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Abstract

Aerosol-OT reverse micelles represent a chemical construct where surfactant molecules

self-assemble to stabilize water nanodroplets 1-10 nm in diameter. Although commonly

assumed to adopt a spherical shape, all-atom molecular dynamics simulations and some

experimental studies predict a non-spherical shape. If these aggregates are not spher-

ical, then what shape do they take? Because the tools needed to evaluate the shape

of something that lacks regular structure, order, or symmetry are not well developed,

we present a set of three intuitive metrics� coordinate-pair eccentricity, convexity, and

the curvature distribution� that estimate the shape of an amorphous object and we

demonstrate their use on a simulated Aerosol-OT reverse micelle. These metrics are

all well-established methods and principles in mathematics, and each provides unique

information about the shape. Together, these metrics provide intuitive descriptions of

amorphous shapes, facilitate ways to quantify those shapes, and follow their changes

over time.

1 Introduction

Since Dalton �rst proposed his atomic theory, the study of chemistry has been inextrica-

bly linked to the study of structure.1 Soon after Dalton, early organic chemists Kekulé and

Couper discovered chemical bonding and invented the notation to represent molecules spa-

tially.2 Seven years later, Kekulé proposed the �rst structure of benzene.3,4 By developing

a robust understanding of structure, Kekulé and Couper paved the way for modern organic

chemistry.5 Later, harnessing X-rays would allow researchers to characterize organic and

inorganic crystals.6 This ability was used to determine the structure of penicillin, which

showed researchers how to create a whole host of beta-lactam antibiotics and revolutionize

medicine.7�9

Today, a wide range of experimental methods and theoretical frameworks exist to de-

termine molecular, crystal, nanoparticle and meso-structures. However, these methods and
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frameworks only apply for highly organized, well-de�ned systems. Disordered and amorphous

shapes have eluded description so far, despite the frequency with which such systems ap-

pear in nature. Polymers, biology, and soft materials, like self-assembled systems, frequently

display disorder and adopt shapes that are not easily described with current theoretical

frameworks.10

Aerosol-OT (AOT) reverse micelles are an excellent model system to explore amorphous

shapes. These particles have been extensively studied and used because AOT creates remark-

ably robust aggregates with sizes closely related to the water:AOT ratio.11 A plethora of stud-

ies, from characterizing molecular behavior in nanocon�nement to templating nanoparticle

synthesis12�22 make AOT reverse micelles exceptionally well characterized. Despite exten-

sive use in research, there is continued debate on the shape of AOT reverse micelles. Much

experimental work assumes that the aggregates are spherical,23�29 but other experimental

work disagrees.30�33 While early simulations applied the same simpli�cation of assuming a

spherical micelle,34 the all-atom molecular dynamics simulations enabled by greater comput-

ing power have universally found the reverse micelles adopt some variation of a non-spherical

shape.33,35�41 Simplifying assumptions are often made about AOT reverse micelles to build

a framework for understanding the results. For example, Piletic, et al., used nonlinear IR

spectroscopy to demonstrate two distinct water environments, "shell" and "core" water, cal-

culated assuming a spherical shape.13 With the shape of these particles a matter of debate,

new methods of investigating the shape are needed because the shape impacts how many

studies and results are interpreted.

Some arbitrary and amorphous shapes can be replicated by a sum of spherical harmonics

functions.42,43 To achieve the precision that de�nes the shape, these calculations involve

hundreds of integrals over tens of thousands of points and require that the shape contain no

hollow cavities or overhangs. While spherical harmonics can produce an exact facsimile of

the shape and are quite convenient in several applications, such as X-ray tomography, they

have no handle to develop intuition about the shape. Therefore, spherical harmonics are not
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�exible enough to accommodate many amorphous shapes that arise in chemical systems and

tracking any individual or group of coe�cients generated by the spherical harmonics model

does not describe how the shape evolves over time or allow comparison.

To compare irregular, amorphous shapes in an ensemble, or to follow the evolution of

a shape in time requires development of metrics that provide an accurate description of an

arbitrary amorphous shape and capture their important and fundamental features. Here,

we present a set of metrics� coordinate-pair eccentricity, convexity, and curvature� which

are well-established in the �eld of mathematics, and provide an intuitive and meaningful

description of the shape of amorphous objects. We apply these metrics to describe the

amorphous shape of a simulated AOT reverse micelle and use the metrics to follow the

evolution of shape over the course of the 100 ns simulation. We note that this analysis can

be used to compare related amorphous shapes from a vast range of applications.

