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ABSTRACT Ab initio molecular dynamics (AIMD) has become one of the most popular and 

robust approaches for modeling complicated chemical, liquid, and material systems. However, the 

formidable computational cost often limits its widespread application in simulations of the largest-

scale systems. The situation becomes even more severe in cases where the hydrogen nuclei may 

be better described as quantized  particles using a path integral representation. Here, we present a 

computational approach that combines machine learning with recent advances in path integral 

contraction schemes, and we achieve a two-order-of-magnitude acceleration over direct path 

integral AIMD simulation while at the same time maintaining its accuracy.  
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In molecular systems, due to the large masses of the nuclei, electrons are often considered to move 

infinitely fast compared to the nuclear degrees of freedom, and as a result, the nuclei are thought 

to evolve on a potential energy surface (PES) created by the electronic ground-state according to 

the Born-Oppenheimer approximation. If the nuclei are heavy enough to be treated as classical 

particles, their motion will be well-described by Newtonian dynamics on the electronic ground-

state PES. In the ab initio molecular dynamics (AIMD) approach1-3 the electronic structure is 

solved “on the fly” as the nuclei move, so there is no need to first perform a sometimes challenging 

and time-consuming parameterization of the system’s interatomic and intermolecular interactions, 

provided the underlying electronic structure in the AIMD algorithm is accurate enough.  

However, in some scenarios, nuclear quantum effects (NQEs) can be important for an accurate 

description of the system of interest, which is frequently associated with light atoms (such as 

protons) and/or at low temperatures. For example, NQEs are found to be important in liquid 

water,4-5 proton solvation and transfers,6-8 and various enzymatic processes.9 Feynman’s imaginary 

time path integral approach10 has been adopted widely to compute the quantum statistics and 

dynamics by mapping the quantum sampling into the sampling problem of a system consist of 

fictitious particles or “beads” (replicas) of the corresponding classical nuclear system.5, 11-12 For an 

N-particle system governed by the Hamiltonian 
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the thermal density matrix in the real-space representation can be expressed by the path integral 

formalism 
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where 𝐌 is a 3𝑁 × 3𝑁 diagonal matrix of the particle masses, and 𝒓 is the 3𝑁-dimensional vector 

representing the atomic coordinates. The energy and force calculations must be performed for all 

such replicas (N𝒓-O) of the system, which typically increases the computational cost by at least an 

order of magnitude depending on the number of beads (𝑃) required to converge the path integral. 

Considering the already formidable computational cost in the underlying electronic structure 

calculation with AIMD, modeling NQEs on an ab initio PES has not been typically viable for 

many realistic systems until recent developments involving some computational approximations.12 

Aspects of this body of work includes the ring-polymer contraction (RPC),13 the ring-polymer 

interpolation,14 and the combined path integral and generalized Langevin equation (PI+GLE) 

approach.15  

In RPC, the system PES is divided into two terms, a dominant term and a slowly varying term. 

This partitioning in AIMD can be accomplished by employing a lower level quantum approach as 

the reference potential, and its deviation from the original high-level PES is regarded as a 

perturbation term, such that  

 𝑉/01/(𝒓) = 𝑉234(𝒓) + 𝑉5066(𝒓) 3 
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The reference potential 𝑉234 is evaluated for all the 𝑃 beads N𝒓-O while the deviation term 𝑉5066 is 

only evaluated on a “contracted” ring polymer with 𝑃( < 𝑃. In the special case when 𝑃( = 1, i.e., 

the centroid contraction, 𝑉5066 is only evaluated on the centroid: 

