As described
earlier, however, these coefficients can vary considerably
depending on the nature of the chemical system being
studied.

One of the key problems in canonical MP2 lies in its
treatment of van der Waals dispersion, such as its well-
known over-estimation of the benzene dimer interaction
energy and many other π-π interactions. The successful
MP2C model addresses this for intermolecular interac-
tions by subtracting out the UCHF dispersion that is
inherent in MP2 and replacing it with a more reliable
CKS description,46,47

EMP2C = EMP2 − EUCHFdisp + ECKSdisp (2)

However, the reliance on intermolecular perturbation
theory for the dispersion correction limits MP2C to dimer
intermolecular interactions, and the analytic nuclear gra-
dients that would facilitate geometry optimizations are
complicated and have not yet been implemented.

Our recently proposed dispersion-corrected MP2D
model49 addresses both limitations. MP2D adopts the
same basic formalism as MP2C, but it computes the
UCHF and CKS dispersion contributions according to
Grimme’s D3 strategy,50 which estimates the atom-
centered dispersion coefficients via interpolation among
pre-tabulated reference values for each element in dif-
ferent coordination environments. The D3 dispersion
correction can be computed with trivial force-field like
cost, is readily differentiated for analytic nuclear gradi-
ents, and is applicable to both intra- and intermolecular
interactions.

SCS-MP2D combines spin-scaling of the correlation
energy with a CKS dispersion correction. The SCS-
MP2D energy is given by,

ESCS-MP2D =EHF + cosE
os
MP2-corr + cssE

ss
MP2-corr

− cosEdisp,osUCHF − cssE
disp,ss
UCHF + Edisp,totCKS

(3)
Because the MP2 correlation energies are scaled by the
spin-scaling coefficients, the UCHF dispersion energy be-
ing removed from the correlation energy must also be
scaled accordingly to obtain a “dispersion-free” SCS-
MP2 energy. One is then free to add an appropriate dis-
persion treatment onto it—the D3 CKS dispersion energy
in this case, without any spin-component scaling. Since
the CKS dispersion contribution is unchanged compared
to MP2D, the following discussion focuses on the UCHF
contribution.

Spin-component scaling of the UCHF dispersion en-
ergy begins with partitioning the molecular frequency-
dependent dipole-dipole polarizabilities into their α (↑)
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and β (↓) spin contributions,

αλσ(iω) = α↑λσ(iω) + α↓λσ(iω)

=
∑
ia

2εia〈i|µ̂λ|a〉〈a|µ̂σ|i〉
~(ε2ia + ω2)

+
∑
ı̄ā

2εı̄ā〈̄ı|µ̂λ|ā〉〈ā|µ̂σ |̄ı〉
~(ε2ı̄ā + ω2)

(4)
where i and a are α spin occupied and virtual orbitals,
ı̄ and ā are the analogous β spin orbitals, εia is the HF
energy difference between orbitals i and a, µ̂λ is the λ-
th component of the dipole moment operator, and iω
is the imaginary frequency at which the polarizability
is being evaluated. The isotropic frequency-dependent
polarizability αiso is computed as the trace of αλσ divided
by 3.

In the D3 approach, the isotropic molecular frequency-
dependent polarizabilities are computed and tabulated
for a series of elemental hydrides AmHn (e.g. C2H6,
C2H4, C2H2, CH, and C). The atomic frequency-
dependent polarizability for atom A is then determined
by subtracting out the hydrogen contributions and dis-
tributing the remaining polarizability evenly across the
heavy atoms. For the spin up contributions, this takes
the form:

αA↑iso(iω) =
1

m
[αAmHn↑
iso (iω)− n

2
αH2↑
iso (iω)] (5)

An analogous expression can be written for the β (↓) po-
larizabilities. The total UCHF C6 dispersion coefficients
for the interaction of atoms A and B can be computed
from the spin-partitioned isotropic atomic frequency-
dependent polarizabilities as,

CAB6 =
3

π

∫ ∞
0

dω
(
αA↑iso(iω) + αA↓iso(iω)

)(
αB↑iso(iω) + αB↓iso(iω)

)
(6)

By multiplying out integrand and regrouping terms, one
can partition the total UCHF C6 coefficient into separate
same-spin and opposite spin contributions,

CAB6 =
3

π

∫ ∞
0

dω
(
αA↑iso(iω)αB↑iso(iω) + αA↓iso(iω)αB↓iso(iω)

)
+

3

π

∫ ∞
0

dω
(
αA↑iso(iω)αB↓iso(iω) + αA↓iso(iω)αB↑iso(iω)

)
(7)

= CAB,ss6 + CAB,os6 (8)

Once the same-spin UCHF, opposite-spin UCHF, and
total CKS C6 coefficients have been obtained for each
atom type in each coordination number environment, the
dispersion energies are computed according to the D3
scheme as described previously.49,50 Specifically, the final
C6 coefficients for a given atom in a particular chemical
environment are interpolated using a slightly modified
version49 of the original D3 coordination number scheme,
the C8 coefficients are estimated as proscribed by the D3
model, and then the dispersion energy is obtained as,

Edisp = s6

∑
AB

f6(RAB)
C6,AB

R6
AB

+ s8

∑
AB

f8(RAB)
C8,AB

R8
AB

(9)

where s6 and s8 are scaling coefficients and RAB is the
distance between atoms A and B. The Tang-Toennies
damping function fN (RAB) is given by,

fN (RAB) = 1− exp(sRRAB)

N∑
k=0

(sRRAB)k

k!
(10)

where N is the order of the dispersion term (6 or 8), and
sR is a distance scaling factor calculated from the cutoff
radius R0,AB (taken from the D3 dispersion correction50)
using two empirical parameters a1 and a2:

sR = a1R0,AB + a2. (11)

Finally, during the development of the original MP2D
model, it was found that the Tang-Toennies damping
function decays too slowly at covalent-bond distances.49

To address this, the interatomic distance RAB was mod-
ified via a secondary damping at very short distances
according to,

R′AB =


rcutR0,AB if RAB <= R0,AB(rcut − w/2)

RAB if RAB >= R0,AB(rcut + w/2)

rcutR0,AB + g(RAB , r
′
cut, w

′) otherwise;

(12)

g(RAB , r
′
cut, w

′) = (−2.5x8 + 10x7 − 14x6 + 7x5) ∗ w′;
(13)

x =
RAB − (r′cut − w′/2)

w′
(14)

where r′cut = R0,ABrcut and w′ = R0,ABw. The empiri-
cal parameters rcut and w define the distance and width
over which the damping occurs. This short-range damp-
ing leaves RAB in Eq 9 unchanged at longer distances,
while fixing it at a constant fraction of R0,AB value for
very short distances. The polynomial g(RAB , r

′
cut, w

′)
smoothly interpolates between the two regimes. See
ref 49 for more details.

For restricted wave functions, the spin up and spin
down frequency-dependent polarizabilities in Eq 4 are
identical and each equal to half the total polarizability.
As a result, the same-spin and opposite-spin UCHF C6

coefficients in Eqs 7 and 8 are each equal to one half to the
total C6 coefficient, and the spin components each con-
tribute half of the UCHF dispersion energy Edisp (Eq 9),

Edisp,ssUCHF = Edisp,osUCHF =
1

2
Edisp,totUCHF (15)

In this scenario, the final SCS-MP2D energy (Eq 3) can
be expressed as,

ESCS-MP2D =EHF + cosE
os
MP2-corr + cssE

ss
MP2-corr

− 1

2
(cos + css)E

disp,tot
UCHF + Edisp,totCKS

(16)
Because the present study focuses only on closed-shell
species with restricted wave functions for which the open-
shell reference hydrides coordination environments con-
tribute negligibly, Eq 16 represents the final equation im-
plemented here.
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The SCS-MP2D model contains seven empirical pa-
rameters in total: cos, css, s8, a1, a2, rcut, and w. The s6

parameter scaling the C6 dispersion energy contribution
in Eq 9 is set to unity unless otherwise noted. The atom-
pairwise dispersion coefficients CAB6 coefficients from the
reference hydrides are identical to those used in ref 49.
More specifically, the CKS coefficients are taken directly
from the original D3 model, while the UCHF ones were
computed for H, B, C, N, O, F, Ne, P, S, Cl, Ar, and Br
atoms according to the same Grimme D3 scheme. Ac-
cordingly, SCS-MP2D is presently applicable to typical
organic and biological systems.

