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ABSTRACT 

Bimetallic alloys have emerged as an important class of catalytic materials, spanning a wide range of 

shapes, sizes, and compositions. The combinatorics across this wide materials space makes predicting 

catalytic turnovers of individual active sites challenging. Herein, we introduce the stability of active sites 

as a descriptor for site-resolved reaction rates. The site stability unifies structural and compositional 

variations in a single descriptor. We compute this descriptor using coordination-based models trained 

with DFT calculations. Our approach enables instantaneous predictions of catalytic turnovers for 

nanostructures up to 12 nm in size. Using NO dissociation as probe reaction, we identify that octahedral 

Au-Pt core-shell nanoparticles and 3 nm Au0.5Pt0.5 random alloys yield greater than 10 times higher 

compared to monometallic Pt nanoparticles. By prescribing specific sizes, morphologies, and 

compositions of optimal catalytic nanoparticles, our method provides tailored guidance to experiments 

for rationally designing bimetallic catalysts.  

 

INTRODUCTION 

Density functional theory (DFT)-derived Sabatier volcano plots have revolutionized the 

computationally guided discovery of transition metal catalysts. These plots correlate turnover frequencies 

(TOFs) to catalytic descriptors like the binding energies of reaction intermediates.[1–3] The descriptors 

and reaction pathways are typically evaluated using ideal extended surfaces, which are simplified 

representations of nanoparticle facets. Real catalytic nanoparticles, especially compositionally flexible 

bimetallic alloys, however, are complex nanostructures spanning diverse structures and compositions, 

and exposing a distribution of active sites. This structural complexity results in a materials gap between 

nanostructures under reaction conditions and their idealized crystal plane models. This materials gap 

limits both experimental and computational evaluations of active site-resolved reaction rates. To bridge 

this gap, various structure-activity relationships have emerged for bimetallic surface facets, and more 

recently for bimetallic nanoparticles.[4–7] Using features of active sites as inputs, both physics-based[4–13] 
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and data-driven[14–19] relationships can evaluate catalytic descriptors with accuracy of 0.1 to 0.2 eV 

compared to DFT. Applying these active site-resolved descriptors for nanoparticles holds promise for 

efficient predictions of nanoparticle size, shape, and composition yielding optimal reaction rates. Such 

specific knowledge provides tailored guidance for the synthesis of catalytic nanoparticles. It is still a 

challenge, however, to translate these descriptors into active site-resolved reaction kinetics across the 

distribution of active sites ubiquitous to bimetallic nanoparticles. 

 Herein, we introduce a generalizable framework for determining reaction rates and other 

kinetic metrics (e.g., rate orders) of bimetallic nanoparticles with active site resolution. Our approach 

leverages inherent correlations between the stability of active sites (𝐵𝐸̅̅ ̅̅ 𝑀) and their reactivity, as has been 

observed in experiments.[20,21] We employ 𝐵𝐸̅̅ ̅̅ 𝑀 as a unified descriptor for both structural and 

compositional variations around active sites. This descriptor is predicted on-the-fly using coordination-

based models.[4–7] 𝐵𝐸̅̅ ̅̅ 𝑀 is then propagated through a family of local volcano plots to determine site-

resolved reaction rates. Our general approach for evaluating site-resolved reaction rates is applicable in 

thermal and electrochemical catalysis.[22] Previous efforts in describing catalytic activity of (bi)metallic 

nanoparticles include using semi-empirical methods,[23] data-driven and machine-learning 

approaches,[17,19,24–30] local[31–33] and global[34,35] physiochemical properties, and other modelling 

strategies.[4,7,9,10,36–42] Compared to existing methods, our approach is more readily generalizable across 

late transition metal alloys while maintaining an accuracy of ±0.1-0.2 eV in evaluating catalytic 

descriptors.[5,6] Furthermore, our approach determines active site-resolved reaction rates for large systems 

(45 000 atoms) on the time scale of seconds to minutes while simultaneously accounting for catalytic 

activity and durability of an active site.  