 𝑉Q5066 = 𝑉/01/(𝒓7) − 𝑉234(𝒓7) 4 

where 𝒓7 is the imaginary time path centroid defined as 𝒓7 =
#
)
∑ 𝒓-)
-.# , the zero-frequency normal 

mode of the ring polymer.10 Then, the potential at each path integral bead is simply approximated 

by  

 𝑉/01/F𝒓-G ≈ 𝑉234F𝒓-G + 𝑉Q5066 5 

We note that the path centroid variables of the particles are the most classical-like variables in a 

quantized imaginary time (equilibrium) system, as has been elaborated in considerable detail 

previously.16  The particle centroids are therefore arguably the most natural variables to choose for 

a path integral contraction scheme. If the computational cost of 𝑉234 is negligible, then RPC speeds 

up path integral simulations by a factor of 𝑃/𝑃( because the exact potential is only evaluated on 

the contracted ring polymer. The partitioning of the potential (eq 3) can also be useful for 

accelerating classical AIMD via a multiple time scale (MTS) integration scheme,17 where 𝑉/01/ is 

only evaluated every 𝑀 steps (outer timestep) but 𝑉234 is evaluated every single step (inner 

timestep). Similar to RPC, if 𝑉234 can be evaluated much more efficiently, the MTS will accelerate 

the AIMD by a factor of 𝑀. In practice, the MTS and RPC can be both employed to accelerate the 

quantum simulation as formulated in refs.18-20 
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One commonly used low level electronic structure method in MTS/RPC is the self-consistent-

charge density-functional tight-binding (SCC-DFTB) method.21-22 However, the SCC-DFTB 

approach is largely semi-empirical and known to have limitations, e.g., in describing the solvation 

structure and dynamics of liquid water and hydrated excess protons.23-25 In principle, the accuracy 

of the MTS/RPC approximation is subject to the accuracy of the underlying reference potential, 

and the efficiency gain is also strongly influenced by the computational efficiency of the low level 

method. Hence, it is considerable value to find an accurate enough reference potential which can 

also be evaluated efficiently numerically.  

The recent advances in machine learning26-27 (ML) have opened up new opportunities to enable 

efficient simulations of complicated system by approximating the many-body quantum PES by a 

flexible ansatz, usually an artificial neural network (ANN). However, it is usually impossible to 

learn perfectly the ab initio PES by the network training, due to the many-body nature of molecular 

systems and the finite expressive capabilities of an ANN. The situation becomes more challenging 

for a heterogeneous system because a data-driven approach is heavily affected by the amount of 

data available, and it remains an open question as to how to efficiently generate a high-quality 

training set that adequately samples the interactions associated with each species and components 

in the system, especially for dilute ones. 

It is thus desirable to have a “monitor” that could keep verifying whether the ML potential 

deviates from the exact ab initio potential during the production run and if it does, correcting it in 

some way. Although this may be achieved by employing an online learning approach that utilizes 

the newly sampled data to refine the underlying ML model on the fly, there is no guarantee that 

this combined learning-sampling procedure will eventually converge to a determined solution due 

to the stochastic nature of network training and MD sampling. Here, we instead propose to use the 
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MTS/RPC framework to achieve such a “monitor” task by employing the ML model as the 

reference potential in MTS/RPC. The ML potential in MTS/RPC is not used to directly propagate 

the system; instead it is constantly “corrected” by regular evaluations of the ab initio PES, 

alleviating the concern about the learned potential accuracy. In addition, as we will discuss below, 

a ML potential can indeed be an excellent choice of the reference potential in MTS/RPC to improve 

its computational efficiency and accuracy. 

We note that the assumption made in RPC is that the 𝑉5066 part of the exact potential 𝑉/01/ is a 

slowly varying function with respect to atomic positions, and the approximation becomes exact if 

𝑉5066 has no position-dependency at all. Hence, the gradient of 𝑉5066 with respect to atomic 

coordinates is ideally close to zero (𝛁𝑉5066 → 𝟎). By noting eq 3 and that the negative potential 

gradient defines the force, an ideal reference potential 𝑉234 would minimize the force residual 

 𝜒89:, = ⟨|𝛁𝑉5066|,⟩ = 〈3𝑭/01/ − 𝑭2343
,_ 6 

where brackets represent some sort of ensemble average, which is usually performed by the 

average over the training set. In MTS, the “slowly varying” means the potential 𝑉5066 does not 

change significantly in real-time, measured by the time derivative of the potential 
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,

c = 〈|𝛁𝑉5066 ⋅ �̇�|,⟩ 7 

which is also modulated by the 𝑉5066 gradient, and can thus be minimized if 𝜒89:,  is minimized. 