Finally, one could conceivably design a similar SCS-
MP2D-like approach using the more recent D4 dispersion
correction52 or even the exchange-hole dipole moment
(XDM)53 or many-body dispersion (MBD) models.54,55

Computing both the UCHF and CKS dispersion con-
tributions in the context of XDM or MBD would re-
quire both Hartree-Fock and DFT calculations, mak-
ing it considerably more computationally demanding.
Adapting D4 would be more straightforward computa-
tionally and might improve the performance of SCS-
MP2D modestly, as evidenced by its performance with
DFT functionals.9,52 However, we opt to use D3 here
for consistency with our earlier MP2D model, thereby
enabling more direct assessment of the impact of spin-
component scaling.

B. Empirical Parameter Fitting Procedure

The seven empirical parameters in MP2D were fit-
ted to a total of 559 benchmark data points taken from
the S66x8 set of dimer intermolecular interactions,56

the Diels-Alder reaction energy (DARC) subset of the
GMTKN55 data set,3,57 and the sugar conformational
energy (SCONF) subset of GMTKN55.3 Because each of
the three data sets differ in the number of data points
contained and the magnitudes of the benchmark energy
values, an objective function F was constructed from
the weighted sum of the relative root-mean-square er-
ror (RMSE) for each data set. Relative RMSE values
were obtained by dividing the RMSE of each set by the
mean absolute value of the benchmark energies in the set,
〈|E|〉,

F = wS66x8
RMSES66x8

〈|E|〉S66x8

+ wDARC
RMSEDARC
〈|E|〉DARC

+wSCONF
RMSESCONF
〈|E|〉SCONF

(17)

Using relative RMSE values compensates for the fact that
the Diels-Alder reaction energies are many-fold larger
than the typical intermolecular or conformational ener-
gies. Different weights wi for the three relative RMSEs
in the objective function were tested during the fitting.
By trial and error, it was determined that increasing the
weight of the DARC data set in the objective function
led to particularly good, transferable parameters. The

final SCS-MP2D parameters were obtained with weight
wDARC = 2.0 and wS66x8 = wSCONF = 1.0. The en-
hanced weight on the DARC set is consistent with the
desire to use spin-component scaling to improve reaction
energies and the importance of including short-range in-
teractions in fitting the damping function parameters.

Initial exploratory optimizations of the empirical pa-
rameters revealed a rugged landscape containing many
local minima. Therefore, an evolutionary algorithm was
implemented to seek out (nearly) globally optimal pa-
rameters that minimize the objective function. Initial
values of the parameters were generated randomly within
a predefined range of plausibly physical values. Initial
spin-component scaling coefficients and most other pa-
rameters were restricted to lie between 0 and 2, though
a2 was given the range -1 to 2. Each generation of the
search algorithm was populated with 30–40 distinct pa-
rameter sets. Each parameter set was optimized using a
quasi-Newton algorithm in Cuby4.58 This gradient-based
optimization converged slowly, but it was observed that
the parameters varied little after the first ten optimiza-
tion cycles; therefore, 10 cycles were used for each opti-
mization during the evolutionary search.

After randomly seeding the initial generation, subse-
quent generations were created as a mixture of, for ex-
ample: the five best-performing parameter sets from the
previous generation, five parameter sets obtained by ran-
domly combining parameters from the top five perform-
ers (inheritance), five sets where new damping function
parameters were generated for the top 5 performers (mu-
tation), 5 populations where the spin-component con-
stants were replaced by new randomly generated con-
stants (mutation), and 10 entirely new randomly gener-
ated parameter sets to add diversity to the population.
Optimization runs which varied the partitioning among
inheritance, mutation, and random generation and the
total population size were explored. The genetic algo-
rithm was allowed to run for between 5 and 20 genera-
tions. To avoid biasing the search in favor of the top per-
forming parameters against newly generated parameter
sets, each generation passed initial starting parameters to
the next generation rather than the optimized parame-
ters. Once the optimal parameters were found after many
searches, they were fully-optimized to ensure a minimum
in the parameter landscape had been reached (though
their values changed only slightly). Convergence of the
evolutionary optimization algorithm was tested both by
(1) performing dozens of independent runs of the evolu-
tionary optimizer, and (2) by seeding a Bayesian search
algorithm with good parameter sets from the genetic al-
gorithm (see Supporting Information Section S1). The
final parameter set discussed in Section IV A was discov-
ered relatively early and repeatedly in the search pro-
cess, and subsequent searching did not reveal any better-
performing parameter sets.
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III. COMPUTATIONAL METHODS

The MP2D and SCS-MP2D dispersion correc-
tions were calculated using a developmental version
of the freely available Cuby4 software.58 Energies
were computed at the complete basis set limit by
combining HF/aug-cc-pVQZ with correlation energies
extrapolated59 from aug-cc-pVTZ and aug-cc-pVQZ re-
sults. Counterpoise corrections were employed for all
benchmark sets involving purely intermolecular interac-
tions: S66x8, 3B-69, SSI, HBC6, NBC10, Charge Trans-
fer, HB375, and IHB100. MP2 data for S66x8, 3B-69,
SSI, and IDISP was taken from the original sources; data
for all other sets was computed here using PSI4 version
1.3.60 For ISOL24, the 24th isomerization reaction was
omitted because MP2D and SCS-MP2D dispersion co-
efficients have not been computed for silicon. For con-
sistency, reaction 24 was excluded for all other tested
methods as well.

DFT calculations were performed using DSD-BLYP-
D3(BJ), ωB97X-V, and ωB97M-V functionals in PSI4
and the revDSD-PBEP86-D3(BJ) functional in Orca
version 4.2.61 The PSI4 DSD-BLYP-D3(BJ) calcula-
tions employ the parameters reported in ref 8, rather
than the earlier parameters62,63 which were used in
the GMTKN55 benchmarks.3 Counterpoise corrections
were employed for all intermolecular benchmark sets,
except for the revDSD-PBEP86-D3(BJ) functional, for
which the counterpoise-corrected results were substan-
tially worse than the uncorrected ones. In general, DSD-
BLYP-D3(BJ), revDSD-PBEP86-D3(BJ), and ωB97X-V
calculations were performed using the def2-QZVP basis
set, while the ωB97M-V ones were performed in aug-
cc-pVQZ since the latter basis set is one of the recom-
mended ones from Ref 6. There are a few exceptions,
however: For the SSI data set, aug-cc-pVTZ results were
taken from Burns et al64 for ωB97X-V and ωB97M-V.
The aug-cc-pVQZ basis set was used with DSD-BLYP-
D3(BJ) and revDSD-PBEP86-D3(BJ) for the SSI set due
to the presence of anionic species. The aug-cc-pVQZ ba-
sis set was similarly employed for all functionals on the
IHB100 set of ionic species. Finally, ωB97X-V results
for SCONF, ACONF, Amino20x4, MCONF, PCONF21,
DARC, ISOL24, ISO34, and IDISP were taken directly
from the GMTKN55 database.3

The genetic optimization algorithm was implemented
by the authors. The searches employing Bayesian op-
timization with Gaussian processes utilized the python
scikit-learn library skopt.gp minimize.65

IV. RESULTS AND DISCUSSION

A. Parameter optimization

The seven empirical parameters were optimized using
the evolutionary algorithm discussed in Section II B, and
the final SCS-MP2D model parameters are listed in Ta-

TABLE I. Comparison of the MP2D parameters from ref 49
and the SCS-MP2D ones determined here. All parameters
are dimensionless except for a2.

