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Abstract:  Nucleosides are fundamental building blocks of DNA and RNA in all life forms and 
viruses. In addition, natural nucleosides and their analogs are critical in prebiotic chemistry, innate 
immunity, signaling, antiviral drug discovery and artificial synthesis of DNA / RNA sequences. 
Combined with the fact that quantitative structure activity relationships (QSAR) have been widely 
performed to understand their antiviral activity, nucleoside analogs could be used to benchmark 
generative molecular design. Here, we undertake the first generative design of nucleoside analogs 
using an approach that we refer to as the Conditional Randomized Transformer (CRT).  We also 
benchmark our model against five previously published molecular generative models. We 
demonstrate that AI-generated molecules include nucleoside analogs that are of significance in a 
wide range of areas including prebiotic chemistry, antiviral drug discovery and synthesis of 
oligonucleotides. Our results show that CRT explores distinct molecular spaces and chemical 
transformations, some of which are similar to those undertaken by nature and medicinal chemists. 
Finally, we demonstrate the potential application of the CRT model in the generative design of 
molecules conditioned on Remdesivir and Molnupiravir as well as other nucleoside analogs with 
in vitro activity against SARS-CoV-2.  
 
One-Sentence Summary:  Generative design of nucleoside analogs relevant to antiviral drug 
discovery, prebiotic chemistry and synthetic biology. 
 
 
Introduction:  Genetic information of all life forms and viruses is stored in nucleic acid sequences 
which are linear polymers synthesized in cells by the polymerization of four distinct nucleotide 
triphosphates - adenosine (ATP), guanosine (GTP), cytidine (CTP), thymidine (TTP) and uridine 
(UTP, which replaces TTP in RNA). Each nucleotide consists of a purine or pyrimidine 
nitrogenous base attached to a ribose sugar (deoxyribose for DNA) together forming a nucleoside, 
linked to a triphosphate group.  In addition to their role as the building blocks of DNA and RNA, 
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nucleotides and nucleosides play critical roles in several biological processes including energy 
storage (ATP) (1), signaling pathways (e.g. cyclic adenosine monophosphate, cAMP) (2, 3), innate 
immunity (e.g. cyclic guanosine monophosphate-adenosine monophosphate, cGAMP) (4, 5), as 
cofactors for specific enzymes (e.g. s-adenosylmethionine, SAM) (6, 7) and as neurotransmitters 
(e.g. adenosine) (8).  Chemical analogs of nucleotides and nucleosides therefore have a wide range 
of applications, for example as substrates for artificial synthesis of DNA/RNA sequences with 
increased resistance to nucleases (9, 10)  or reduced effect on innate immune responses (11, 12), 
inhibition of viral DNA and RNA polymerases (13, 14), inhibition of tumor cell replication (15, 
16) and treatment of autoimmune diseases (17). Nucleoside analogs are also critical in 
understanding the early evolution of life on earth under prebiotic conditions (18–20) and could 
provide a means of engineering synthetic organisms with expanded genetic alphabets (21). Thus, 
exploration of molecular space of nucleoside analogs could have a huge impact on several areas 
of fundamental and translational biology.  
 
To that end, we undertake, to the best of our knowledge, the first computational design of 
nucleoside analogs in which the resulting molecules are designed de novo using artificial 
intelligence (AI) models, an approach that could potentially accelerate the design of new 
nucleoside analogs. Recently, deep generative models that use neural networks have been 
employed to search chemical space(s) and identify promising drug candidates (22).  The family of 
deep generative models consist of generative adversarial networks (GAN) (23, 24), adversarial 
autoencoders (AAE) (25), variational autoencoders (VAE) (26), Long Short-Term Memory 
(LSTM) (27) and Gated Recurrent Unit (GRU) models (28).  We present a benchmarking study of 
five previously reported, general purpose deep generative models to assess their performance in 
generating nucleoside analogs when conditioned on a small set of natural nucleosides.  
 
Deep generative models are typically trained on a large corpus of molecules.  These models can 
either use a SMILES or graphical representation of molecules to learn the rules of chemical 
construction.  For example, given the first four atoms and bonds of a molecule in SMILES format, 
such as “Cc1c”, the model learns to generate a chemically valid molecule or “Cc1ccccc1” 
(Toluene).  A deep generative model trained on a large corpus of molecules may learn to generate 
valid molecules that are diverse; however, the molecules may not contain specific drug-like 
properties. For example, in drug discovery, chemists are often interested in exploring a distinct 
area of chemical space, where molecules have desired properties and structure.  We refer to the 
task of generating molecules with specific structural attributes as conditional generation. 
 
When faced with the task of conditional molecule generation, two potential issues arise: generating 
molecules that are structurally close to a target class (here, the nucleosides), but that are diverse. 
These twin goals – generating diverse molecules with desired properties – are diametrically 
opposed.  Models that yield highly unique compounds may not produce molecules that are similar 
to the reference set.  
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The task of conditional molecule generation can be approached with transfer learning (also known 
as fine-tuning) or, alternatively, direct steering of desired chemical properties (22). The transfer 
learning approach trains a model on a large corpus of data, and then fine-tunes the model with a 
smaller, more focused dataset. The idea behind transfer learning is that a model can learn the 
general rules of molecular construction from a large, widely available dataset and then transfer this 
general knowledge to a specific task. For example, a deep generative model can first be trained on 
a large corpus of molecules and then “fine-tuned” on a smaller dataset of compounds (the 
nucleosides), where the goal is to generate chemically valid molecules (learned from the larger 
dataset) that are similar in structure to the molecules in the smaller dataset (the nucleosides). This 
approach is potentially constrained by the problem of catastrophic forgetting (29), or the tendency 
of the weights of a neural network to “forget” the patterns learned from the training dataset when 
they are subsequently fine-tuned on another dataset, which may contain a different distribution of 
examples. 
 