2 Methods

Figure 1: Structure of Aerosol-OT (AOT) surfactant.

To test and demonstrate the metrics of shape proposed here, this study uses the exam-

ple of a reverse micelle system simulated with molecular dynamics. The micelle consists of

isooctane, water, and the surfactant bis(2-ethylhexyl) sulfosuccinate, more commonly known

as Aerosol-OT (AOT), shown in Figure 1. The exact aggregation number� the number of

surfactant molecules per micelle� for an AOT reverse micelle is not precisely known, but the

Abel lab provides reasonable estimates based on experimental data.35,44,45 These estimates

agree with the most extensive computational search for the aggregation number of AOT
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reverse micelles performed to date.41 We use those numbers for our simulation and there-

fore the simulation consists of 1,500 isooctane molecules, 210 water molecules, and 42 AOT

molecules. Isooctane and AOT were modelled using the CHARMM36 force �eld,35,46 while

water was modelled with the TIP3P force �eld,47 in keeping with the Abel groups speci�ca-

tions and previous all-atom molecular dynamics simulations of reverse micelles.33,35,37�41,44

The simulations were carried out using the 2019 series GROMACS package.48�51 The

system was packed into a spherical micelle using Packmol.52 The system was minimized

by steepest descent to remove any overlapping molecules from the packing. Equilibration

was performed in several steps to ensure that the shape of the micelle was not in�uenced

or biased by the starting structure, as detailed in Table 1. The equilibration steps were

designed to maintain position restraints on the core while allowing the system to relax from

the outside in. The system was allowed to run for another 9 ns with no position restraints on

any component to complete the equilibration. All equilibration steps were performed with

an NPT ensemble using a V-rescale thermostat53 and Berendsen barostat54 with a 1 fs step

size. The data presented here was collected from a production run of 100 ns using the NPT

ensemble with the Nose-Hoover thermostat55,56 and Parrinello-Rahman barostat57,58 and a

0.5 fs step size. Both equilibration and production runs were held at 1 bar and 298 K.

Table 1: Equilibration Schedule for Reverse Micelles

Position Restraints (kJ/mol)
Step

Time (ns)
Total Time

Equilibrated (ns) Water AOT Isooctane

0.2 0.2 1000 1000 1000
0.5 0.7 1000 1000 0
0.1 0.8 1000 500 0
0.1 0.9 1000 0 0
0.1 1.0 500 0 0
9.0 10.0 0 0 0

Custom Python code was written to perform all shape analyses described here and is

being released with the SI. The core work�ow is to �rst create a Willard-Chandler surface

of the micelle.59,60 This produces a triangulated mesh representation of the micelle on which

the analyses can then be performed.61 The code uses the MDAnalysis package62,63 for ma-
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nipulation of the molecular dynamics trajectory and the PyVista package64 for manipulation

of the mesh. For all of the analyses shown here, the water, sodium counterions, and succi-

nate headgroup of AOT were considered as the micelle surface. The choice of surface almost

certainly impacts the results and a comparison of di�erent choices likely holds valuable in-

formation about the system. However, these types of considerations are beyond the scope of

this paper and will be explored in a subsequent paper.

3 Metrics of Shape

3.1 Coordinate Pair Eccentricity

In mathematics, eccentricity is a number that uniquely characterizes the shape of a conic

section.65 It distinguishes between all conic sections and provides ellipses and hyperbolae

with unique identi�ers, even within their respective classi�cations.66 Focusing only on the

closed form conic sections, that is on ellipses, eccentricity is de�ned as:

e =

√
1− b2

a2
(1)

where e is the eccentricity, a and b are the major and minor semiaxes, respectively. To adapt

this de�nition to characterizing physical objects, which are necessarily three-dimensional, the

moments of inertia have been used historically.35,37,38 In this view, an ellipsoid of equivalent

mass but constant density is created by equating the principal moments of inertia of the

object to the well-known equations for the moments of inertia for an ellipsoid of equivalent

mass.67 The addition of a new dimension also means that a new semiaxis must be introduced,
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c, to transition from an ellipse to an ellipsoid.