Equations 6 and 7 suggest that a ML potential trained using the force residual as the loss function 

can thus serve as an optimal low level potential in MTS/RPC approach. 
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Herein, we benchmarked the ML-MTS/RPC approach for a heterogeneous system which is 

consisted of one excess proton and 128 water molecules described by the Becke-Lee-Yang-Parr 

exchange-correlation functional28-29 with D3 dispersion correction30 and the experiment directed 

simulation (EDS) correction parametrized for aqueous systems with an excess proton.31-32 The 

details of the simulations are given in the Supporting Information (SI).  

In Figure 1, we show the O-O, O-H and H-H radial distribution functions (RDFs) of the 

simulated system with both classical and quantum nuclei. Since the excess proton (H+) is dilute in 

the system, these RDFs basically represent the pure water structures. Because the ANN training 

set contains a large number of samples for water-water interactions, it is expected that the data-

driven ML approach would be able to learn the water potential with high fidelity. It is indeed what 

we observed that the ML potential itself already represents a good description of the water-water 

interactions, as seen by the good agreement of the RDFs between the ML ones and the reference 

EDS corrected BLYP-D3 (EDS-BLYP-D3) AIMD ones (red vs. blue in Figure 1A,C,E). Since the 

ML potential itself is sufficiently accurate for the water structure, it is understandable that a 

classical AIMD simulation using the ML potential as the MTS reference reproduces the EDS-

BLYP-D3 water RDFs (green curves vs. blue curves in Figure 1). Interestingly, although the SCC-

DFTB approach alone was found to underestimate the second-shell water structures, using it in 

MTS does present a problem here in the water RDFs (purple vs. blue in Figure 1). This is attributed 

to the evaluations of the ab initio energy and force every several time steps, which serve as a 

“monitor” that corrects on-the-fly the underlying low-level force.  
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Figure 1. Water solvation structures in terms of the O-O RDF (A & B), O-H RDF (C & D), and 
H-H RDF (E & F) in classical nuclear AIMD simulations (A, C & E) and quantum simulations (B, 
D & F). In A, C and E, the classical AIMD using EDS-BLYP-D3 is shown in blue, the simulation 
directly driven by the ML potential is shown in red, the AIMD using the ML potential as MTS 
reference is in green, and the AIMD using the SCC-DFTB as MTS reference is in green. In B, D 
and F, the full ab initio PIMD is shown in blue, the TRPMD using ML as RPC reference is in red, 
and SCC-DFTB as RPC reference in green. The quantum RDFs are reported here as the path 
centroid results, while the “real” RDFs computed from the averages over the path integral  beads 
are provided in the SI. The statistical errors in the RDFs are all within 0.02. 
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In Figure 1B,D,F, we show the RDFs in quantum simulations. The full ab initio PIMD which 

evaluates the energy and force explicitly on every path integral bead is used as the reference. 

Employing the ML-RPC approach in the thermostatted ring polymer molecular dynamics 

(TRPMD)33 again reproduces the RDFs of the exact quantum results (red vs. blue in Figure 

1B,D,F). However, while SCC-DFTB performs well as a reference potential in classical 

simulations, it causes some minor but noticeable variations from the reference quantum results 

when used in RPC TRPMD. This shows that, while the MTS/RPC approach allows for some 

tolerance in the underlying reference potential, the accuracy of such an approximation is still 

dependent on the quality of the reference potential as one might expect. The RDFs computed from 

the average over the path integral beads (Figure S1) are fully consistent with the discussion here. 