MP2D SCS-MP2D
cos 1 0.8263
css 1 0.9004
a1 0.9436 1.5359

a2 (Å) 0.4802 -0.7595
s8 1.1873 1.2092
rcut 0.72 0.8254
w 0.20 0.1198

ble I. Figure 1 shows the progress over a single run of
the evolutionary optimizer. As the algorithm proceeds
through the generations, the population is enriched with
low-error parameter sets. By the ninth generation, quite
a few parameter sets have been found that perform well,
and these best-performing models change little over the
next five generations. As shown in the radar plot in Fig-
ure 1, the five best-performing members of the population
in this optimization run in blue exhibit parameters that
are quite similar to those in the final SCS-MP2D model
in red. The only appreciable variations occur for the a2

Tang-Tonnies damping parameter. The next five best-
performing parameter sets in green differ a little more
from the SCS-MP2D ones, most notably in s8 and a2,
but they are again fairly similar. Moving beyond the ten
best parameter sets from this search, one finds greater
parameter diversity, indicating that algorithm is search-
ing widely. Overall, many independent runs of the op-
timizer generated parameter sets that are similar to the
final SCS-MP2D ones, and they were always among the
very best performing models.

Some searches revealed a few alternative parameter
sets that also performed very well, though they had un-
physical parameters such as a negative s8 value. In those
models, the MP2D dispersion correction had the wrong
sign, with the CKS term effectively increasing the van
der Waals binding energy compared to UCHF for sys-
tems such as the π-stacked benzene dimer. This behavior
is contrary to the well-known behaviors from intermolec-
ular perturbation theory where UCHF over-binds such
systems.45,47 Other tests that allowed s6 to deviate from
unity (increasing the number of parameters from seven
to eight) produced good-performing parameter sets with
s6 > 1 and s8 ≈ 2. From intermolecular perturbation
theory, s6 and s8 should both equal one, though the D3
model typically allows s8 to deviate from unity to com-
pensate for the neglect of higher-order dispersion terms.
Given the rapid decay of those higher-order terms with
distance, however, it seems unlikely that those neglected
contributions should effectively double the s8 contribu-
tion. When tested for transferability to other data sets
not employed in the parameter fitting, the final chosen
parameter set in Table I performed as well as or better
than any of these alternative parameter sets. Accord-
ingly, the final chosen parameter set in Table I was se-
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FIG. 1. Left: Performance of one run of the evolutionary SCS-MP2D parameter optimization, plotting the relative root-mean-
square error (the objective function) versus the generation number. The figure focuses only on the low-error region, and the
horizontal lines indicate the best-performing models in the initial (Gen 0) and final (Gen 14) generations. Right: Radar plot
comparing the final SCS-MP2D parameter values (red) to those of the five lowest-error parameter sets (blue), the next five
lowest-error models (green), and all other parameter sets (gray) from this particular optimization.

lected on the basis of its performance on the training set,
physically reasonable parameter values, and its transfer-
ability to other benchmark sets (Section IV B).

Table I compares the final SCS-MP2D parameters
against those published previously for MP2D, which does
not scale the spin components of the correlation energy.
The SCS-MP2D dispersion correction parameters are
fairly similar to those in MP2D. For example, s8 differs
by only 2% between the two models. Values of s8 near
1.2 are intermediate relative to the range of s8 ∼ 0.8–1.7
typically found for D3 with various density functionals.50

The parameters rcut and w that govern damping at very
short (covalent) distances differ by ∼0.1 between MP2D
and SCS-MP2D. However, as discussed in the original
MP2D study,49 a relatively broad range of parameters
rcut and w performs well, and the differences in these pa-
rameters between the two models has a small impact on
the overall performance.

In contrast, the SCS-MP2D Tang-Toennies dispersion
damping parameters differ noticeably from the earlier
MP2D ones. Compared to MP2D, the new parameters
enhance the SCS-MP2D dispersion correction contribu-
tion at shorter distances (SI Section S2). This increased
contribution from the dispersion correction offsets the
diminished contribution of the MP2 correlation energy
that results from having spin-component scaling coeffi-
cients less than one. Interestingly, the spin-scaling co-
efficients css = 0.8263 and cos = 0.9004 are similar to
each other, in contrast to many previous SCS-type MP2
models. Furthermore, the SCS-MP2D spin-component
scaling enhances the same-spin contribution relative to
the opposite-spin one, which is contrary to theoretical ar-
guments that MP2 typically overestimates the same-spin

correlation more than the opposite-spin contributions.27

On the other hand, such arguments may no longer ap-
ply when such a sizable fraction of the final SCS-MP2D
correlation energy originates from the CKS dispersion
correction.

The importance of the CKS dispersion can be seen
from a few example systems. Along the eight points
of the S66x8 π-stacked benzene dimer potential energy
curve, for instance, an average 93% of the SCS-MP2D
correlation energy arises from the CKS dispersion en-
ergy. Only ∼7% stems from what remains of the spin-
component-scaled MP2 correlation energy after subtract-
ing out the UCHF contribution. Of course, dispersion is
expected to be very important for the benzene π dimer.
However, even in the DARC data set chemical reaction
energies for which non-dispersion components of the cor-
relation energy are more important, the CKS disper-
sion still contributes an average 24 kcal/mol, compared
to only 10 kcal/mol from the residual spin-component-
scaled MP2 correlation energy that remains after remov-
ing the UCHF dispersion component.

That said, a few additional considerations should be
noted. First, there are multiple ways to decompose and
group the SCS-MP2D energy components. If one parti-
tions it into the SCS-MP2 correlation energy plus a dis-
persion correction (computed as the difference between
the UCHF and CKS dispersion energies), the disper-
sion correction amounts to only 0.5 kcal/mol for ben-
zene dimer at its equilibrium geometry and an average
of 1 kcal/mol (a few percent) for the reaction energies in
the DARC set. In other words, the individual UCHF and
CKS dispersion terms are very large individually, but the
difference between the two contributions is much smaller.
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Finally, note that the parameters were fitted to the total
interaction, conformational, or reaction energies, rather
than to individual components of the correlation energy.
As discussed for MP2D,49 this choice leads to good over-
all performance with fewer empirical parameters, but the
individual UCHF and CKS components in SCS-MP2D
do not quantitatively reproduce those from intermolecu-
lar perturbation theory and/or MP2C.

B. Performance on Benchmark Data Sets

As discussed above, SCS-MP2D was trained on
three datasets consisting of noncovalent interactions
(S66x8), reaction energies (DARC), and sugar confor-
mational energies (SCONF). MP2D was fitted against
S66x8.49 To assess overall performance and transfer-
ability, SCS-MP2D was tested on 14 additional bench-
mark data sets for intermolecular interactions (3B-
69 dimers,66 NBC10,67 HBC6,67 HB375,68 IHB100,68

SSI,64 & charge transfer reactions69), conformational
energies (Amino20x4,3 ACONF,70 MCONF,71 and
PCONF213), and thermochemical reaction energies
(ISO34,72 ISOL24,3 IDISP3). Note that IDISP contains
a mixture of interaction types that all involve substan-
tial changes in intramolecular dispersion energy, but it
is grouped with the reaction energy data sets here be-
cause four of the six examples involve chemical reactions
and/or isomerizations. Table II summarizes root-mean-
square errors for each data set as computed with several
different quantum chemistry models. Figure 2 plots the
relative RMSEs, where the RMSE for each model is di-
vided by the mean absolute value of the target reference
energies for that data set.