Another approach to conditional molecular generation is direct steering. Direct steering 
simultaneously trains a model to learn the rules of valid chemical generation and to focus on a 
specific property, using a large dataset.  During training, this approach provides two inputs to a 
generative model – a representation of the molecule and one of its properties.  The model learns 
to associate certain properties (e.g. drug-likeness) with a particular molecular representation and 
to generate valid molecules at the same time.    
 
To deal with the dual issues of generating focused, yet diverse molecules, we develop a 
transformer-based model, which we call Conditional Randomized Transformer (CRT). CRT is a 
decoder-only model that is based on the original architecture proposed by Radford et al. (60) and 
modified by Bagal et al. (35).  (See Fig. 1 for a high-level depiction of CRT’s architecture and the 
Materials and Methods section for a more complete description.)   
 
We incorporate both fine-tuning and direct steering into our training pipeline to address the issue 
of generating molecules with desired properties and demonstrate that CRT successfully addresses 
the catastrophic forgetting issue.  CRT incorporates direct steering by conditioning on molecular 
structure with Morgan fingerprints. This is important because Morgan fingerprints capture 
important chemical relationships between molecules that are correlated with bioactivity.  CRT also 
uses a training pipeline that first learns the rules of chemical construction from a large dataset and 
then transfers this learning via fine-tuning to smaller datasets consisting of only nucleoside 
molecules.  Unlike other models, which freeze neural network layers when fine-tuning, we show 
that CRT works best when the layers are not frozen.  We demonstrate that the reason why this 
technique works is because of the way in which the model updates network parameters.   
 
To address the issue of generating chemically diverse molecules, we infuse diversity into the 
generation process by randomizing the Morgan fingerprints of targeted molecules. Application of 
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CRT to design nucleoside analogs conditioned on natural or synthetic nucleosides shows that it 
generates molecules that are similar or identical to nucleoside analogs with a wide range of 
biological significance, including in basic biology and medicinal chemistry. To facilitate further 
exploration and critique by the community, we publicly provide the most promising nucleoside 
analogs generated by our model. 
 

 
 
Fig. 1.  CRT high-level architecture.  The CRT implementation consists of 3 phases: (1) training, 
(2) fine-tuning, and (3) generation.  All 3 phases share a similar architecture, except as follows.  
(1) During training, a Morgan fingerprint (MFP) and SMILES representation are input.  A large, 
augmented dataset is used.  The model is trained with cross-entropy loss.  During training, CRT 
learns the rules of valid chemical construction and to associate a Morgan fingerprint (molecular 
structure) with a SMILES representation of a compound.  (2) Once trained, the model is fine-tuned 
on a smaller dataset that is focused on a certain area of chemical space (e.g., the nucleosides).  
During fine-tuning, both Morgan fingerprints and SMILES representations of the targeted 
molecules are input.  (3) During generation, only Morgan fingerprints are used.  The Morgan 
fingerprints are randomized, subject to a hyper-parameter, to encourage diversity.  The 
combination of specific structural cues (the Morgan fingerprints), the fine-tuning process and 
randomization allows CRT to generate focused molecules that are also diverse.  
 
Results 
 
Model benchmarking on parent natural nucleosides and synthetic nucleoside analogs 
demonstrates variable performance of models  
 
We first benchmarked five previously reported generative molecular design  models namely: a 
Variational Autoencoder (VAE) (30, 31), two Long Short Term Memory models (LSTM) – CLM 
(32) and CRNN (33), an Adversarial Autoencoder (AAE) (34) and a base Transformer model, 
LIG-GPT (35) (see detailed descriptions in Methods). The five benchmark models were originally 
tested or applied to non-nucleoside datasets (e.g., TRPM8 ligands, MEGX, Plasmodium 
falciparum, or optimized on specified properties, such as the quantitative estimate of drug-
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likeness). In addition, we developed a transformer-based model - the Conditional Randomized 
Transformer (CRT), which during the fine-tuning step, conditions molecular generation using 
extended-connectivity fingerprints (commonly referred to as ECFPs or Morgan fingerprints) (36). 
Each of the models were first trained on a large database of small molecules that was filtered based 
on bioactivity (Low Dataset, Moret et al (33)).  The models were then fine-tuned on five natural 
nucleosides - henceforth referred to as the Parent Nucleosides (adenosine, guanosine, cytidine, 
uridine, thymidine). After training and fine-tuning, each of the models was applied in generating 
1,000 molecules (see Supplementary Tables S1 to S6), followed by an assessment of their novelty, 
validity, uniqueness and chemical similarity to the Parent Nucleosides relative to randomly 
sampled molecules from the training set (Fig. 2).  
 
Out of the six models, CRNN, LIG-GPT and AAE generated the highest proportion of valid, 
unique and novel molecules (see Materials and Methods section for metrics; Fig. 2 A; 
Supplementary Table 8).  However, their generated molecules are less chemically similar to the 
Parent Nucleosides, as measured by the Similarity of Nearest Neighbor (SNN) and Frechet 
ChemNet Distance (FCD) metrics (Fig. 2 B; see Materials and Methods section for details on SNN 
and FCD estimation).  Therefore, in terms of generation conditioned on the Parent Nucleosides, 
CRT and CLM are the top performing models, with CRT producing the best similarity metrics 
(i.e., highest SNN and lowest FCD).   
 