 As benchmark system, we use the catalytic decomposition of NO(g) into N2(g) and O2(g) 

over Pt-based catalysts. This reaction is a technologically relevant probe reaction given its importance in 

purifying vehicle exhaust gases.[43–47] Volcano plots on individual surface facets for NO dissociation 

have already been derived and used for catalyst screening.[48,49] They show that Pt is located near the 

region showing maximum rate. Having these volcano plots as points of comparison makes NO 

dissociation over Pt-based catalyst an ideal platform to demonstrate how our scheme enables nanoparticle 

design through active site-resolved reaction rates. NO dissociation is shown as a four-step mechanism in 

equations (1) to (4), valid at the reaction conditions (≥ 700 K) considered herein.[50]
 Surface sites are 

indicated using *. NO(g) adsorption is followed by NO* dissociation to N* and O*, and finally the 

desorption of N2(g) and O2(g).  

 

 NO(g) + * ⇌ NO*               (1) 
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 NO* + * ⇌ N* + O*               (2) 

 2N* ⇌ N2(g) + 2*               (3) 

 2O* ⇌ O2(g) + 2*              (4) 

 

To demonstrate our approach, we evaluate active site-resolved reaction rates of NO decomposition on 

bimetallic Pt nanoparticles ranging from 147 (1.6 nm) to 43 719 (12 nm) atoms. We find that 

nanoparticles of specific shapes (octahedral), sizes (2-3 nm), and compositions (Au0.5Pt0.5) can increase 

rates by up to two orders of magnitude compared to monometallic Pt nanoparticles. By considering 

atomic-level and macroscopic kinetics on an equal footing, our method bridges the size gap in materials 

modeling, thus permitting direct computational studies of nanostructured catalysts.   

 

RESULTS AND DISCUSSION 

 In brief, our method, outlined in Figure 1, is a stepwise link between the local structure of 

the active site and its catalytic activity. We evaluate the stability of the active site (henceforth referred to 

as the average binding energy of the site, 𝐵𝐸̅̅ ̅̅ 𝑀) using a coordination-based model.[4,7] This site stability 

serves as input into a set of linear relations that yield binding energies of reaction intermediates. These 

binding energies are in turn used to estimate reaction barriers and activation energies of elementary steps 

at that active site. The active site-specific reaction energetics enter a microkinetic model that computes 

site-resolved reaction rates on the nanoparticle surface.  

In our workflow, we first efficiently predict 𝐵𝐸̅̅ ̅̅ 𝑀 using a coordination-based model, which 

we term as the alloy stability model (ASM) (see Figure 1.A). This model is described in previous 

publications[4–6] and summarized in supporting note S1 of the supplemental information (SI). In brief, 

for a given site ensemble composed of atoms i of element Zi (e.g., Zi = Pt), of size n (e.g., n = 2 for bridge 

sites), and with nearest neighbors j (e.g., Zj = {Pt, Au}) the binding energy 𝐵𝐸̅̅ ̅̅ 𝑀(n,i,j) per atom is: 

 

𝐵𝐸̅̅ ̅̅ 𝑀(𝑛, 𝑖, 𝑗) =
1

𝑛
𝑓(𝐂𝐍𝑖 , 𝐂𝐍𝑗 , 𝐙𝑖 , 𝐙𝑗) =

1

𝑛
𝐀 ∙ 𝜶             (5) 

 

The only inputs to this surrogate model in equation (5) are the coordination numbers (CNi, CNj) and 

composition (Zi, Zj) of the site ensemble as well as its nearest neighbors. The parameters of the alpha 

vector, α, denoted αN,Z with N = {1-12} (α1,Z to α3,Z are grouped as α1-3,Z) for fcc metals, reflect the 

average differential energy gained by an atom as it forms the Nth bond. The matrix A represents the 

changes in coordination number of atoms during the adsorption of the active site into the nanoparticle. 
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By training the αN,Z parameters against representative DFT calculations on simple surfaces, MAEs of 

±0.1 eV versus DFT are obtained for Pt-based alloys.[6,7] Evaluating active site stabilities using this 

scheme is central to our approach, enabling the examination of reactivity trends on nanostructures up to 

12 nm in size (~45 000 atoms). While we only consider Pt sites in this work, the methods are 

generalizable to any kind of metal alloy site.[6] 

 Next, we leverage linear site-specific scaling relations between 𝐵𝐸̅̅ ̅̅ 𝑀 and the adsorption 

energy (ΔEads) of reaction intermediates onto that site (e.g., N*, O*, NO*);[6] see Figure 1.B and 

supporting note S2. Such relations between stability and reactivity for transition metal nanoparticles are 

inferred through experiments.[20,21] The ΔEads of key reaction intermediates are connected to the 

activation energy (Ea) of elementary steps (herein, eq. 1-4) through Brønsted-Evans-Polanyi (BEP) 

relations (Figure 1.B and supporting note S3).[48,51,52] We add entropic changes to the estimated barriers 

and reaction energies to compute free energy changes and site-specific rate constants (supporting note 

S4). These rate constants are inputted into a mean-field microkinetic model (supporting note S6).  