A =
M

5

(
b2 + c2

)
(2a)

B =
M

5

(
a2 + c2

)
(2b)

C =
M

5

(
a2 + b2

)
(2c)

In this formulation, M is the mass of the object, A, B, and C represent the magnitudes of

the three principal moments of inertia, and a, b, and c represent the semiaxis lengths. Each

principal moment of inertia shares a vector direction with the semiaxis of the same letter,

e.g. A and a share the same vector direction. Semiaxis lengths are easily determined from

these equations using a linear algebra approach. Eccentricity, de�ned in Equation 1, becomes

imaginary if b ≥ a. We have adopted the convention that a ≥ b ≥ c, which agrees with past

literature and mathematical standards. Note that using this convention also implies that

A ≤ B ≤ C.

Ellipsoids are generally sorted into one of three broad categories: spheres, oblate ellip-

soids, and prolate ellipsoids.68 Applying an eccentricity value to describe a three dimensional

object using the standard, mathematical de�nition in Equation 1, becomes problematic, be-

cause the equation describes conic sections that are necessarily two dimensional. Most com-

monly, only two of the three semiaxes are selected as input; however this leads to an inherent

loss of information. Regardless of which two semiaxes are chosen, at most only two of the

categories of ellipsoids can be distinguished. To characterize a three dimensional ellipsoid

using eccentricity that does not lead to a loss of information requires use of all three semiaxes

to report two di�erent values of eccentricity. We introduce this concept as coordinate-pair
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eccentricity (CPE), as given in Equations 3.

eab =

√
1− b2

a2
(3a)

eac =

√
1− c2

a2
(3b)

Here, eab and eac are the pair of values that constitute the CPE. We chose these values as

they allow us to di�erentiate between all three categories of ellipsoids. A spherical ellipsoid

is typi�ed by the relation a ≈ b ≈ c, while a prolate ellipsoid is typi�ed by a > b ≈ c, and

an oblate ellipsoid is typi�ed by a ≈ b > c. In more familiar terms, a prolate ellipsoid is a

roughly cigar shaped object while an oblate ellipsoid resembles a disk or an M&M candy. eac

di�erentiates between a spherical object and an eccentric ellipsoid, but not between whether

that eccentric ellipsoid is prolate or oblate ellipsoids because a > c, in both cases. By

including eab, this redundancy is removed and all three cases may be di�erentiated.

3.2 Convexity

The second metric characterizes the deviations from an ideal, convex shape. For a shape to

be convex, the line connecting any two points on the surface must be completely contained

by the shape (assuming a topological ball, i.e. no cavities or hollow spaces inside).69 A

convex hull is the smallest convex object or set that contains the shape of interest. Many

common shapes are convex, including squares and circles in two dimensions, and spheres

and dodecahedra in three dimensions. However, it is easy to �nd many shapes that do not

meet this de�nition such as a star (formally, an augmented pentagon or hexagon). Convexity

quanti�es how far an arbitrary shape is from being convex.

The convexity can be de�ned in a number of ways.69 However, the more complex de�-

nitions are designed to provide usable values even in situations such as in�nitely thin rods,

spikes, or trenches that cannot be realistically obtained for a shape derived from real, �nite

objects made up of atoms and molecules. Therefore, we have chosen the computationally
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simple and e�cient de�nition:

Ξ =
V olume(S)

V olume(CH(S))
(4)

where we use Ξ to represent the convexity, S denotes the shape of interest, V olume() denotes

the volume of the argument, and CH() denotes the convex hull of the argument. Once again,

the convex hull is the smallest possible shape that circumscribes the shape of interest and

is convex. As shown by Equation 4, convexity has a range of (0, 1]. When Ξ = 1, the shape

and its convex hull are identical, and therefore have the same value. Similarly, a value of 0

cannot be realistically obtained for real, �nite objects as this would imply that the shape

has zero volume and comprises vanishingly thin rods.

Figure 2: Example �gure of convexity in two dimensions. Each color represents a di�erent
shape with one tenth less convexity. The convex hull for all of the shapes is shown as a red,
dashed line.

A visual reference for the physical meaning of di�erent convexity values is given in Figure

2, showing convexity using area for a 2D representation, rather than volume as de�ned in

Equation 4. The de�nition of convexity chosen here, in Equation 4, conveniently allows

convexity to be thought of as the shape's fraction of area relative to its convex hull. For a
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completely convex shape, Ξ = 1, and Ξ will get successively smaller as more area is �removed�

from the shape. For example, the yellow shape shown in Figure 2 has a convexity of 0.6

because it has 60% of the area of its convex hull.