Because we are interested in generating molecules that are chemically similar to the Parent 
Nucleosides, we focused on a deeper assessment of the molecules produced by the CRT and CLM 
models.  For the Parent Nucleosides, both models produced approximately the same number of 
molecules with a Tanimoto coefficient greater than ~ 0.7 (34 and 30 for CLM and CRT, 
respectively); although CRT produced a higher number of molecules similar to molecules in the 
PubChem database (16 vs. 10).  (Fig. 2 C; See Supplementary Table 9 and 10 for a listing of unique 
molecules generated by CRT and CLM based on the Parent Nucleosides, the individual Tanimoto 
coefficient of each molecule compared to their nearest neighbor in the reference set, and their 
PubChem identifier - CID, if applicable). In general, even though CRT and CLM generated 
structurally distinct molecules, the generated molecules in both cases showed a similar profile to 
the fine-tuning sets (Fig. 2 C; Wilcoxon test P-value = 0.01 for comparison between CRT and 
CLM based on similarity of generated molecules to parent nucleosides.  
 
To provide a more rigorous assessment of the nucleoside analogs generated by CRT and CLM, we 
obtained a set of 188 synthetic nucleoside analogs from Selleckchem (the Synthetic Nucleosides) 
that have a high structural diversity, medicinal activity, cell permeability and have rich structure 
and bioactivity information (37). These nucleoside analogs are frequently used in high throughput 
screening and high content screening. At a threshold of Tanimoto coefficient greater than ~ 0.7, 
there were 61 CLM generated molecules that were similar to the set of synthetic nucleoside analogs 
compared to 41 CRT generated molecules (P = 0.19 for synthetic nucleosides; Fig. 2 C).  
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Fig. 2. Summary of performance of models. A. Validity, uniqueness and novelty of molecules 
generated by each model. CLM validity and uniqueness were not directly determinable (see 
Methods for details). B. Assessment of chemical similarity of generated molecules to the parent 
nucleosides using FCD and SNN relative to random background distribution. C. Tanimoto 
coefficient distributions to Parent Nucleosides and Synthetic Nucleosides.  
 
CRT generated molecules conditioned on Parent Nucleosides contain chemical alterations 
observed in natural and synthetic nucleosides analogs  
 
To gain deeper insights into the relationships between the CRT generated molecules and the Parent 
Nucleosides, we focused on generated molecules with a high similarity to the Parent Nucleosides 
(30 molecules, Tanimoto coefficient > 0.7). At this threshold, 28 of the CRT generated molecules 
were identical or similar to molecules with an existing structure in PubChem, including to naturally 
occurring and synthetic analogs of adenosine, guanosine, uridine, thymidine, hypoxanthine and 
inosine, as well as potential prebiotic nucleosides (Supplementary Table 9). We manually 
inspected the generated structures to identify chemical differences between the generated 
molecules to the Parent Nucleosides (Fig. 3).  
 
Among the generated molecules, we observed chemical transformations involving both changes 
in the ribose moiety of nucleosides as well as some involving altered purine or pyrimidine rings 
(Fig. 3). For example, in five of the molecules, the ribose moiety was replaced with an oxetane 
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ring. Two of these oxetane containing nucleoside analogs are shown in Fig. 3 in which the oxetane 
is connected to a purine (Fig. 3 A) or pyrimidine ring (Fig. 3 B). The generated molecule 2-(6-
aminopurin-9-yl)-4-(hydroxymethyl)oxetan-3-ol (Fig 3 A) is similar to oxetanocin A, an antiviral 
drug first isolated in bacteria (38) while 1-[4-(hydroxymethyl)oxetan-2-yl]-5-methyl-pyrimidine-
2,4-dione (Fig. 3 B) is similar to A-73209, an oxetanocin with antiviral activity against Herpes 
Simplex Virus and Varicella Zoster Virus (39). It is interesting to note that the oxetane ring occurs 
in relatively few natural products, though in many cases when it occurs plays an important role in 
biological activity (40). Furthermore, due its small, polar nature, medicinal chemists have on 
several occasions incorporated oxetane rings into specific drug candidates to enhance their drug-
likeness and gain intellectual property (40). Thus, the ability of the CRT model to generate oxetane 
containing nucleoside analogs given a fine-tuning set of natural nucleosides demonstrates its 
potential in drug discovery.  
 
In addition to alterations in the ribose moiety, we observed changes in purine and pyrimidine rings 
(Fig. 3 C and D). One of the generated molecules (2-(2,6-diaminopurin-9-yl)-5-
(hydroxymethyl)tetrahydrofuran-3,4-diol; Fig. 3 C) is identical to 2,6-diaminopurine riboside, 
which occurs naturally in cyanophage S-2L genome in place of adenine and is unusual in that it 
forms complementary base pairs with thymine involving 3 hydrogen bonds instead of the usual 2 
when thymine pairs with adenine (41, 42). This additional hydrogen bond may contribute to 
stability of synthetic oligonucleotides containing 2,6-diaminopurine (43). Furthermore, this 
nucleoside is of particular interest in prebiotic chemistry because it can be formed abiotically 
alongside adenine and although is rare terrestrially, it has been isolated from meteorites (44), 
increases the rate of non-enzymatic RNA formation (45) and has unique electron donating 
properties that allow it to undergo self-repair upon UV damage (46). One of the generated 
molecules is identical to a modified guanosine residue- N2-methyl-guanosine (Fig. 3 D)- that 
occurs in some natural RNAs including tRNAs of archaea and eukaryotes where it stabilizes the 
sequences (47). 
 