Classical volcano plots based on mean-field microkinetic models represent reaction rates 

for a given surface facet in terms of binding energies of reaction intermediates.[2,53] To provide a more 

realistic model for nanoparticles, exposing multiple surface facets, instead of using a single volcano plot, 

our approach introduces a family of local volcano plots. These plots efficiently sample site-specific 

reaction rates across diverse active sites in bimetallic nanoparticles. We create local volcano plots for 

sites having a specific composition (e.g., Pt) and a specific structure (e.g., 7-7 coordinated bridge sites) 

using 𝐵𝐸̅̅ ̅̅ 𝑀 as the sole descriptor (Figure 1.C). The 𝐵𝐸̅̅ ̅̅ 𝑀 directly maps variations in chemical 

composition around the active site to the local TOF. Finally, under the assumption that each site operates 

autonomously without being influenced by neighboring sites, the total rate for a given nanoparticle size 

and shape is computed as the sum of contributions from individual sites (Figure 1.D). We discuss the 

validity of the autonomous site assumption after presenting our results. With our framework, we can 

zoom into promising regions of existing volcano plots and identify precise shapes, sizes, and 

compositions of bimetallic nanoparticles yielding optimal rates. We now leverage our methods illustrated 

in Figure 1 to design nanocatalysts for NO decomposition. The approach delineated in Figure 1 is 

generalizable to other thermal and electrocatalytic reactions as long as parameters like αN,Z as well as 

slopes and intercepts of linear fits are available, in addition to a general understanding of the reaction 

mechanism.  
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Figure 1. Stepwise approach for predicting active site-specific reaction rates on nanoparticles. In A), we use the alloy stability 

model[4–6] to compute the binding energies of active sites (𝐵𝐸̅̅ ̅̅ 𝑀). B) The 𝐵𝐸̅̅ ̅̅ 𝑀 in turn yields adsorption energies (ΔEads) of 

reaction intermediates through site-specific scaling relations. These site-specific ΔEads are inserted into Brønsted-Evans-

Polanyi relations to estimate activation energies (Ea) at every site. C) ΔEads and Ea are inputted into microkinetic models that 

yield local volcano plots expressing rates using 𝐵𝐸̅̅ ̅̅ 𝑀 as the only descriptor. D) The total reaction rate for the nanostructure is 

computed as the sum of contributions from each type of site.  

 

 We assume that the nanostructured surface contains active sites resembling structural 

motifs on extended surfaces. Falsig et al.[48] studied NO decomposition on multiple surface facets of 

different transition metals, including Pt. Favored adsorption sites were evaluated on several facets, which 

included terraces, like (111) and (100) surfaces, and edges, like on (211) or (110) surfaces. Sites of special 

importance for NO decomposition were identified as the 3-fold fcc hollow sites on (111)-like surface 

motifs, and 2-fold bridge/step sites on (100)-like motifs or (211)/(110) edges.[48]  

 These facets and sites are found on common nanoparticles (NPs), e.g., NPs with octahedral 

morphologies. This family of shapes includes the perfect octahedral (OCTA), cuboctahedral (CUBO), 

and truncated octahedral particles. We find that truncated octahedral shapes are frequently formed in 

Wulff constructions (WULFF) in vacuum (supporting note 5). The OCTA, CUBO, and WULFF 

morphologies form the basis of our analysis. 

 Figure 2 shows the variation in 𝐵𝐸̅̅ ̅̅ 𝑀 with shape, size, and alloying pattern for different 

types of Pt sites on pure and alloyed Pt NPs. The 𝐵𝐸̅̅ ̅̅ 𝑀 are calculated using equation 5. The sites are 
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denoted by the coordination number (CN) of the atoms constituting the site ensembles: e.g., the hollow 

fcc site on the (111) facets is denoted 9-9-9, whereas the bridge sites on (100) and the (211)/(110) steps 

are referred to as 8-8 and 7-7, respectively. Prior studies on NO dissociation indicate that reaction rates 

on Pt are higher than on other monometallic systems or their alloys. Based on these insights, we assume 

that NO dissociation occurs only on pure Pt dimer and trimer ensembles in our binary alloys. Effectively, 

we thus assume that any site ensembles containing a non-Pt atom have negligible TOFs compared to 

pure Pt ensembles.  