1. Performance of wave function methods

Consider first the performance of MP2 and MP2D for
the intermolecular interaction data sets. The MP2D dis-
persion correction seeks to address systems like the ben-
zene dimer where dispersion is important and which are
often considerably over-bound by MP2. The dispersion
correction has minimal impact on hydrogen-bonded sys-
tems like the water dimer, for which MP2 already per-
forms fairly well. Overall, MP2D reduces the MP2 RMSE
on S66x8 four-fold, from 0.67 to 0.16 kcal/mol. That im-
provement partly reflects that MP2D was trained against
S66x8 benchmark data, but the MP2D parameters also
prove highly transferable to other benchmark sets. The
MP2D dispersion correction provides several-fold error
reductions in the non-bonded potential energy curves of
NBC10, the protein side-chain side-chain interactions of
SSI, the large database of hydrogen bonds in HCNO-
containing species (HB375), and a set of charge transfer
reactions. Smaller MP2D improvements occur in 3B-69
and the hydrogen-bonded dimer curves of HBC6, and no
appreciable improvement is found for the ionic H-bonds

of IHB100. The smaller improvements seen in those lat-
ter sets largely reflects the lesser importance of dispersion
interactions in those dimers rather than any weaknesses
in MP2D.

Incorporating spin-component-scaling into MP2D
leads to further modest improvements for the intermolec-
ular interaction data sets. In S66x8 (a training set),
the RMSE reduces from 0.16 to 0.13 kcal/mol. Im-
provements are observed for many of the testing sets as
well. For example, spin-component-scaling reduces the
NBC10 RMSE by a factor of two, from 0.29 kcal/mol for
MP2D to 0.14 kcal/mol for SCS-MP2D. More typically,
SCS-MP2D reduces the MP2D errors by around a third
or less for many of the intermolecular interaction sets.
Spin-component scaling tends to improve the MP2D per-
formance on ionic and hydrogen-bonded systems, even
though those generally are reasonable even with MP2
and MP2D already. Surprisingly, however, SCS-MP2D
also performs better than MP2D for systems like the
benzene dimer, which explains much of the improvement
observed for NBC10. As discussed previously,49 the D3
correction has the weakness that its highly local inter-
polation scheme for the C6 dispersion coefficients dis-
tinguishes poorly between benzene and ethene, for ex-
ample. So while MP2D performs well for many sys-
tems where dispersion is important, its performance for
the benzene dimer is actually somewhat worse than the
fully ab initio treatment in MP2C (though MP2D still
improves dramatically upon MP2). SCS-MP2D suffers
from the same limitations of the dispersion coefficients,
but apparently the spin-component-scaling compensates
somewhat. For instance, the RMSE for the π-stacked
benzene dimer decreases from from 0.33 kcal/mol with
MP2D to 0.13 kcal/mol with SCS-MP2D. SCS-MP2D
performs marginally worse than MP2D on the SSI data
set; this issue will be explored in detail in Section IV B 3.

One of the key strengths of MP2D and SCS-MP2D over
MP2C is that the atom-pairwise definition of the disper-
sion correction allows for correcting both intra- and inter-
molecular dispersion. Because it is based on intermolecu-
lar perturbation theory, the MP2C dispersion correction
has no effect on intramolecular conformational energies.
Intramolecular dispersion corrections can be essential in
systems such as the conformational polymorphs of or-
ganic crystals.24,25

Looking at the six conformational energy data sets (1
training and 5 testing), the MP2D and SCS-MP2D per-
formance trends are similar to what was observed for
the intermolecular interaction data sets. The MP2D dis-
persion correction already improves upon MP2 nicely.
Adding the dispersion correction reduces the MP2 RMS
errors from 1.11 to 0.41 kcal/mol in peptide conformers
(PCONF21) and from 1.02 to 0.42 kcal/mol in melatonin
conformers (MCONF). Including spin-component-scaling
reduces those errors ∼20–25% further. Both MP2D and
SCS-MP2D perform about one third better than MP2 for
the amino acid conformations in Amino20x4. The alkane
conformations in (ACONF) are the only data set here
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TABLE II. Root mean square errors calculated relative to the benchmark reference values (kcal/mol). The asterix (?) indicates
data sets that were used to fit SCS-MP2D. Cell color indicates the relative RMSE: dark blue ≤ 5%, light blue = 5–10%, orange
= 10–25%, light red = 25–50%, and dark red ≥ 50%.

DSD- revDSD-
Data Set MP2 MP2D SCS-MP2D BLYP-D3(BJ) PBEP86-D3(BJ) ωB97X-V ωB97M-V

CBS CBS CBS def2-QZVP def2-QZVP def2-QZVP aQZ

Intermolecular Interactions
S66x8 0.67 0.16 0.13? 0.18 0.16 0.21 0.11

3B-69 Dimers 0.33 0.21 0.18 0.19 0.19 0.20 0.17

SSI 0.36 0.16 0.17 0.15a 0.12 0.16b 0.15b

HBC6 0.32 0.26 0.25 0.37 0.17 0.32 0.24
NBC10 1.55 0.29 0.14 0.33 0.07 0.34 0.17

Charge Transfer 2.72 0.56 0.34 0.77 0.62 0.57 0.45
HB375 0.43 0.16 0.13 0.14 0.13 0.17 0.19
IHB100 0.45 0.46 0.34 0.41a 0.26a 0.37a 0.35

Conformational Energies
SCONF 0.31 0.35 0.18? 0.26 0.13 0.21c 0.24
ACONF 0.11 0.07 0.12 0.08 0.24 0.06c 0.08

Amino20x4 0.26 0.17 0.18 0.16 0.17 0.24c 0.24
MCONF 1.02 0.40 0.33 0.55 0.19 0.27c 0.39

PCONF21 1.11 0.42 0.31 0.48 0.23 0.35c 0.69

Reaction Energies
DARC 3.97 1.90 1.41? 1.10 0.64 4.38c 0.98
ISO34 1.68 1.42 0.96 1.06 0.49 1.56c 0.82

ISOL24 3.72 2.81 2.24 2.71 1.73 4.20c 2.41
IDISP 7.03 1.42 1.29 1.60 0.67 3.88c 2.83

Overall Relative RMSE Statistics (%)
Mean 21.3 7.7 5.9 8.1 4.9 9.5 8.2

Median 11.5 5.8 4.4 5.5 4.1 5.3 4.5
a aug-cc-pVQZ basis b Ref 64, aug-cc-pVTZ basis. c Ref 3

where SCS-MP2D (RMSE 0.12 kcal/mol) does not im-
prove upon MP2 (0.11 kcal/mol) and is somewhat worse
than MP2D (0.07 kcal/mol). Fortunately, these errors
are small in both absolute and relative terms (e.g. 6.3%
for SCS-MP2D).