3.3 The Curvature Distribution

The third shape metric presented is the curvature distribution. Curvature of a two dimen-

sional curve (of the form y = f(x)) is closely related to the second derivative of the curve

and can be most intuitively de�ned as the inverse of the radius of an osculating circle, which

is a circle that closely approximates the curve at that point.70 An example of an osculating

circle is provided in the SI (Figure S3). For a three dimensional surface, curvature is no

longer a single value, but pair of values known as the principal curvatures, computed along

orthogonal vector directions.71 There are two primary ways in which these principal curva-

tures can be utilized, that is mean and Gaussian curvature, given in Equations 5a and 5b,

respectively.

κm =
k1 + k2

2
(5a)

κG = k1k2 (5b)

Here k1 and k2 are the principal curvatures. In Equation 5a, κm, is the mean curvature and

in Equation 5b, κG, is known as the Gaussian curvature.71 Note that the curvature is de�ned

to be in the direction of the osculating circle describing it (see Figure S3 for an example). As

a matter of convention, the principal curvature is considered positive if the surface is curved

toward the interior of the shape and negative if it is curved away from the shape.

As the literal average of principal curvatures, mean curvature represents the average trend

of the surface at the point where it is computed.72 A positive mean curvature indicates that

the surface curves toward the center of the shape at that point. It is possible to have principal

curvatures of opposite signs, but the positive principal curvature must dominate for the mean
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curvature to be positive, and so the surface is mostly positively curved. Gaussian curvature,

on the other hand, indicates the nature of the surface at a particular point. A positive

Gaussian curvature means that both principal curvatures have the same sign, either positive

or negative, and the surface at that point is considered elliptic.72 This is the type of surface

found at every point on an ellipsoid, where both vectors of principal curvature curve in the

same direction. Where the Gaussian curvature is negative, one principal curvature must be

positive while the other is negative leading to a hyperbolic point.72 A hyperbolic point is

most recognizable as the type of surface found at a saddle point.

4 Results and Discussion

4.1 Coordinate-Pair Eccentricity

Extending the classical de�nition of eccentricity66 to the third dimension allows us to describe

the distribution of mass within an amorphous shape by di�erentiating between spherical,

prolate and oblate ellipsoids. However, the use of eccentricity is not the only method which

has been used to characterize shape in this way. Some groups use a variation on eccentricity

usually represented as η1 and η2.36,73,74 We explore the relationship between the two metrics

in detail in the SI, but believe that CPE represents a much more straightforward and easy

to use metric. Figure 3 presents the CPE over time for the reverse micelle. The �standard�

de�nition of eccentricity,66 based on the study of 2D conic sections and frequently used for

these reverse micelles, is the same as CPE's eac parameter shown in Figure 3d. An increase

in eac correctly determines that the micelle is no longer spherical, but as shown in Figure

3a, a change in eac cannot distinguish between prolate and oblate ellipsoids. The addition

of eab (Figure 3c) distinguishes between the two basic ellipsoids.

CPE is best thought of as the zeroth order approximation of shape. The semiaxes from

which eccentricity is computed arise directly from the object's moments of inertia. Although

the underlying shape is often signi�cantly more complex, the remaining metrics presented
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Figure 3: (a) Guide to coordinate-pair eccentricity: eac compares the largest and smallest
semiaxes; eab compares largest and intermediate axes. The colors indicate approximate
regions where di�erent basic ellipsoids occur. These areas are approximate because there is
no formal de�nition delineating, e.g., when a mostly spherical object stops being spherical.
Solutions in the hatched area contradict the assumption that a>b>c. (b) Coordinate-pair
eccentricity of the micelle. Time is displayed as a color according to the bar at right. (c) eab
versus time. (d) eac versus time.

here are of little use without this basic model to build upon. None of the previous work,

either simulated or experimental, has been able to characterize whether reverse micelles tend

to be more prolate or oblate ellipsoids.23�33,35�41 The best descriptions available are images

12



of simulated micelles, which appear largely prolate.37,41 As Figure 3 shows, the micelles have

a surprising level of diversity of shape, showing �uctuations between being a predominantly

prolate and oblate ellipsoid which have not previously been quanti�ed.