For pure Pt particles, the 𝐵𝐸̅̅ ̅̅ 𝑀 of a given type of site with a specific CN varies based on the 

number of next-nearest neighbors. This variation of the site stability is generally small and falls within 

an energy window of ±0.3 eV, regardless of the particle shape and size (Figure 2.A-C). Given the small 

variations in 𝐵𝐸̅̅ ̅̅ 𝑀 for monometallic Pt particles, the reaction rates per particle are mainly influenced by 

the number of active sites in different morphologies. In Figure 2.G; if the 9-9-9 site dominates the total 

catalytic activity, OCTA is the preferred catalyst shape, whereas if the 8-8 sites are more active, CUBO 

is a better choice. Further details on size, shape, and structure effects are provided in the supporting note 

S7. 

Alloying has a larger effect on the 𝐵𝐸̅̅ ̅̅ 𝑀 than changing the number of next-nearest neighbors of a 

monometallic system. With appropriate binary combinations, the 𝐵𝐸̅̅ ̅̅ 𝑀 of a Pt3 9-9-9 site is destabilized 

by 0.83 eV in an Au environment and stabilized by 0.86 eV when surrounded by Ir (supporting note 

S8). Figure 2.D-F demonstrate the effects of systematically and randomly alloying Pt particles with Au. 

We will show in Figure 3 and in supporting note S9 that these alloys enhance the rates of NO 

dissociation. The higher intrinsic rates per site, however, come at the cost of deactivating other sites that 

directly incorporate inert Au atom(s). These tradeoffs are discussed below in connection with Figure 5.   
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Figure 2. A)-C), distribution of sites and associated 𝐵𝐸̅̅ ̅̅ 𝑀 over nanoparticles of different shapes. 𝐵𝐸̅̅ ̅̅ 𝑀 is normalized by the 

number of atoms in the site, e.g., 2 for bridge sites. D)-F), distributions of sites for different Au alloying patterns. Distributions 

for sites relevant to NO decomposition are shown. In A)-C), the coordination number (CN) of the atoms of the sites are 

marked. G) reports the size-evolution of the number of sites for different nanoparticle shapes. The longest dimension refers 

to the largest atomic distance within the particle. Considered shapes include octahedral (OCTA), cuboctahedral (CUBO) and 

Wulff constructions (WULFF). For WULFF, we generate particles based on a finely discretized size range as described in 

Supporting note 5. Note that the 3-fold hollow 9-9-9 and 7-9-9 sites refer to fcc sites. 
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 We now link the site stability 𝐵𝐸̅̅ ̅̅ 𝑀 to its catalytic activity via the procedure outlined in 

Figure 1. This link allows us to create volcano plots like the one shown in Figure 3 for NO 

decomposition on 9-9-9 Pt sites at 700 K, 10 mbar NO(g), and 5% conversion. These site-specific 

volcano plots correlate reaction rates at a given metal site (e.g., Pt) having a specific structure (e.g., 9-9-

9 fcc sites) with variations in the chemical composition around the site (supporting note S6). To 

illustrate the widest range of composition effects on NO decomposition rates, we label Pt ensembles 

surrounded by different metals (e.g, Au, Ir, etc.) in Figure 3. These variations can to the first order be 

described by a shift of the upper band edge of the d-states, as discussed elsewhere.[54] In Figure 3, the 

𝐵𝐸̅̅ ̅̅ 𝑀 of pure Pt is ~1.2 eV too negative compared to the volcano peak. As we observe, however, alloying 

Pt with, e.g., Au can be used to render 𝐵𝐸̅̅ ̅̅ 𝑀 more positive and shifting the ensemble closer to the volcano 

peak. In fact, surrounding Pt ensembles with Au increases the intrinsic rate by two orders of magnitude. 

Similar volcano plots for 7-7 bridge sites located at nanoparticle edges and 8-8 bridge sites on (100) 

facets are shown in supporting note 6. Since 𝐵𝐸̅̅ ̅̅ 𝑀 can be predicted using the computationally efficient 

alloy stability model (ASM), we can leverage such site-specific volcano plots to instantaneously evaluate 

rates at Pt sites surrounded by late transition metals on nanoparticles of  >10 nm size.  