Finally, we examine the reaction energies associ-
ated with Diels-Alder reactions (DARC, training set),
the smaller- and larger-molecule isomerizations (ISO34,
ISOL24), and the IDISP set, which contains several
dimerzation and isomerization reactions for which in-
tramolecular dispersion matters. Non-dispersion con-
tributions to the correlation energy are expected to be
sizable for reaction energies, so spin-component scaling
might be expected to have a significant impact in these
data sets. Indeed, while MP2D did improve upon MP2
for all four data sets, SCS-MP2D performs even better.
For example, MP2D (1.42 kcal/mol) only improved upon
MP2 (1.68 kcal/mol) by about 15% for the ISO34 small-
molecule isomerizations. The MP2D dispersion correc-
tion has a slightly larger impact on the larger-molecule
isomerizations of ISOL24, reducing the MP2 error by ∼
25% (3.72 to 2.81 kcal/mol). In both cases, however,
SCS-MP2D reduces the errors by ∼40% compared to
MP2, with RMSE values of 0.96 and 2.24 kcal/mol, re-
spectively. For DARC, which was included in the SCS-
MP2D fitting, SCS-MP2D reduces the MP2 error by

65%, and it reduces the MP2D error by ∼25%. The
IDISP set tends to exhibit considerable variability in the
error statistics achieved by different models, due to the
diverse chemistry and the disparate energy scales for the
different reactions. Regardless, both MP2D and SCS-
MP2D perform very well for this set, with RMS errors of
1.42 and 1.29 kcal/mol, respectively.

As a whole, these benchmark results demonstrate that
the SCS-MP2D model is highly transferable to a wide
variety of organic chemistry, despite being fitted to a
modest amount of training data. In most of the bench-
marks performed here, the MP2 dispersion contributions
account for the largest share of the improvement, but
the spin-component scaling almost always improves the
quality of the predicted energies further. Given the er-
ror statistics presented here, SCS-MP2D is arguably one
of the best-performing O(N5) correlated wave function
methods available today for describing intra- and inter-
molecular interactions in organic chemistry. However, a
better understanding of its overall performance requires
comparing it to state-of-the-art density functionals.
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FIG. 2. Comparison of the relative RMSEs for several models on benchmark data sets focusing on (a) intermolecular interactions,
(b) conformational energies, (c) reaction energies, and (d) the union of all training and testing sets. The asterix indicates that
S66x8, SCONF, and DARC were involved in fitting the SCS-MP2D parameters. Note that the large relative RMSE values
for NBC10 and PCONF21 partly reflect the smaller magnitudes of the benchmark energies in those two sets. The absolute
errors for the best-performing models in NBC10 and PCONF21 are similar to those in HB375 and MCONF, respectively (see
Table II).

2. Comparisons to selected density functional models

Four top-performing density functionals were chosen
for comparison against the dispersion-corrected MP2
models: the range-separated hybrid functional ωB97X-
V, the meta-GGA variant ωB97M-V, and the double-
hybrid spin-component-scaled functionals DSD-BLYP-
D3(BJ) and revDSD-PBEP86-D3(BJ). The ωB97X-V
and DSD-BLYP-D3(BJ) functionals were selected based
on their excellent performance on the GMTKN55 test
suite,3 while ωB97M-V was selected because it represents
the meta-GGA rung on Jacob’s ladder of density func-
tionals and generally performs even better than ωB97X-

V.4,6

The recently revised DSD functionals (revDSD) per-
form even better than the original DSD functionals.9 The
improvements stem primarily from replacing the D3 dis-
persion correction with the newer D4 one52 in some of
the functionals and from fitting the empirical parame-
ters to a much larger set of training data. The revDSD-
PBEP86-D3(BJ) functional was selected as a represen-
tative example of these new functionals. Because SCS-
MP2D could plausibly be developed based on the D4
correction instead of the D3 one as well, we opted to
compare against the D3 version of revDSD-PBEP86 for
the sake of consistency. On the GMTKN55 data set, the
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revDSD-PBEP86-D3(BJ) functional performs about 0.1
kcal/mol worse than the D4 version in the weighted mean
absolute deviation.9

The double-hybrid ωB97M(2) functional7 would be
another interesting potential comparison, since it per-
forms noticeably better than the ωB97X-V and ωB97M-
V functionals tested here and even slightly better
than the revDSD functionals (e.g. ∼0.1 kcal/mol bet-
ter than revDSD-PBEP86-D4 for GMTKN55).4 However
ωB97M(2) is not presently implemented in any of the
software packages used here. Overall, the four functionals
selected here are representative of top-performing func-
tionals in their respective categories.

To facilitate comparisons between the MP2-based
methods and the DFT functionals, Table II employs
color-coding based on the relative RMS errors (i.e. RMSE
divided by the average magnitude of the benchmark en-
ergy in each set). Dark blue corresponds to relative RM-
SEs of 5% or less, light blue to relative RMSEs in the
range 5–10%, orange to those in the range 10–25%, light
red for the range 25–50%, and dark red for larger relative
RMSEs. Figure 2 plots the relative RMSEs for all mod-
els except MP2. MP2 is omitted from Figure 2 because
its large errors would obscure the comparison among the
better-performing methods.

Considering first the intermolecular interactions, Fig-
ure 2a highlights how most of these dispersion-corrected
MP2 and DFT models perform well, but revDSD-
PBEP86-D3(BJ), SCS-MP2D and ωB97M-V are the
clearly the top performers. The most noticeable dif-
ferences among the models occur for NBC10 and the
charge transfer set. In NBC10, revDSD-PBEP86-
D3(BJ) (RMSE 0.07 kcal/mol), SCS-MP2D (RMSE 0.14
kcal/mol) and ωB97M-V (0.16 kcal/mol) exhibit errors
that are a factor of 2–3 times smaller than those for
MP2D and the other two functionals. For the charge
transfer set, all four functionals perform noticeably worse
than SCS-MP2D, especially DSD-BLYP-D3(BJ). Delo-
calization error in approximate functionals hinders the
description of such systems. The inclusion of exact ex-
change and/or range-separation in these functionals re-
duces delocalization error considerably, but the RMSEs
for this set remain appreciably larger than for any of the
other intermolecular interaction data sets.

The performance of SCS-MP2D is also competitive
with these density functionals for the conformational
energy data sets. No single model performs uni-
formly well across all five test sets, but SCS-MP2D
and revDSD-PBEP86-D3(BJ) exhibit the most consis-
tent performance. The revDSD-PBEP86-D3(BJ) func-
tional performs noticeably better for SCONF, MCONF,
and PCONF21, about the same for Amino20x4, and ap-
preciably worse for ACONF. However, SCS-MP2D either
performs better than or is on par with the other three
functionals. ACONF provides the most notable excep-
tion, with the other three functionals performing quite
a bit better than SCS-MP2D and revDSD-PBEP86-
D3(BJ). The peptide conformations in PCONF21 are in-

teresting for two reasons. First, due to the small average
conformational energies, the relative RMSE values for
most models are more than double those of the other sets,
even if the absolute RMSE values are similar to those in
MCONF. Second, while the ωB97M-V functional gener-
ally performs very well for conformational energies, its
0.69 kcal/mol RMSE for PCONF21 is roughly double
that of SCS-MP2D (0.32 kcal/mol) and noticeably worse
than the other three functionals (0.23–0.48 kcal/mol).

The behavior of the various models for the reaction
energy data sets follows similar patterns. SCS-MP2D
exhibits root-mean-square errors that are typically ∼20–
70% smaller than those for DSD-BLYP-D3(BJ) and
ωB97X-V for DARC, ISO34, ISOL24, and IDISP. The
only exception is that SCS-MP2D and DSD-BLYP-
D3(BJ) perform about the same on IDISP (1.29 and
1.31 kcal/mol RMSE, respectively). The comparison be-
tween SCS-MP2D and ωB97M-V is more mixed, with
SCS-MP2D performing better on ISOL24 and IDISP, and
ωB97M-V giving smaller errors for DARC and ISO34.
As shown in Figure 2c, SCS-MP2D does notably pro-
vide much more consistent relative errors than ωB97M-V,
however (Figure 2). Finally, revDSD-PBEP86-D3(BJ) is
the clear winner for these reaction energies, with errors
that are often only half those of SCS-MP2D.