Because it is only a very rough approximation of shape, the CPE has limitations. It is a

starting place rather than a complete description of the shape by itself. For example, CPE

would classify a spiral shape, possibly encountered in polymer or biological chemistry, as

a prolate ellipsoid given the distribution of mass and relative aspect ratio. Likewise, CPE

would classify a U-shaped object, such as a kielbasa sausage or the micelle image in the green

box in Figure 4 as an oblate ellipsoid, while human intuition would interpret these shapes

as folded prolate ellipsoids. Although this tendency may occasionally violate intuition, it

is an accurate description of the mass distribution, and more importantly, quanti�able and

reproducible.

In addition, sensitivity to changes in eccentricity is not uniform across all values. The

CPE response depends on the initial value; for smaller initial values of eccentricity, unit

changes in semiaxis length lead to larger changes to eccentricity. This e�ect is clearly dis-

played in Figure 3c between 30-70 ns where eab has, on average, a signi�cantly smaller value

than anywhere else in the simulated time. Accordingly, eab appears to have signi�cantly

larger �uctuations than eac. This can be explained by the signi�cantly increased response of

eccentricity to the same changes in semiaxis length when the eccentricity is small. A plot of

the eccentricity as a function of semiaxis length is provided in the SI (Figure S4) to further

demonstrate this point.

4.2 Convexity

CPE provides a good starting place for describing amorphous objects, but there are vastly

di�erent shapes that yield the same CPE values. For example, any basic regular polyhe-

dron, such as a cube, is indistinguishable from its augmented variation that replaces the

faces of the polyhedron with pyramids whose height could be either positive or negative,
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e�ectively creating �spiky� shapes.75,76 Regardless of the augmentation used, the CPE value

of any regular polyhedron will be (0,0) and classi�ed as a perfect sphere. To di�erentiate

between such objects and further characterize an amorphous shape, we propose convexity as

a second metric.69 De�ned in Section 3.2, convexity is the di�erence between the object and

its convex hull. The convexity provides complementary information to CPE. Fluctuations

in eccentricity predominantly re�ect how the micelle deforms in a direction tangential to its

surface. For example, a movement that stretches the shape from a sphere into a prolate el-

lipsoid alters the distribution of mass and therefore CPE. While there are movements, such

as bends, which both metrics can detect; �uctuations in convexity tend to re�ect motion

normal to the reverse micelle surface because these irregularities alter convexity but do not

necessarily change the CPE.

Figure 4: Convexity of the reverse micelle over the time of the full simulation. Representative
images of reverse micelles at select times indicated by highlighted boxes appear above the
convexity data.

The convexity of the simulated reverse micelle is presented in Figure 4, along with example

images in several key portions of the simulation. These data demonstrate two key points.

First, the micelle never exhibits an irregularity that removes more than 30% of the volume

from the convex hull. Even in the most extreme case highlighted in green where a fold
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appears to have formed, the convexity only drops to a value of 0.7. Second, the convexity

never reaches a value of one, showing that the reverse micelle is never completely convex

and always has some irregularities. The conclusion is that the micelles are largely convex

but invariably include numerous bumps and divots on the surface.

In general, we observe two di�erent types of changes to the shape that contribute to the

�uctuations in convexity. Fast, low amplitude �uctuations arising from small movements

normal to the surface, likely from the surface sinking or growing locally to form a divot

or bump. We also observe higher amplitude and typically slower �uctuations arising from

larger changes to shape. The image highlighted in the green box in Figure 4 demonstrates

such a slower �uctuation and has reduced convexity compared to other points. Over time,

this fold disappears and a new general shape forms, that is a bubble connected by a thin

neck to the remainder of the micelle in a dumbbell-type con�guration, as highlighted in the

cyan box. These irregularities can also disappear to form a highly convex shape, such as is

the image in the magenta box.