 

Figure 2. Hydrated excess proton solvation structure measured by the potential of mean force of the proton 
sharing coordinate (𝛿) (eq 8). By construction, the lower value in 𝛿 represents configurations where the 
excess proton is more evenly shared. Statistical errors estimated from standard deviations of independent 
runs are shown as intervals around the curves. (A) The classical EDS-BLYP-D3 AIMD is in blue, the 
classical simulation driven by the ML potential is in red, the AIMD that uses the ML potential in MTS is 
in green, and the AIMD using SCC-DFTB in MTS is in purple. (B) The full ab initio PIMD reference is 
shown in blue, the TRPMD using ML potential as RPC reference is in red, the TRPMD using SCC-DFTB 
as the reference is in green. The quantum PMFs are computed from the centroid trajectories, while the 
PMFs computed from the averages over the beads are provided in the SI. 
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In Figure 2, we show the potential of mean force (PMF) as a function of proton sharing 

coordinate 𝛿 for the excess proton between two water molecules. The 𝛿 coordinate is defined as 

the difference in O-H distances of a shared proton, 

 𝛿 = 𝑟=>∗ − 𝑟=∗>∗ 8 

where O* represents the most hydronium like oxygen, which is defined as the oxygen with the 

closest three hydrogen atoms, the O represents the hydrogen bond acceptor oxygen of H*, and H* 

is one of the three bonded protons in the hydronium that maximizes the 𝛿 value. The PMF of 𝛿 

thus provides a measure of the excess proton solvation structure. In classical simulations (Figure 

2A), we found the direct use of ML (red curve) will drive the MD results into some subtle 

deviations from what the model was supposed to learn (blue curve). As was discussed earlier, this 

is not surprising because there is only one excess proton in the system (vs. 128 waters) and thus 

the sampling of the hydrated H+ interactions is much less optimal than the sampling of the many 

water interactions. As the result, it is challenging for the ML to “learn” perfectly those excess 

proton interactions given the limited information encoded in the ANN training data. We anticipate 

this issue to be more announced for even more heterogeneous systems with multiple elements and 

components, which further prevents the application of an ML potential directly to those systems. 

However, if the ML potential is used only as of the reference potential in MTS, the correct proton 

sharing free energy can be reproduced (Figure 2A, green). And, despite the fact that the SCC-

DFTB used in this work may predict some abnormal proton solvation structures, such as the second 

shell water encroaching into the hydrated proton first solvation shell,25 the use of SCC-DFTB in 

MTS is still able to predict the correct 𝛿 PMF (Figure 2A purple vs. blue). This again highlights 

the tolerance of the MTS approach to the underlying reference potential, and is an encouraging 
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result for the application of an imperfect ML potential in the RPC approach for quantum PIMD 

AIMD simulations. 

In Figure 2B, we show the excess proton sharing PMF in quantum simulations. In contrast to the 

water RDFs (Figure 1), the NQEs play a non-negligible role and almost flatten the proton transfer 

barrier along 𝛿. Although the ML potential shows some deficiency in describing the excess proton 

solvation structures (Figure 2A red), the ML-RPC approach is able to reproduce the 𝛿 PMF of the 

full ab initio PIMD result within statistical error. By contrast, the SCC-DFTB-RPC approach lacks 

sufficient accuracy for capturing the barrierless feature in the small-𝛿 region, but predicts a barrier 

height between the classical value and the quantum value. We note that this difference is not as 

pronounced in the 𝛿 PMFs computed from averaging over the path integral beads (Figure S2 of 

the SI), which is consistent with the fact that the DFTB-RPC approach is able to predict the proton 

sharing structure in the gas-phase Zundel (H5O2
+) cation as reported in ref13. However, the 

deviation shown in the centroid distribution (Figure 2B) does reveal a certain discrepancy of the 

DFTB-RPC ensemble with the full ab initio PIMD ensemble. It is worth noted that the path 

centroid distribution provide the most “classical-like” underlying behavior of a quantum system at 

equilibrium, so the quantum delocalization seen in the full bead averaged result seems to mask 

these core differences between the DFTB-RPC and ML-RPC outcomes.   These contrasting results 

in the present work for a condensed phase hydrated proton imply that utilizing SCC-DFTB in RPC 

quantum PIMD simulations may require careful benchmarking when applied to new systems 

and/or for simulations of the same system using a new underlying electronic density functional in 