Collectively, these results indicate that CRT generated molecules are of significance in a wide 
range of areas including antiviral drug discovery, oligonucleotide synthesis and prebiotic 
chemistry studies.  
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Fig. 3. Depiction of select CRT generated nucleoside analogs of distinct functional significance in 
fundamental and translational biology. A. Generated nucleoside analog similar to adenosine but 
with an oxetane ring instead of ribose which makes it more related to Oxetanocin A.  B. Generated 
nucleoside analog similar to A-73209, an oxetanocin with antiviral activity. C. Generated molecule 
identical to 2,6-diaminopurine Riboside. D. Generated molecule identical to N2-methyl-guanosine 
which is present in some natural RNAs. Highlighted region of each molecule shows the location 
of the alteration relative to parental natural nucleosides. Structures generated using the ChemDB 
portal (48) and visualizations based on ChemAXon’s MarvinView and MarvinSketch. Standard 
names generated using OpenEye’s LexiChem.  
 
 
Application of CRT to focused generation of nucleoside analogs fine-tuned on anti-SARS-CoV-2 
Nucleosides produces diverse yet structurally similar molecules 
 
Next, we applied CRT to condition the generation of molecules on a set of nucleoside analogs that 
have reported in vitro activity against SARS-CoV-2 (49) (the SARS-CoV-2 Nucleosides – see 
Methods and Materials section). We hypothesize that nucleoside analogs targeting the SARS-
CoV-2 RNA-dependent RNA polymerase contain implicit chemical information that contributes 
to their activity against the enzyme. Thus, searching the molecular space that optimizes the 
properties of the anti-SARS-CoV-2 Nucleosides could lead to more inhibitors against the viral 
enzyme.  
 
For the anti-SARS-CoV-2 Nucleosides, CRT produced 74 molecules with Tanimoto coefficient 
greater than 0.7 when compared to the reference set versus 17 for CLM (Fig. 3).  Nine of the CRT 
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generated molecules were similar to molecules listed in PubChem compared to 4 for CLM (See 
Supplementary Table 11 and 12). In contrast, 29 CRT generated molecules were similar to the 
Synthetic Nucleosides at this threshold while 28 CLM generated molecules were similar to the 
Synthetic Nucleosides (Supplementary Table 13 and 14). Notably, CRT generated molecules 
following fine-tuning with the SARS-CoV-2 Nucleosides were highly similar to this fine-tuning 
set than to the broad Synthetic Nucleosides set (Wilcoxon test P-value = 1.75e-14; Fig. 3 A). 

To gain better insight into the diversity of the properties of the generated molecules, we compared 
the distributions of certain compound properties to the training and fine-tuning sets.  Specifically, 
we compared the distribution of quantitative estimates of drug-likeness (QED) and the logarithm 
of the partition function (logP).  Figs. 4 B and 2 C show a clear difference between the distribution 
of QED and logP properties between the generated (for both CRT and CLM denoted in green) and 
training sets (denoted in blue).  The distribution of the properties of the generated molecules bears 
closer resemblance to the reference sets (denoted in orange), although with some distinctive 
differences. Thus, although the molecules generated by CRT are structurally similar to the fine-
tuning sets, they show diversity in terms of other properties, such as QED and logP.  

 
 
Fig. 4. Assessment of CRT and CLM generated molecules following fine-tuning on the SARS-
CoV-2 active nucleoside set. A. Similarity between CRT generated molecules to SARS-CoV-2 
active nucleosides and Synthetic Nucleosides when CRT was fine-tuned on the SARS-CoV-2 
Nucleosides. B. QED property distributions of generated molecules using the SARS-CoV-2 
Nucleosides as a fine-tuning set (upper panel) or Parent Nucleosides (lower panel). C. logP 
property distributions of generated molecules using the SARS-CoV-2 Nucleosides as a fine-tuning 
set (upper panel) or Parent Nucleosides (lower panel).  
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In addition to assessing the similarity of molecules generated by CRT to the reference sets, based 
on their Tanimoto coefficients, we also performed visual inspection of their chemical structure. 
For this purpose, we examined the RDKit visualizations of certain molecules.  As seen in Figs. 5, 
the CRT generated molecules bear close structural resemblance to their respective Parent 
Nucleosides and SARS-CoV-2 Nucleosides; and yet they contain unique and distinctive variations.  
For the SARS-CoV-2 Nucleosides, we show a generated sample of two of the more prominent 
members of this class - Remdesivir (Fig. 5 A) and Molnupiravir (Fig. 5 C) - as well as 6-Thiopurine 
riboside, Flufylline, and Cloturin (see Fig. 4 B to D). We are able to trace the generated molecules 
to the source molecules because CRT conditions on Morgan fingerprints; unlike other models, 
which only use transfer learning to generate from chemical space.  We believe that the close 
structural resemblance of the generated molecules to the respective source compounds, as well as 
their uniqueness, indicates that CRT is capable of generating structurally similar molecules to the 
Parent Nucleosides and the SARS-CoV-2 Nucleosides.   

 

Fig. 5. Visualization of some of the CRT generated molecules using the SARS-CoV-2 Nucleosides 
as the fine-tuning set. A. Remdesivir and an analog generated by CRT.  B. 6-thiopurine riboside 
and an analog generated by CRT.  C. Flufylline and an analog generated by CRT. D. Cloturin and 
an analog generated by CRT.    