4.3 Curvature Distribution

We require one more metric to characterize the particle shape for one simple reason: CPE

and convexity considered alone cannot di�erentiate between regular geometric shapes such as

a sphere and a cube. The CPE would indicate both to be perfectly spherical and both shapes

are also fully convex. The key to di�erentiating these shapes is their curvature distributions,

presented as a probability density function (PDF). Recall that, as de�ned in Section 3.3,

mean curvature shows the direction and magnitude of the curvature of the surface at a

point; and that positive mean curvature values indicate that the surface curves toward the

interior of the shape. Gaussian curvature provides information about the nature of the

surface. A positive Gaussian curvature indicates an elliptic point while negative Gaussian

curvature indicates a hyperbolic point.72 The surfaces of a sphere and cube both lack saddle

points, so the Gaussian curvature is always positive. Thus we consider only mean curvature
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to compare the forms. A sphere has constant, positive mean curvature creating a probability

density function that is a delta function at the value for its size. A cube has only �at faces

and the joints between them leading to a sum of two delta functions, renormalized to one,

with a distribution at zero for the �at faces and a distribution at in�nity for the edges and

corners.

In the case of a general amorphous shape, a priori, the distribution is expected to represent

more than just a single value. If the smallest value of principal curvature over the entire

surface is zero, then the shape must be fully convex, as demonstrated by Figure 2. Therefore,

if the convexity is less than one, then divots exist somewhere on the surface and these must

have negative principal curvature(s) at some point.

We calculate the curvature value at each point on the surface of the triangulated mesh of

the reverse micelle for each time point in the simulation. To reduce the data to a viewable

set, we generate a histogram of curvature values at each time point. The exact number

of points at which curvature is computed varies, with typical values being between 1-3,000

points. Because the reverse micelle shifts from a predominantly prolate ellipsoid to a more

oblate ellipsoid over the course of the simulation, Figure 5 presents examples of the mean

curvature distribution at time points from the beginning and end of the simulation to sample

varied cases.

Figure 5 provides several comparisons to guide its interpretation. The mean curvature

distribution �ts well to the sum of two Lorentzians, which we compare to the curvature

distribution of an ideal ellipsoid with the same eccentricity and dimensions as the micelle

at the selected time points. The expected curvature for a sphere of the same size as the

micelle is provided a simple reference for size-independent comparisons, because curvature is

an extrinsic value. The curvature distributions are highly characteristic of the shape, with

distinct patterns for both prolate and oblate ellipsoids (see the SI for additional patterns of

ideal ellipsoids, Figure S5). Curvature distributions for the ideal ellipsoids tend to display

two sharp peaks, as seen in Figure 5, but the exact shapes and locations vary. However in
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Figure 5: The curvature distribution of two random frames from the beginning (a) and end
(b) of the trajectory (Legend: Raw Curvature). Each curvature distribution is �tted to
the sum of two Lorentzians (Legend: Curves 1/2, and Total Fit). The distribution for the
ellipsoid computed from the moments of inertia is also plotted, renormalized so it �ts on the
graph (Legend: Ellipsoid Curvature). The expected distribution for a sphere of this size is
shown to provide a reference for an object this size (Legend: Sphere Curvature). Images on
the right show the micelle at these times, colored by curvature with positive values in red.

all cases, scaling the semiaxes to be larger shifts the observed peaks to the left� towards

smaller, positive values� and reduces the domain while maintaining the pattern for that
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eccentricity. Reducing the sizes of the semiaxes shifts the peaks to the right and increases

the domain.

As Figure 5 shows, the peak maxima of each �tted Lorentzian appears near a peak in

the curvature distribution of the ideal ellipsoid. This suggests that the �tted Lorentzians

represent the two peaks from the ideal ellipsoid curvature distribution, albeit with signi�cant

broadening. There are several sources of broadening relative to an ideal ellipsoid. First, with

bumps and divots on its surface, the reverse micelle is not a true ellipsoid. If we assume

that the observed shape is an ellipsoid that has been subsequently distorted, then creating

a divot on the surface removes some population from the curvature value at that place and

creates population on the left side of the distribution� at negative values. Since the most

likely curvature values for a randomly chosen portion of the surface are the peak values of

the distribution, the creation of divots has a "Robin Hood" e�ect that will tend to decrease

the peak intensities and raise the left side of the distribution. The boundary points between

a divot's negative curvature and rest of the surface creates �at regions of zero curvature at

the interface that further broaden the distribution� the divot removes a curved portion to

create the �at interfacial region� and smooth the distribution between the left side and the

peak values. An analogous process occurs for bumps on the surface, operating on the right

side of the distribution, removing from the peaks, increasing, and smoothing the population

on the right wing of the distribution.

A second broadening mechanism arises because the curvature is computed numerically.