Figure 2d aggregates the relative errors for all methods
except MP2 on all the data sets. It highlights how SCS-
MP2D, MP2D, and all of the density functionals exam-
ined here generally perform well. The best-performing
model is revDSD-PBEP86-D3(BJ), but SCS-MP2D is
only moderately worse. The general consistency of both
models across the different data sets is particularly no-
table. This can also be seen from the mean and me-
dian statistics of the relative RMSEs for all data sets in
Table II: revDSD-PBEP86-D3(BJ) exhibits the smallest
mean and median errors of 4.9% and 4.1%, respectively.
SCS-MP2D performs a little worse at 5.9% (mean) and
4.4% (median), and ωB87M-V is close behind with a me-
dian error of 4.5%, though its mean error of 8.2% is much
larger due to its poor performance on PCONF21. The
statistics also highlight that MP2D is fairly competitive
with DSD-BLYP-D3(BJ) and ωB87X-V, but those three
models represent a noticeable decrease in accuracy com-
pared to the best three.

In other words, SCS-MP2D is highly competitive with
some of the best density functionals on these benchmark
sets. Based on earlier benchmarks, one anticipates that
revDSD-PBEP86-D4 and ωB87M(2) would perform even
a little better than any of the models here. On the other
hand, there are some very encouraging features of SCS-
MP2D here. First, while SCS-MP2D has 7 empirical pa-
rameters and the DSD functionals have six, ωB97X-V has
10 and ωB97M-V has 12. The fact that SCS-MP2D ex-
hibits good performance and transferability with a mod-
est number of empirical parameters speaks well to the
physical partitioning of the dispersion and residual cor-
relation energies in the model. Second, substantial er-
ror reduction was obtained with the revDSD functionals
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compared to the original DSD versions by optimizing the
empirical paramaters against a much larger data set.9

This raises the prospect that a similar strategy might
lead to further improvements for SCS-MP2D as well.

3. Anion-Anion interactions in the SSI data set

Despite overall good performance on the SSI data set64

(RMSE of 0.17 kcal/mol), SCS-MP2D actually performs
slightly worse than the original MP2D method (0.16
kcal/mol). The subset breakdown in Figure 3 makes
clear that the interactions involving anions, especially
the anion-anion subset, are the primary driver of this
larger RMSE. In fact, MP2 actually performs better than
SCS-MP2, MP2D, and MP2C on this anion-anion sub-
set, which indicates there may be a general error in the
dispersion correction scheme used in these methods for
ionic species (Table III). This behavior contrasts the re-
sults of the IHB100 data set of 100 hydrogen-bonded ion
pairs, where SCS-MP2D performs somewhat better than
either MP2 or MP2D (Table II).

The SSI reference data uses Sherrill’s silver stan-
dard DW-CCSD(T**)-F12 approach. For compari-
son, we also computed the energies using conventional
CCSD(T)/CBS as computed from MP2/aug-cc-pV[TQ]Z
and CCSD(T)/aug-cc-pVDZ. Changing the reference
data reduces the SCS-MP2D RMSE modestly from 0.77
to 0.65 kcal/mol, but it does not alter the fundamental
story that SCS-MP2D is performing worse than MP2D
for the anion-anion interactions.

For comparison, Table III also compares the perfor-
mance of several density functionals on the anion-anion
subset. With an RMSE of 0.73 kcal/mol, ωB97X-V
performs comparably to SCS-MP2D. revDSD-PBEP86-
D3(BJ) and DSD-BLYP-D3(BJ) perform only moder-
ately better at 0.62 and 0.50 kcal/mol, respectively.
In contrast, ωB97M-V performs outstandingly with an
RMSE of only 0.29 kcal/mol. These anion-anion inter-
actions represent only a small fraction of the full set,
however, and the different models exhibit much smaller
variations in RMSE across the full SSI data set.

One possible source of the SCS-MP2D behavior (and
the two DSD functionals, to a lesser extent) could lie in
the D3 dispersion correction. The D3 dispersion coef-
ficients are interpolated from neutral hydrides based on
the geometry-dependent coordination number. They do
not, however, directly differentiate between neutral and
ionic environments. Anions tend to be more polarizable
and likely exhibit stronger dispersion interactions that
are perhaps not handled ideally in the MP2D and SCS-
MP2D models. The newer D4 dispersion correction52

accounts for the effect of atomic charge in the coordi-
nation numbers used to calculate the dispersion coeffi-
cients. Indeed, the performance of the DSD-family of
double-hybrid functionals improves noticeably over a va-
riety of benchmark sets when the D4 correction is used
in place of D3.9 Perhaps a version of the MP2D-type

methods based on D4 would perform better for these
anion-anion interactions. On the other hand, it is also
worth noting that MP2C, which computes the UCHF
and CKS dispersion contributions from first principles,
still performs worse than canonical MP2 and ωB97M-V.
In other words, the worse performance of the dispersion-
corrected MP2 models is probably not entirely due to
the D3 dispersion correction. Exchange-dispersion and
induction-dispersion couplings are also important in ionic
interactions,73 and it is possible that the CKS dispersion
correction and/or spin-component scaling in the MP2D-
type methods disrupt some favorable error cancellation
between the UCHF dispersion and those other terms.

C. Two Challenging Examples

The data sets examined above provide a broad per-
spective for the performance of SCS-MP2D relative to
other models, but it can also be instructive to look at
specific, challenging systems. Here we focus on two:
the torsional scan about the key dihedral angle in the
ROY molecule23,24,74 and the dissociation of the an-
thracene photodimer.49,75,76 Both have proved challeng-
ing for common GGA and hybrid density functionals due
to delocalization error stemming from changes in the ex-
tent of π conjugation in these systems. Comparing how
several top-performing models behave on these potential
energy curves provides further insights into their capa-
bilities.

1. ROY dihedral angle scan

The ROY molecule (Figure 4a) holds the current
record for the largest number of fully characterized crys-
tal polymorphs.77–82 These polymorphs exhibit vibrant
red, orange, or yellow crystals, depending on the de-
gree of conjugation between the two aromatic rings as
governed by the dihedral angle θthio (Figure 4). The
12 characterized polymorphs lie within a narrow ∼1–
2 kcal/mol energy window, and even modest failures
to predict these conformational energies correctly in-
hibits accurate energy ranking of the different crys-
tal polymorphs.23–25,74,78 GGA density functionals such
as B86bPBE-XDM typically predict the thermodynami-
cally preferred Y polymorph to be one of the least stable
crystal forms (Figure 5), while red/orange forms are ar-
tificially stabilized. Compared to CCSD(T) benchmarks,
MP2D predicts the conformational energies much more
reliably than conventional GGA and hybrid function-
als, and it is one of the relatively few methods that has
been shown to predict the polymorph stabilities largely
correctly.24,25

Figure 4 plots the one-dimensional conformational
energy scan for θthio. The geometries were taken
from ref 24, where they were obtained by constrain-
ing the dihedral angle at different angles 0–150◦ (in 10◦
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FIG. 3. Root mean square error of MP2C, MP2D, SCS-MP2D, and ωB97M-V for the different interaction categories in SSI
relative to the DW-CCSD(T)-F12 reference values of ref 64.

TABLE III. Root-mean-square errors for various models in the anion-anion interaction subset of SSI compared to those for the
full SSI data set, using the benchmark DW-CCSD(T**)-F12 reference values of ref 64.