CRT model learns to focus on Morgan fingerprints to guide generation 

To better visualize the manifold searched by the CRT model, we performed a principal component 
analysis (PCA) of the Morgan fingerprints of the training set, fine-tuning sets and the generated 
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molecules for the Natural Nucleosides and the SARS-CoV-2 Nucleosides. In Figs. 6 A and B, the 
PCA of the Morgan fingerprints of each training example is indicated in yellow, the fine-tuning 
instances are in green and the generated molecules are shown in red for CRT and blue for CLM.  
The PCA diagrams are of generated molecules with Tanimoto coefficient of 0.7 or greater.  The 
figures show that the CRT generated molecules (red) search the manifold near and around the 
Parent Nucleosides fine-tuning set (Fig. 6 A) as well as near the SARS-CoV-2 fine tuning set (Fig. 
6 B). In both cases, CRT generated molecules are also diverse (spread out in the molecular space 
shown in the PCA plots). Notably, a virtual walk in this molecular space starting from CRT 
generated molecules passes through paths that include molecules drawn from the SARS-CoV-2 
fine tuning set (Fig. 6 B). This implies that CRT extrapolates the molecular regions lying between 
molecules in the fine-tuning set that are separated spatially in this space.  
 

 
 
Fig. 6. Molecular space visualization of generated molecules relative to the fine-tuning sets.  
Visualization of CRT and CLM generated molecules based on ECFP fingerprints of the training 
sets alongside the Parent Nucleosides used as fine-tuning sets (A) or using the SARS-CoV-2 
Nucleosides for fine tuning (B).  
 
To demonstrate that CRT learns to focus on the Morgan fingerprint of the input molecule when 
generating new molecules, we examine the model’s attention maps. In general, Transformer 
attention maps show the correlation of tokens in a sequence. A Transformer model uses these 
correlations to predict the next token. CRT has eight layers with eight attention blocks per layer. 
We selected the final attention block in the final layer of two models: a  Transformer model that 
did not use fingerprint conditioning and CRT (which uses conditioning).  The Transformer model 
without conditioning generated a valid molecule - 
C1(=O)Nc2c(cc(NS(=O)(C)=O)cc2)C1=Cc1[nH]ccc1 (Fig. 6 A). Based on the attention map in 
the final layer / final attention block, the three tokens with the highest correlations (the ones that 
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other tokens focused on the most when generating the next character) are: the first token, C 
(27.4%), the 16th token, S (7.8%), and the 8th token, c (4.2%). (The relevant characters are bolded 
in the above SMILES representation). 
 
For the second model, we condition on the Morgan fingerprint of Molnupiravir, which generated 
the following valid molecule: C1(n2c(=O)nc(NO)c3ccc(Cl)nc32)OC(COC(C(C)C)=O)C(O)C1O. 
For purposes of illustration, we insert a token, MFP, at the beginning of the sequence to indicate 
that the generated molecule is conditioned on a Morgan fingerprint (MFP): 
MFPC1(n2c(=O)nc(NO)c3ccc(Cl)nc32)OC(COC(C(C)C)=O)C(O)C1O. In this case, the top 3 
tokens that the model focus on (in the final layer / final attention block) are: the first token (MFP 
- 11.2%), the second token (C - 41.0%) and the 47th token (C - 3.5%). In both sequences, the 
models largely focus on the first atom token (C in both cases). However, in the case of CRT, the 
model clearly also focuses on the conditioning token (MFP). 
 
To better visualize the process by which CRT attends to different tokens as it generates characters, 
we select four layers in the model to see how self-attention gradually changes. We create a 
visualization based on Clark et al. (50).  We intentionally select the early layers in the models 
(Layer 1, Block 1; Layer 2, Block 1) and the final layers in the models (Layer 8, Block 1; and 
Layer 8, Block 8).  We show how the model attends to each character in the molecule sequence 
for two models: (1) a Transformer model without Morgan fingerprint conditioning (see Fig. 7 A) 
and (2) CRT, which conditions generation on Morgan fingerprints (see Fig. 7 B).  In both 
illustrations, the initial layers of the models focus or attend almost equally to each atom and bond 
in the sequence when predicting the next token in the sequence; however, by the final layer and 
block, both models learn to focus on specific characters when generating the next token. As can 
be seen in Fig. 7 A, the Transformer model without conditioning heavily focuses on the first token 
in the sequence; however, CRT focuses on both the first and second tokens, with the first token 
representing the Morgan fingerprint, when generating subsequent tokens. 
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Fig. 7. Visualization of CRT attention maps without conditioning on Morgan fingerprints (A) 
or with conditioning (B).  
 
 
CRT model avoids catastrophic forgetting of neural network models 
 

A common problem encountered in neural network transfer learning is catastrophic forgetting 
(29). This issue occurs when a neural network is trained on a new task, causing the model weights 
to be updated based on the distribution of the new data set. Catastrophic forgetting can occur 
during the fine-tuning process, when the model is re-trained on new data.  In our case, CRT is 
first trained to learn how to construct valid molecules. This process involves learning the 
“grammar” by which atom, bond and branch characters interact and correlate. It is critical that 
the learning of this grammar is not lost when the model learns the distribution of the fine-tuning 
set. Clearly, CRT does not suffer from catastrophic forgetting because it is able to decode valid 
molecules after fine-tuning. Thus, it does not forget the grammar rules that it learned. 
 