For a well-de�ned function, the curvature can be calculated analytically and is exact. How-

ever, on a Delauney triangulated surface, there is no real curve.61 There are only points

connected by straight lines approximating a curved surface, and an algorithm must be used

to estimate this curvature. The algorithm we use to calculate curvature (a part of the

PyVista package64) sometimes creates erroneously large values that shift population from

the peak areas and move it toward the extreme tails of the distribution. A more advanced

algorithm may reduce this error, but will not eliminate it entirely. This has the e�ect of
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broadening the distribution symmetrically. These overestimated values appear as the deeply

colored spots on the representative micelle surfaces shown in Figure 5 that are clearly out of

place with the surrounding values.

The bump-and-divot broadening described here does not act symmetrically on the peak

in the same way that common sources of broadening, such as homo- or heterogeneous spec-

troscopic broadening, do. Rather than modifying a well-de�ned spectroscopic transition, the

broadening mechanism described here quite literally erases the imaginary �previous� values

and replaces them with other values. This literal substitution, rather than modi�cation, of

values can explain why the �tted Lorentzians bracket the peaks of the curvature distributions

of the ideal ellipsoids.

Having described, in Figure 5, the curvature distributions for two select times, Figure

6 presents the mean and Gaussian curvature distributions over the full simulation. The

mean curvature shows a relatively broad peak that is roughly symmetric and centered on a

positive value. In contrast, the Gaussian curvature, shows a sharp, asymmetric peak with

signi�cantly more positive Gaussian curvature than negative, but the median value is almost

exactly zero, skewing only slightly positive. The micelle is a topological ball, so even with its

various irregularities, the most likely shape should have more elliptic than hyperbolic points,

which readily explains the asymmetry.

The most striking feature of Figure 6, is how little it changes over time. Figure 5 sug-

gests that the mean curvature predominantly follows the curvature distribution of an ideal

ellipsoid, with some broadening indicating the formation of bumps and divots. However,

over the course of the simulation, there is no evidence of a signi�cant broadening, narrow-

ing, or shift in peak position of the overall distribution. This constancy in curvature is in

contrast to the concerted shift in CPE observed in Figure 3. We attribute this stability to

two factors. First, the simulation ensures that volume of the micelle is constant. Constant

volume implies that the curvature must revolve around some similar set of values because

curvature is an extrinsic value. Drift toward either larger or smaller curvature values would
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Figure 6: (a) Mean curvature distribution from the early frame of Figure 5. The black
vertical line is the median of the distribution. The other shades of gray represent percentile
ranges from the median: from darkest to lightest, 30%, 50%, 70%, 90%. (b) Mean curvature
distribution over all times. The example in part (a) represents a single slice of the data
presented here, shown as a green line. (c) Gaussian curvature distribution over all times.
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indicate a change in size, which is impossible for a system of set stoichiometry such as the

simulated micelle. In contrast, CPE is an intrinsic value, so its concerted shift is not re-

�ected in the curvature distribution. A constant volume also means that any deformation to

one side of the shape must move the displaced volume somewhere else, creating an endless

supply of roughly similar bumps and divots. Second, it is likely that the forces acting on

the micelle are relatively constant. If the micelle has been properly equilibrated, then the

entire simulation exists in the same potential energy minimum, producing roughly equiv-

alent forces at all times. We see no drift in the eccentricity or convexity to indicate the

micelle is still migrating to a minimum, and we match or exceed the equilibration times for

any simulated reverse micelles in literature,33,35�37,40,41 so we assume that this condition has

been met. Then, assuming this static force acting on the micelle, the forces acting on the

micelle must be responsible for the creation of the imperfections observed. Therefore, the

dissipation of one imperfection must create the same sort of strain somewhere else, leading

to the formation of a new imperfection. With constant volume ensuring the distributions

remain centered on a constant value, and a mostly constant set of imperfections leading to

constant broadening, the curvature distribution on whole remains quite stable.

5 Applications, Limitations, and Conclusions

We propose three metrics� coordinate pair eccentricity (CPE), convexity, and curvature

distribution� to characterize and quantify amorphous shapes, particularly those found in

chemistry. With these parameters, researchers can describe shapes that have until now relied

on visual inspection. These metrics also allow us to compare similar systems quantitatively,

track changes and �uctuations, and even compute characteristic times for these �uctuations.

Most importantly, although our code is designed to work with a molecular dynamics sim-

ulation, as long as the system can be converted to a Delauney triangulated mesh,61 this

analysis can be performed on absolutely anything, including systems outside the purview of
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chemistry.