Method Anion-Anion Subset Full SSI Set
MP2/CBS (Ref 49) 0.36 0.36

MP2C/CBS (Ref 49) 0.43 0.12
MP2D/CBS (Ref 49) 0.43 0.16

SCS-MP2D/CBS (this work) 0.77 0.17
DSD-BLYP-D3(BJ)/aug-cc-pVQZ (this work) 0.50 0.15

revDSD-PBEP86-D3(BJ)/aug-cc-pVQZ (this work) 0.62 0.12
ωB97X-V/aug-cc-pVTZ (Ref 64) 0.73 0.16
ωB97M-V/aug-cc-pVTZ (Ref 64) 0.29 0.15

steps) and relaxing all other degrees of freedom using
B3LYP-D3(BJ)/def2-TZVP. Single-point energies were
then computed on these geometries with the various
methods considered in Figure 4. CCSD(T) benchmarks24

predict a global minimum around 120◦. A secondary,
more shallow minimum occurs around 50◦, and it is sep-
arated from the global minimum by a small barrier near
70◦. The biggest challenge along this potential energy
coordinate occurs in the ∼0–80◦ region and above 120◦—
i.e. for the more planar structures.

Typical GGA functionals like B86bPBE-XDM dra-
matically over-stabilize the more planar structures (Fig-
ure 4a), and this leads to over-stabilization of the poly-
morphs with red and orange colors (R, OP, ON, & ORP;
θthio ∼ 20–60◦) relative to the yellow ones (Y, YN, &
YT04; θthio ∼ 100–120◦).23,24,74 This behavior stems
from delocalization error in the functionals artificially
stabilizing the more planar conformations that allow
greater conjugation between the two rings.25 B86bPBE-
XDM also shifts the global minimum of the scan closer to
130◦ than the true 120◦ value, and it incorrectly predicts
both the position and magnitude of the barrier between
the two wells. The hybrid B3LYP-D3(BJ) partially cor-

rects the energies and positions of the two minima and
the barrier, but not enough.

MP2D performs considerably better than these tradi-
tional GGA and hybrid functionals. It predicts the cor-
rect position of the global minimum, and overestimates
the barrier height and secondary minimum stability by
< 0.25 kcal/mol. While the position of the secondary
minimum is ∼10◦ degrees too high with MP2D, it does
position the barrier maximum correctly. SCS-MP2D im-
proves upon MP2D modestly throughout the low-angle
range, such that the minima and barrier maximum are
all positioned correctly. The overall RMSE relative to
CCSD(T) is about a third smaller than that of MP2D
(0.12 kcal/mol vs 0.17 kcal/mol).

Consider next the double hybrid DSD-BLYP-D3(BJ)
functional (Figure 4b). It performs fairly well near 120◦

and below 30◦, but it overestimates the barrier near 80◦

and shifts the angle at which the minima occur by about
10◦ in opposite directions. This leads to a distorted po-
tential energy curve. In contrast, the range-separated
hybrid ωB97X-V and hybrid meta-GGA ωB97M-V func-
tionals under-stabilize the low-angle conformations, such
that no minimum occurs near 50◦ at all. So while the
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was calculated with periodic B86bPBE-XDM throughout.

magnitude of the errors at any individual point along
the energy surface is not especially large for those three
functionals, the shapes of the potential energy curves
are qualitatively incorrect, particularly for the ωB97-
based functionals. The revDSD-PBEP86-D3(BJ) func-
tional performs the best among the DFT models for this
curve, though whether it or SCS-MP2D performs better
is debatable and depends on which regions of the curve
one focuses on.

Figure 5 examines the impact of the conformational en-
ergy differences on the crystal polymorph stabilities by
comparing the relative lattice energies for the seven poly-
morphs with experimentally reported enthalpies.83–86

The lattice energies were computed via the monomer-
correction approach,25 which models the crystal energy
as a combination of periodic DFT for the intermolec-
ular interactions and a higher-level of theory for the
intramolecular conformational energy. Here, the inter-
molecular part is computed with the B86bPBE-XDM

functional (results and fixed-cell optimized geometries
taken from ref 24), while the intramolecular conforma-
tional energy correction is computed with SCS-MP2D
and the other methods listed in Figure 5.

Figure 5 highlights how the GGA B86bPBE-XDM
overstabilizes the red and orange polymorphs (R, ON,
OP, ORP) relative to the yellow ones (YN, YT04, Y).
Correcting the conformational energies with MP2D or
SCS-MP2D gives results in much better agreement with
experiment, and only the position of the YN polymorph
differs appreciably from experiment. In contrast, correct-
ing the conformational energies with DSD-BLYP-D3(BJ)
or revDSD-PBEP86-D3(BJ) only partially resolves the
B86bPBE-XDM problems, with the R polymorph still
predicted to be more stable than form Y. ωB97M-V
performs somewhat better, though it seemingly over-
estimates the destabilization of R, OP, ON, and ORP,
which is consistent with the errors seen in the low-angle
region of conformational energy scan (Figure 5). Overall,
Figure 5 highlights how the conformational energy errors
seen in Figure 4 impact polymorph energy differences.

The comparison against experiment assumes that
B86bPBE-XDM is adequate for describing the inter-
molecular interactions in the crystal, and it neglects
phonon contributions to the enthalpies.24 Performing the
conformational energy correction with CCSD(T) leads to
polymorph stabilities that are seemingly slightly worse
than the MP2D or SCS-MP2D ones compared to exper-
iment, which is presumably an artifact of those other
approximations and differing degrees of fortuitous error
cancellation. In any case, the SCS-MP2D-corrected poly-
morph energies exhibit better agreement with the exper-
imental and CCSD(T)-corrected energies than do any of
the density functionals.
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2. Anthracene photodimerization

The anthracene photodimerization potential energy
surface is another system that challenges wave func-
tion and DFT methods alike. This photochemical re-
action converts two non-covalent π-stacked anthracene
molecules to form the covalently linked “butterfly” pho-
todimer product (Figure 6). The difficulty of model-
ing the energy difference between reactants and products
with electronic structure methods was first highlighted by
Grimme.75 The largest difficulty lies in the photodimer
product, which exhibits atypically long C-C single bonds
between the rings, highly distorted “anthracene” moi-
eties with diminished π conjugation, and strong close-
range van der Waals dispersion interactions between
rings. This reaction is also of practical importance, as
there has been considerable interest in anthracene-based
photomechanical materials,87–90 Problematic energy pre-
dictions for this reaction directly impact the ability for
modeling to help understand those systems76 and design
anthracene derivatives with improved photomechanical
switching properties.

To study this system, a one-dimensional reaction co-
ordinate as a function of the separation between the two
anthracenes has previously been constructed.49 At each
constrained separation of the four carbons involved in
forming the new bonds, all other degrees of freedom were
relaxed. Two caveats regarding this energy curve here
should be noted: (1) The constraints applied to generate
this curve enforce a symmetrically stacked sandwich π
dimer, while the true system would offset the anthracene
molecules laterally at longer interdimer separations. (2)
No effort was made to model the excited-state chemistry
or the multi-reference character associated with the form-
ing/breaking of two covalent C-C bonds simultaneously
in the intermediate region between ∼2–3 Å. The spin-
restricted wave functions used here will perform poorly
in this region; our focus lies on the reactant and product
basins. A full potential energy curve is provided in SI
Section S4 for completeness.

Figure 6 shows how several different methods perform
in the non-covalent π stacked region (near 3.6–3.8 Å) and
the covalent photodimer region (near 1.6 Å). Though not
shown here, traditional GGA and hybrids like B86bPBE-
XDM and B3LYP-D3(BJ) perform poorly for this sys-
tem, exhibiting errors of up to tens of kcal/mol and pre-
dicting the photodimer product to be less stable than two
non-interacting anthracene molecules.49,75,76 In contrast,
MP2D performs quite well relative to CCSD(T).49,76 It
binds both the π-stacked dimer and the photodimer a few
kcal/mol too tightly, but the systematic nature of the er-
ror between the two energy wells leads to a photodimer-
ization reaction energy of -2.8 kcal/mol that agrees al-
most perfectly with the CCSD(T) value of -2.9 kcal/mol
(Table IV). It also improves considerably over MP2
(not shown here).49 SCS-MP2D performs a little bet-
ter than MP2D—it slightly reduces the errors relative
to CCSD(T) in the two minima, and it actually mirrors

CCSD(T) almost perfectly in the bond-breaking region
near 2.5 Å, unlike MP2D. The SCS-MP2D reaction en-
ergy of -3.3 kcal/mol is also in excellent agreement with
CCSD(T).