 

 
Figure 3. An example of a local volcano plot for NO dissociation at 9-9-9 coordinated fcc sites. Rates are expressed as a 

function of the 𝐵𝐸̅̅ ̅̅ 𝑀 of the site. The 𝐵𝐸̅̅ ̅̅ 𝑀 can be modified by varying the chemical environment around the site, for instance 

surrounding the Pt3 fcc site with Ir, Rh, Cu, Pd, Ag, and Au. Reaction rates are computed at 700 K, ptot = 1 bar, pNO = 10 mbar, 

5% conversion (supporting note 6). Similar local volcanoes for 7-7 sites at step edges and 8-8 sites on (100) terraces are 

shown in supporting note 6. Note that opposite to traditional volcano plots, we switch from low to high coverage as we move 

from the left (more negative 𝐵𝐸̅̅ ̅̅ 𝑀) to right (less negative 𝐵𝐸̅̅ ̅̅ 𝑀). This reversed trend is because 𝐵𝐸̅̅ ̅̅ 𝑀 is inversely correlated 

with the adsorption energies of reaction intermediates (supporting note 2).  

 

In addition to accelerating the evaluation of site-resolved rates, 𝐵𝐸̅̅ ̅̅ 𝑀 also explains trends in 

kinetic metrics[55–58] of NO decomposition like degrees of kinetic/thermodynamic control,[56–58] rate 
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orders, coverages, and apparent activation energies. These trends on 9-9-9 Pt sites as a function of their 

chemical composition are shown in Figure 4.A-F. Thus, changes in mechanistic aspects of chemical 

reactions can be expressed using 𝐵𝐸̅̅ ̅̅ 𝑀 as the only variable. The degree of kinetic control in Figure 4.A 

indicates that based on 𝐵𝐸̅̅ ̅̅ 𝑀, two mechanisms are followed. At more negative 𝐵𝐸̅̅ ̅̅ 𝑀, the N-N bond 

formation has a degree of rate control of 1, thus being the sole rate-determining step. At less negative 

𝐵𝐸̅̅ ̅̅ 𝑀, the degree of kinetic control for both O-O formation and N-O dissociation increases at the expense 

of N-N dissociation. The volcano plot in Figure 3 has a relatively flat maximum because of the 

competing influences of three elementary steps in the pathway. At more negative 𝐵𝐸̅̅ ̅̅ 𝑀, the surface has a 

high coverage of empty sites (Figure 4.B), which is further elucidated by the negative degree of 

thermodynamic control for empty sites (Figure 4.C). Upon shifting to less negative 𝐵𝐸̅̅ ̅̅ 𝑀, Pt ensembles 

exhibit higher coverage of NO* and O* together with lower rate orders for NO(g) and O2(g) (Figure 

4.D). As 𝐵𝐸̅̅ ̅̅ 𝑀 become less negative, both the reaction rate and the apparent activation energy (Figure 

4.E) increase. Seemingly counter-intuitive, the reaction rate increases because any increases in the 

apparent activation energy are more than compensated for by an increase in the apparent pre-factor 

(Figure 4.F). This phenomenon, known as the chemical compensation effect,[55] arises due to changes in 

the reaction mechanism on either side of the volcano plot. A longer discussion about mechanistic details 

is included in the Supporting note S6. Figure 4.A-F quantitatively shows how the fundamental kinetic 

properties of a reaction are inherently governed by the stability of catalysts, as has been inferred in 

experiments.[20,21,59] 

We now discuss the assumptions used for further analysis on nanoparticles. First, only pure Pt-

ensembles in Pt-bimetallic particles contribute to the reaction rate. Second, the reaction rate of 9-9-9 Pt 

sites dominates over other coordinated sites (e.g., 7-7 or 8-8). Third, these 9-9-9 sites operate 

autonomously. The first assumption is appropriate since previous studies have shown that pure Pt has the 

highest rates for NO dissociation with the rates on other metals being orders of magnitude lower.[48,49] 

The second assumption is valid since the site-specific volcano plots in our work indicate that 9-9-9 terrace 

sites have higher rates (10-7 to 10-6 s-1) than both 7-7 bridge sites (10-12 to 10-11 s-1) and 8-8 terrace sites 