In order to gain insight into how the model transfers learning from the training to the fine-tuning 
process, we examine the weights of 3 trained models: a Transformer without ECFP (Morgan 
Fingerprints) conditioning, a Transformer with ECFP conditioning, and finally a Transformer 
with both fingerprint conditioning and fine-tuning (CRT). To determine how the weights changed 
due to conditioning and fine-tuning, we calculated the Wasserstein distance between the weights 
by layer in the model without Morgan fingerprint conditioning (denoted as “No Condition” in 
Supplementary Table 17) to the model with conditioning (“MFP Condition” in Supplementary 
Table 18).  We also compared the change in model weights in a model that included Morgan 
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fingerprint conditioning to a model that included both Morgan fingerprint conditioning and fine-
tuning (denoted as “CRT” in Supplementary Table 18).  Since the models contained between 134 
and 136 layers, we aggregate and average the layers into 8 categories for ease of reference. The 
categories are: layer normalization weights and bias (“Layer Norm Weights” and “Layer Norm 
Bias”), attention layers for key, query and value (“Attention Key Weights” and “Attention Key 
Bias”), attention projection layers (“Projection Weights” and “Projection Bias”), and multilayer 
perceptron layers (“MLP Weights” and “MLP Bias”).  As can be seen in Supplementary Table 
18, the greatest change in model weights occurs between the “no conditioning” and the 
conditioned models, with very little change due to fine-tuning.  This small change implies that 
the model did not lose much of its learned "knowledge" due to fine-tuning, even though we did 
not freeze any layer parameters, as is sometimes done in transfer learning. 

When comparing the conditioned to the no conditioned models, the layers that exhibit the greatest 
change tend to be the layer normalization and bias layers.  The change in these layers is distributed 
across all layers and does not occur only, for example, in the final layers. The fact that the changes 
in the layer norm and bias layers occurs throughout all eight layers has implications for transfer 
learning.  Because all such layers change, it would be detrimental to freeze the weights of the early 
layers. This may explain why the Transformer model generated better results when no layers were 
frozen and the learning rate is reduced, instead of freezing layers (which apparently works with 
LSTM models as shown by Moret et al. (33))  We also hypothesize that the CRT model retains its 
grammar knowledge in the regular weight layers (which change very little) and it changes the bias 
layers (which vary more substantially) to account for conditioning. 

 
Discussion 
 
This work presents one of the first studies in which generative molecular models are focused on 
nucleoside analogs design. As one of the most defining molecules of all living organisms and 
viruses given their role in DNA and RNA synthesis, exploration of the molecular space of 
nucleosides and nucleotides could impact a broad range of areas including fundamental and 
applied biology. In addition to the five core nucleosides that are basic components of DNA and 
RNA (A, T, U, G, C), there are several other naturally occurring nucleosides and nucleotides that 
play diverse roles in biology. Over several decades, nucleoside analogs have also become one of 
the most important molecular classes for antiviral drug design with several approved medicines 
from this class already in the market and many more in development for a wide range of diseases 
including emerging viruses (13, 14). Indeed, Remdesivir  - the first FDA approved antiviral drug 
against the recently emerged SARS-CoV-2 virus is a nucleoside analog (51–53) and one of the 
most promising orally administered antivirals against the virus (Molnupiravir), also belongs to this 
molecular class (54–57).   
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Deep generative molecular designs in principle could lead to exploration of regions in molecular 
space that currently remain underexplored or rare in nature or inaccessible to medicinal chemists. 
Perhaps more importantly, deep generative models could accelerate the pace at which large 
amounts of molecules could be designed, which could provide a starting point for identifying 
molecules with new properties including new drugs. Hence, to explore the potential for generative 
design, in this study we focused on their application in the design of nucleoside analogs. Due to 
the critical role of nucleosides in biology, a vast amount of knowledge on their quantitative 
structure activity relationships (QSAR), diverse biological targets and natural or synthetic analogs 
has been accumulated (13, 14). Therefore, generative design of these molecules could also play an 
important role in benchmarking computational tools for de novo molecular design.  
 
In this study, we first benchmarked five deep generative molecular models alongside our approach 
(CRT). In summary, our main contributions are: 
 

•  Focused Molecule Generation. We generate focused molecules that are structurally similar 
to the nucleosides and make them publicly available in an effort to further research into 
potential therapeutics. 

•  Condition on Molecular Structure. Instead of conditioning molecule generation on a single 
property (e.g., QED, TPSA, molecular weight, etc.), we condition generation on chemical 
structure - Morgan fingerprints. 

•  Combine Direct Steering and Fine-Tuning. Unlike other models that generate focused 
molecules by conditioning on properties or by using transfer learning, we combine both 
approaches into a single pipeline. 

•  Encourage Diversity. Transformer models sometimes generate repetitive sequences. This 
issue has been dealt with by introducing variance into the token selection process via 
temperature sampling, top-k and top-p sampling. All of these methods work at the end of 
the generation process. We, instead, introduce diversity at the beginning of the generation 
process by partially randomizing Morgan fingerprint inputs. 

 
 
The significance of our study in the fields of fundamental and translational biology is demonstrated 
by several observations. We show that our model (CRT) given only a fine-tuning set of the five 
parent nucleosides, generates several molecules that are similar or identical to natural or synthetic 
nucleoside analogs. These generated nucleoside analogs have chemical alterations that involve 
either the ribose or nucleobase moiety, in one case mimicking molecular transformations observed 
in oxetanocin A- a naturally occurring antiviral nucleoside analog first isolated from a bacterium 
(38). Interestingly, one of the generated molecules -N2-methylguanosine- based on fine tuning on 
parent nucleosides occurs naturally in eukaryotic and archeal tRNAs where it is a product of a base 
modification introduced by specific enzyme (47). We also observe a rare nucleoside- 2,6-
diaminopurine, so far only reported naturally in a single genome (41, 42) and that has implications 
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for understanding early evolution of life on earth (44, 46). Finally, we show that focused molecular 
generation could also be directly leveraged to explore the molecular space around antiviral 
nucleosides, specifically those active against SARS-CoV-2. In conclusion, we show that 
generative models could aid in molecular design of nucleosides with a wide range of applications 
from prebiotic chemistry to drug discovery and synthetic biology.  
 