The density functionals examined here perform bet-
ter than traditional GGAs and hybrids for this reaction,
but flaws remain. In particular, ωB97X-V and ωB97M-
V both overbind the photodimer and underbind the π
dimer. This means that the errors compound when com-
puting the reaction energy, and the resulting ∆E is much
too exothermic (-9.2 and -12.3 kcal/mol, respectively, Ta-
ble IV). DSD-BLYP-D3(BJ) reverses the binding trends
compared to those two functionals, and it incorrectly
predicts almost zero energy difference between the two
species. revDSD-PBEP86-D3(BJ) gives the best DFT
reaction energy of -2.0 kcal/mol, though it still performs
a little worse that SCS-MP2D.

Table IV also lists RMSE values relative to the
CCSD(T) benchmarks, as computed across all data
points used in each of the two basins. In the non-
covalent π dimer basin (3.2–6 Å), MP2D, SCS-MP2D,
and all three functionals perform very well, with er-
rors of 0.5 kcal/mol for SCS-MP2D and 0.7–1.2 kcal/mol
for the four functionals. In contrast, the errors in the
photodimer basin (1.4–2.0 Å) are somewhat larger for
ωB97X-V (6.4 kcal/mol) and ωB97M-V (4.6 kcal/mol),
compared to only 1.2 kcal/mol for SCS-MP2D and 1.8
kcal/mol for revDSD-PBEP86-D3(BJ). Overall, spin-
component scaling reduces the MP2D errors by about
a factor of two across these two basins, and SCS-MP2D
reproduces this challenging CCSD(T) potential energy
curve more faithfully than any of the four density func-
tionals.

TABLE IV. Reaction energy ∆Erxn for anthracene pho-
todimerization, 2 C14H10 −→ (C14H10)2,a in kcal/mol. Root-
mean-square errors relative to the CCSD(T) benchmarks are
also presented for the photodimer (1.4–2.0 Å) and π dimer
(3.2–6.0 Å) basins from Figure 6.

Root-Mean-Square Error
Method ∆Erxn

a Photodimer π Dimer
CCSD(T) -2.9

MP2 -5.7 10.0 5.1
MP2D -2.8 2.0 1.3

SCS-MP2D -3.3 1.2 0.5
DSD-BLYP-D3(BJ) 0.1 1.5 0.9

revDSD-PBEP86-D3(BJ) -2.0 1.8 0.8
ωB97X-V -12.3 6.4 1.2
ωB97M-V -9.2 4.6 0.7

a ∆Erxn = E(1.6 Å) − E(3.6 Å)

V. TIMINGS

The computational cost of SCS-MP2D is functionally
equivalent to that of MP2, since the dispersion correction
incurs only force-field-like cost. With modern density-
fitting approximations, the cost of MP2 is comparable



16

FIG. 6. Potential curves along the anthracene photodimerization curve for (a) the photodimer and (b) the π-stacked non-
covalent dimer.

to or faster than several of the other functionals con-
sidered here. Table V compares the relative timings of
several density functionals against SCS-MP2D. For con-
sistency, all calculations were performed in PSI4 and with
the aug-cc-pVQZ basis set. Density fitting was used for
both the self-consistent field (SCF) and perturbative cor-
rection portions of the calculations, and core electrons
were frozen for the perturbation corrections. All other
parameters, including integral thresholds and exchange
correlation integration grids, were left at their default
values. Timing data is presented the 33-atom amino
acid tyrosine (Amino20x4 geometry TYR xab) and for
the 81-atom lanosterol (ISOL24 geometry i4e). The tim-
ings are relative to SCS-MP2D, which took 27 minutes
and 9.7 hours of wall time, respectively. As can be seen
from the table, SCS-MP2D and DSD-BLYP-D3(BJ) ex-
hibit comparable computational cost. The DSD-BLYP-
D3(BJ) calculations are slightly more expensive per SCF
iteration, but SCS-MP2D requires 2-3 additional SCF cy-
cles to converge in these examples due to the tighter de-
fault PSI4 convergence criterion (10−8 hartrees for MP2
calculations vs. 10−6 hartrees for the DFT functionals).
On the other hand, SCS-MP2D is ∼2–2.5 times faster
than the ωB97X-V and ωB97M-V functionals, despite
the stricter SCF convergence criterion in SCS-MP2D. In
other words, for a given choice of basis set, SCS-MP2D
requires similar or less time than these state-of-the-art
functionals.

Timing comparisons in practical applications will de-
pend on basis set, of course. For example, including an
SCS-MP2D/aug-cc-pVTZ calculation to enable extrapo-
lation to the CBS limit would increase the SCS-MP2D
cost by 10–20% in these two species, but it would still
be roughly twice as fast as the ωB97X-V and ωB97M-V
functionals. On the other hand, changing the basis set
to def2-QZVP would reduce the DFT costs several-fold.
While DFT functionals often perform better than MP2
in smaller basis sets, we note that aug-cc-pVQZ or sim-
ilarly large basis sets are recommended for use with the

ωB97M-V functional, for example.6

TABLE V. Relative PSI4 wall times for several of the density
functionals considered here compared to SCS-MP2D, all em-
ploying the aug-cc-pVQZ basis set and density fitting. The
benchmarks employ 4 (tyrosine) or 6 (lanosterol) cores of an
AMD EPYC 7282 processor with 4 gigabytes of DDR4-3200
MHz random access memory per core and Micron 5300 PRO
solid-state disk storage.

Tyrosine Lanosterol
C9H11NO3 C30H50O

# of basis functions: 2096 4780
SCS-MP2D 1.0 1.0

DSD-BLYP-D3(BJ) 1.1 0.9
ωB97X-V 2.1 2.4
ωB97M-V 2.5 2.6

VI. CONCLUSIONS

The last decade has witnessed substantial performance
improvements in lower-cost models based on DFT and
MP2. This study presented a new spin-component-
scaled, dispersion-corrected MP2 model that provides ac-
curacy that is competitive with some of the best density
functional models for intermolecular interactions, confor-
mational energies, and thermochemistry in organic sys-
tems. Indeed, SCS-MP2D out-performs the several state-
of-the-art density functionals in the particularly challeng-
ing potential energy curves examined here. Among the
benchmark test sets examined, the largest SCS-MP2D
performance improvements over MP2D occur for the non-
bonded complexes in NBC10, charge transfer reactions,
the ionic hydrogen bonds of IHB100, and many of the
conformational and reaction energy data sets. For sys-
tems with ∼100 atoms, the computational cost of SCS-
MP2D is also similar to or lower than that of top-tier
range-separated and double-hybrid density functionals.

SCS-MP2D is the first spin-component-scaled model
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for which a single set of spin scaling coefficients can de-
scribe both inter- and intramolecular interactions well.
The fact that the seven empirical parameters in SCS-
MP2D could be trained using a relatively small amount
of training data while maintaining excellent transferabil-
ity to new systems suggest that the partitioning of the
MP2 corrections into an improved treatment of disper-
sion plus a reweighting of the residual correlation energy
components is theoretically sound. Overall, this research
shows that correlated wavefunction methods continue to
provide a viable alternative to DFT for even reasonably
large molecules.
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