the AIMD. 
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Figure 3. Simulation efficiency benchmarks. (A) Simulation speed defined as simulation time 
obtained (fs) divided by wall time (hour) and number of cores in classical and quantum simulations. 
The blue bars are plain AIMD runs without using MTS or RPC. The red bars use SCC-DFTB and 
the green bars use the ML potential to accelerate simulations via MTS or RPC. The acceleration 
compared to the plain runs are denoted above the bar tops. A simulation using 600 cores is used to 
calculate the speed for the plain quantum simulation for a faster overall simulation speed, while the 
40-core data is used for all other simulation protocols. Note that the simulation speeds plotted are 
scaled by the number of cores used. (B) Simulation speed defined as simulation time (fs) divided 
by wall time (hour) as a function of core number used. 

 

Due to the reduced number of energy evaluations on the ab initio PES, the MTS and RPC 

approaches can accelerate classical and quantum AIMD simulations given that the reference ML 

potential is computationally efficient. In Figure 3A, we show the simulation speed per CPU core 

in classical and quantum simulations. In both DFTB- and ML-MTS, we used an outer timestep of 

2 fs and an inner timestep of 0.25 fs whereas the timestep in plain classical AIMD was 0.5 fs. If 

the computational cost for the reference potential is negligible, then the MTS approach should 
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have a 4-fold speedup. However, due to the computational overhead of SCC-DFTB and the ML 

potential, the acceleration is 1.3-fold for DFTB-MTS and 2.3-fold for ML-MTS. We note that the 

ANNs used in the ML potentials can be more efficiently evaluated on specialized hardware, such 

as a graphics processing unit (GPU) and tensor processing unit (TPU). Hence, we expect the 4-

fold speedup is eventually achievable for the ML-MTS approach if those specialized computation 

architectures are employed. For quantum simulations, the acceleration becomes very large where 

the DFTB-RPC approach accelerates the simulation by a factor of 47 while the ML-RPC approach 

reduces the computational cost by 2 orders of magnitude (while even benchmarked in a pure CPU 

environment).  

One must also always achieve some degree of certainty that the ML approach is able to learn 

“perfectly” an inherently many-body ab initio PES. This concern may be more prevalent in a 

heterogeneous system where training a fully reliable ML model is challenging. In this work, using 

a the hydrated excess proton in water case, we demonstrated it is can be case where a ML potential 

has difficulty in describing the solute at a low concentration. However, we also discovered that 

even with a less-than-ideal ML potential, the RPC technique may bridge the “accuracy gap” 

between the trained ML model and the exact ab initio PES, and accurately reproduce the full 

quantum results. By taking advantage of the low computational cost of evaluating an ANN, the 

ML-RPC is also two orders of magnitude faster than a plain full ab initio path integral AIMD 

simulation. The accuracy and the efficiency of the approach thus demonstrates its promise and 

potential for the future ab initio modeling complex systems with NQEs taken into account.  

In the present work, the ML potential was trained by targeting both the ab initio energy and force 

(see Supporting Information material) to improve the training convergence. We note the resulting 

ML model, combined with RPC, is almost able to reproduce everything from the exact PIMD 
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except some small deviations in the high free-energy region of the bead-averaged 𝛿 PMF (see 

Figure S2). This could possibly be improved by involving force matching only in the training 

process to best fulfill the slow-varying assumption made in the MTS and RPC frameworks (eqs 6 

and 7). In addition, the quantum fluctuations vary for different nuclei due to their mass difference 

(the thermal de Broglie wavelength of an atom is on the order of 1/√𝑚), and thus the current 

approach could be further improved by introducing masses as weights in the force residual, such 

as 

 𝜒, = jF𝑭/01/ − 𝑭234G
!𝐌"#(𝑭/01/ − 𝑭234)_ 9 

to focus more on the force quality related to light atoms. We note that the velocity fluctuation of a 

classical particle is also inversely proportional to the mass, k⟨�̇�,⟩ ∝ 1/√𝑚, so then the mass-

weighted force residual of eq 9 may also be helpful for deriving a more accurate reference potential 

for MTS according to eq 7.  
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