It is important to highlight some limitations of our study. First, while focusing on nucleoside 
analogs in itself is of high significance biologically, the benchmarking of deep generative models 
on a single class of molecules cannot capture their performance in other molecular design 
problems.  Second, metrics for assessing generative design models continue to evolve and it is not 
feasible to explore all metrics that have been reported in literature. It is critical that performance 
assessments of generative models be always taken in the context of the metrics that were applied 
and the goals of a given project. Third, gold-standards validation sets for generative molecular 
design problems do not exist. Thus, in assessing the similarity between the generated molecules to 
the reference sets, we recognize that some otherwise biologically significant molecules may be 
missed. 
 
 
Materials and Methods 
Methods overview 

Because our goal is to search a limited space of potential molecules that are similar to the 
nucleosides, we selected three datasets to fine-tune and benchmark our model (CRT, details below) 
and five other leading deep generative models.  The three datasets are:  the Parent Nucleosides, 
the SARS-CoV-2 Nucleosides, and the Synthetic Nucleosides.  The Parent Nucleosides consist of 
adenosine, guanosine, cytidine, thymidine, and uridine.  The SARS-CoV-2 Nucleosides were 
identified by Schultz et al. (49) as a group of fifteen nucleoside analogs that show in vitro activity 
against SARS-CoV- 2. The SARS-CoV-2 Nucleosides include: Molnupiravir, Remdesivir, 6-
Mercaptopurine, 6-Thio-dG, 6-Thiopurine riboside, 8-Azaguanine, Azathiopurine, BCNA, 
Cloturin, Flufylline, Gemcitabine, GS-441524, Thiamiprine, Thioguanine, and Tubercidin.  In 
addition, we selected a group of approximately 188 synthetic nucleoside analogs (37) (the 
Synthetic Nucleosides).  

As discussed in more detail below, we first train the CRT model and 5 leading deep generative 
molecular models on a large dataset of diverse molecules, which contain mostly non-nucleoside 
compounds.  The goal of this process is to train the models to learn how to generate chemically 
valid molecules.  We then “fine-tune” the models by training them on smaller datasets - the Parent 
Nucleosides and the SARS-CoV-2 Nucleosides.  The fine-tuning process involves freezing the 
initial layers of each of the deep generative models after they are first trained on the larger dataset 
that is made up of mostly non-nucleoside molecules.  Freezing the initial layers of a neural network 
prevents parameters in those layers from being updated by data contained in the fine-tuning sets.  
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This process is commonly used in transfer learning.  Then, the models are fine-tuned on smaller 
datasets consisting of the parent nucleosides and the SARS-CoV-2 Nucleosides.  Once the models 
are fine-tuned on the smaller datasets, we generate molecules from each of the models and compare 
them to the Parent Nucleosides, the SARS-CoV-2 Nucleosides and the Synthetic Nucleosides for 
similarity.   

The fine-tuning datasets are small in size, with only 5 and 15 molecules.  Our goal is to determine 
if the models can learn how to generate chemically valid molecules from the larger training dataset 
(i.e., learn the rules of chemical construction) and then transfer this learning to smaller datasets 
(i.e., the nucleosides).  Other key goals are to assess the diversity of the generated molecules, their 
similarity to the nucleoside class (i.e., the ability of the models to conditionally generate 
molecules), and whether the generated molecules bear resemblance to chemicals undertaken by 
medicinal chemists.  

Existing generative chemistry models leveraged in this work 

 
We benchmark molecules generated by the CRT model against molecules randomly drawn from 
the training set and against molecules produced by five leading generative models. The five 
generative models include: a VAE (30, 31), two LSTMs (32, 33), an AAE (34) and a base 
Transformer model (35). The VAE is based on architectures developed by Gomez-Bombarelli et 
al. (30) and Blaschke et al. (31). The VAE consists of bidirectional Gated Recurrent Units (GRU) 
with an encoder / decoder structure. The decoder is a 3-layer GRU with 512 hidden dimensions 
with intermediate dropout layers (probability of 0.2). The LSTM models were developed by Segler 
et al. (32) and Moret et al. (33). The Segler et al. model, referred to as CRNN, uses three LSTM 
layers structured as a decoder-only with a hidden dimension of 600 and dropout probability of 0.2 
(32). The Moret et al. model (CLM) consists of two LSTM layers, with hidden sizes of 1,024 and 
256. The model uses batch normalization and 0.4 dropout (33). The AAE model was developed 
by Kadurin et al. and consists of an encoder, decoder and a discriminator (34). The base 
Transformer is the LIG-GPT (35) model described below, under CRT. The VAE, CRNN and AAE 
models are based on implementations contained in MOSES (58). All of the models are trained on 
the training set described under the Training datasets section below and then fine-tuned on the 
parent nucleosides and the SARS-CoV-2 Nucleoside datasets.  Each of the models represent 
molecules as a sequence of characters using the Simplified Molecular Input Line Entry 
Specification (SMILES) (59).    

 
Conditional Randomized Transformer (CRT) 
 
Our method is based on the Transformer decoder model developed by Bagal et al., LIG-GPT (35),  
which,  in  turn, is constructed from the GPT model originally designed by Radford et al. (60). 
Unlike the original GPT language model or its variants (GPT-2 and GPT-3), which can contain 
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from 100 million to over 1 billion parameters (60), LIG-GPT is substantially more compact, 
containing approximately 6 million parameters (35). As such, the model is more interpretable and 
easily understood. The LIG-GPT model consists of 8 layers, each with 8 self-attention blocks, 
with embedding size of 256, and is trained with maximum likelihood (cross-entropy), 0.1 dropout 
and a .0006 learning rate with annealing (35).  