We envision these metrics being used in a variety of ways in the study of reverse micelles.

For example, we have found it exceptionally curious that the micelle has the same consituents

everywhere, presumably leading to the same interactions everywhere, and yet adopts a shape

where certain regions are highly curved and others are hardly curved at all. This suggests

just the opposite of our naïve analysis: that the interactions are not the same everywhere.

While in this study we have presented the reverse micelle only as an example system, we

hope that a more thorough investigation into the shape of these reverse micelles will provide

further information about this mystery. We have also noticed that in the work of Eskici and

Axelsen to �nd the aggregation number of AOT reverse micelles via computed interaction

energies,41 the aggregation number appears to also impact the shape quite signi�cantly.

Therefore, it may be possible to greatly simplify this work and �nd the aggregation number

of a variety of di�erent sizes of AOT reverse micelles in a fraction of the computational time

via a shape analysis. These shape metrics could also be used to create a large number of

simulated small-angle X-ray scattering curves with, e.g., a Monte Carlo approach to re�ne

experimental interpretation and reconcile experimental work with computational work in

regards to the shape of the micelles or other soft materials. We also hope that these metrics

will provide a common ground for comparison between di�erent studies and veri�cation of

new work against old work; such as comparison between the work of Abel, et al.,35 the

work of Martinez, et al.,37 and the work of Eskici and Axelsen,41 who have all used slightly

di�erent aggregation numbers and water:AOT ratios which undoubtedly impacted the shape

of the micelles.

Although these metrics provide robust characterization, they are non-unique. Thus, it

is not possible to reproduce a single, unique shape purely from these metrics. Although the

realm of amorphous shapes is immense, the metrics we describe here have an exceptional

ability to distinguish between similar shapes, and are great tools for comparative analysis.

Here we take a brief inventory of some situations where these metrics may or may not work.
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Just like in our example system, an AOT reverse micelle, these metrics are particularly well

suited to topological balls. This rough group would include all possible types of micelles

(provided the entire interior is considered part of the system), but also systems such as

bacteria and other single celled organisms, liquid-in-gas droplets or gas-in-liquid bubbles,

globular proteins, and nanoparticles. While proteins and nanoparticles are typically well

de�ned and therefore not obvious candidates for metrics characterizing amorphous shapes,

characterizing the exact shape may not be easy or irregularities such as crystal defects may

present challenges. Therefore, it may be preferable in certain circumstances to use the

metrics presented here to roughly characterize a well-de�ned protein, or to provide a better

measure for when a protein transitions from one conformation to another. It may also be

preferable to use these metrics to characterize the real shape of individual nanoparticles,

including the crystal defects. These metrics could also be reasonably applied to long tubes

with relative ease such as the hydrophilic cavities within a Na�on membrane, the shape

of a single strand of a polymer, or the shape of long aggregates such as carbon nanotube

ropes or tube-shaped self-assembled objects.10 The study of shapes other than topological

balls presents a challenge. This includes topological spheres such as a cell membrane that

does not include the interior of the cell, or our own micelles if we removed the water from

consideration. It could also include shapes such as those observed in the work of Vasquez, et

al., whose simulation of an AOT reverse micelle has apparently formed a toroidal shape.33

While this greatly intrigues us and begs further study, in this case, our de�nition of convexity,

in particular, would be challenged because the volume relative to the convex hull would be

dramatically reduced by the cavity and convexity would not be responsive to changes in the

interior surface.

We encourage readers hoping to apply our metrics to carefully consider their speci�c

system and modify our metrics as needed to adequately describe that system. For example,

in the case of the hollow cavity, a new de�nition of convexity might need to be explored,

such as a de�nition based on surface area rather than volume. Alternatively, it could be
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advantageous to consider the interior and exterior surfaces separately and track them in-

dependently; although it could also be just as good to simply use the de�nitions we have

presented and simply ignore the interior cavity, depending on what the requirements and

interests of that particular system are. We cannot answer to all hypotheticals in a single

paper and the reader is advised to take such things into consideration. However, we are

con�dent that the majority of real systems which might be encountered in chemistry will

allow the metrics presented here to be used without modi�cation and we hope this serves as

an adequate framework for developing new measurements in the rare cases in which these

metrics fail or are insu�cient.
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