We made several modifications to the LIG-GPT structure.  We call our version of the model, CRT.  
Our modifications consist of the following.  First, the base model is trained to condition on a single 
property or a series of individual properties (e.g., logP, QED, SA).  We, instead, condition 
molecule generation based on extended-connectivity fingerprints (commonly referred to as ECFPs 
or Morgan fingerprints) (36). ECFPs encode structural and functional features of molecules.  
Second, the base model is designed to search chemical space based on specific conditions.  We 
train CRT both with conditions and fine-tune it on smaller nucleoside datasets, which consist of 
only 5 to 15 examples. Third, during the inference phase, we introduce variance into the generative 
process.  Without additional randomization measures, we found that the Transformer model, when 
conditioned on Morgan fingerprints, tended to produce repetitive molecules.  To encourage 
diversity, and to search the chemical space around a given molecular fingerprint, we introduce 
randomization into the generative process.   

The generation of repetitive patterns (here, each molecule represents a chemical pattern) is a 
common problem with Transformer models due to their deterministic nature (61). A variety of 
techniques have been designed to overcome this problem, including the use of top-k sampling (62) 
, top-p sampling (63), the use of so-called temperature sampling, and the introduction of complex 
variational encodings into a Transformer model’s latent space (64). Top-k, top-p and temperature 
sampling introduce variance at the end of the token generation process, by sampling various 
probable next token candidates. We instead introduce variance into the front-end of the 
Transformer decoding process by adding random noise to the Morgan fingerprint, subject to a 
hyper-parameter. Morgan fingerprints are binary encodings (zeros  and  ones to indicate the 
absence or presence of a structure) that are  both sparse and discrete. Simply changing 0s and 1s 
does not impart significant variance. Therefore, we insert random noise after the Morgan 
fingerprint is processed by a dense neural network layer. We found that multiplying the random 
noise by a hyper-parameter (0.3) before adding it to the model’s encoding of the Morgan 
fingerprint achieved a balance between diversity and chemical validity. This step generally causes 
the model to generate 3 to 5 times as many unique molecules.  We also use a modest temperature 
sampling parameter (0.9), following Bagal et al (35).  We train our models for 5 to 10 epochs on 
a single RTX-2080 GPU. 

 
Training datasets 
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We experimented with several datasets to train the deep generative models, including ones 
developed by Brown et al. (GUACAMOL dataset) (65), Polykovskiy et al. (MOSES dataset) (58), 
and Moret et al. (Low Data dataset) (33). The MOSES dataset was compiled from ZINC (66, 67), 
while the GUACAMOL and Low Data datasets were compiled from ChEMBL (68). We found 
that the Low Data dataset produced molecules that were more similar to the Parent Nucleosides 
and the SARS-Cov-2 Nucleosides, perhaps because it was filtered for bioactive compounds. The 
Low Data dataset consists of approx. 365,000 training molecules. Because there are numerous 
ways in which a compound can be expressed in the SMILES format (69, 70),this dataset is 
augmented by a factor of 10x by randomizing each molecule, whereby each molecular string is 
instantiated with a different non-hydrogen atom. This methodology follows the implementation 
of Moret et al (33).  
 
Metrics 
 
To assess the similarity of generated molecules to the reference sets (Parent Nucleosides, the 
SARS-CoV-2 Nucleosides and the Synthetic Nucleosides), we draw on metrics offered in three 
recent papers (58, 65, 71). Although each paper generally contained different metrics to some 
extent, they all generally agreed on the need for five key performance indicators. First, they agreed 
that the number of valid molecules generated by a model should be measured. A popular way to 
implement this metric is to determine the number of canonical SMILES, as calculated by RDKit 
(72). This metric confirms that a model is generating atom, bond and ring combinations that 
correspond to valid chemical sequences. This ensures that the model learns the proper chemical 
grammar. Second, the number of unique molecules should be tracked. This metric ensures that a 
model is not generating the same compound repeatedly. In other words, the model must not only 
be able to learn the proper chemical grammar, but it must also generate diverse chemical 
combinations. Third, the molecules should be novel. This measures whether the generated 
molecules are different from the molecules in the training and fine-tuning sets. Fourth, the fidelity 
of the model in generating molecules that are similar to the training and fine-tuning sets should be 
determined. In our case, we are interested in generating molecules that are similar to the fine-
tuning or reference sets (the parent Nucleosides and the SARS-CoV-2 active nucleosides).  Preuer 
et al. developed the Frechet ChemNet Distance (FCD) (73), which is commonly used to measure 
model fidelity. The FCD is determined based on the hidden representation of molecules in a neural 
network named ChemNet, which is similar to the Frechet Inception Distance (74), used to assess 
GANs in the image domain. Similar molecule distributions have low FCDs. Fifth, the similarity 
of generated molecules and molecules in the reference sets can (Parent Nucleosides, the SARS-
CoV-2 Nucleosides and the Synthetic Nucleosides) should be measured, which is commonly done 
with the Tanimoto coefficient. An adaptation of the Tanimoto coefficient is the Similarity of 
Nearest Neighbor (SNN) measure, which calculates the average Tanimoto similarity of standard 
Morgan fingerprints of a molecule in the generated set as compared to its nearest neighbor in the 
reference (58). This metric is bounded by 0 and 1, with a 1 indicating perfect identity of the 



20 
 

generated and reference sets. We applied SNN to measure the similarity of generated molecules to 
those in the parent nucleoside, SARS-CoV-2 active nucleoside and synthetic nucleoside datasets. 
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