(10-18 to 10-15 s-1) at 700 K. Moreover, some experimental reports hint that 9-9-9 rich Pt (111) facets are 

more active than other facets in NO decomposition (see supporting note 10).[60,61] These 9-9-9 sites 

balance between N-O bond activation and the desorption of N*/O* as N2(g) and O2(g). Our third 

assumption about autonomous sites is reasonable because both our microkinetic model on 9-9-9 Pt 

ensembles (coverage of free sites, ϴ*, > 0.25 except near the volcano maximum) and previous studies[48] 

on Pt (111) surfaces (ϴ*
 ≈ 0.5 in the region around Pt) indicate that the coverage of free sites is 



10 

 

comparatively high. Thus, for a large range of 𝐵𝐸̅̅ ̅̅ 𝑀, the higher coverage of free sites on 9-9-9 leads to 

negligible adsorbate-co-adsorbate effects and vanishing cooperative/inhibiting effects of neighboring 

sites. These aspects lend credibility to the autonomous site assumption for the 9-9-9 sites. This 

approximation is, however, less valid near the volcano peak and future studies should address co-

adsorbate effects for increased accuracy.  

 
Figure 4. The site stability, 𝐵𝐸̅̅ ̅̅ 𝑀, systematizes trends in kinetic metrics like the degree of kinetic control (A), coverage of 

surface species (B), degree of thermodynamic control (C), rate orders (D), and the apparent activation energy (𝐸𝑎
𝑎𝑝𝑝

) (E). We 

evaluate these kinetic metrics for 9-9-9 Pt sites as chemical environment around the site is varied. 𝐸𝑎
𝑎𝑝𝑝

compared to ln(A), 

with A being the apparent kinetic prefactor, in F highlighting two distinct mechanistic regions corresponding to high and low 

coverage. A full monolayer in (B) corresponds to every site being occupied. 
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 Based on the assumptions, we highlight the versatility of this framework in determining 

site-resolved rates across both pure Pt and Pt-Au bimetallic nanoparticles in Figure 5. Pt is alloyed with 

Au as this combination yields the largest shift towards the 𝐵𝐸̅̅ ̅̅ 𝑀 of the volcano peak (Figure 3). We note, 

however, that Ag has a similar effect. Depending on, e.g., economical, synthesis, or durability arguments, 

the ideal catalysts might thus be generated using other alloying metals than Au. Discussion and results 

on other alloys are included in supporting note S9.   

We first assess monometallic Pt particles. Figure 5.A-D shows the rates for WULFF, 

OCTA, and CUBO nanoparticles presented per surface area, per particle, per Pt atom, and per 9-9-9 site 

(metrics explained further in supporting note 11). In general, OCTA is the most active nanoparticle 

shape regardless of the metric. Specific WULFF shapes having higher densities of (111) facets can yield 

metrics comparable to OCTA. In general, however, WULFF particles have lower reactivity metrics 

because unlike OCTA, these particles contain less reactive sites such as the 8-8 sites on (100) facets. For 

all shapes, the rate per surface area is comparably low for small particles and increase asymptotically 

with size (Figure 5.A). The rate per particle also increases with size (Figure 5.B) as the larger particles 

possess higher densities of 9-9-9 sites. However, to optimize the used amount of the precious Pt metal, 

the most relevant metric is the rate normalized by the number of Pt atoms in the catalyst. In case of all 

particle shapes, this metric yields a clear peak in performance as shown in Figure 5.C; OCTA peaks at 

diameters of ~3 nm whereas CUBO peak at diameters ~5 nm. Comparing the rates at the performance 

peaks, OCTA is between 2.5 and 5 times more active per Pt atom than the other shapes (using the average 

value of WULFF), due to its higher density of 9-9-9 sites. Since the rate per site (Figure 5.D) is 

approximately constant for the pure Pt particles, the changes in the rate per area (or per particle) follow 

the increase in coverage (number) of 9-9-9 sites with size. Eventually the per area rates converge to the 

value of the extended (111) facet weighted by the prevalence of the facet for the given nanoparticle shape. 

Alloying with Au can further increase the activity of the particles by more than an order of 

magnitude, as shown in Figure 5.F-H exemplified by the OCTA particles. As for the pure particles, the 

rates per particle of the PtAu alloys increase continuously with size as the number of exposed 9-9-9 sites 

increases (Figure 5.F). Systematically alloying the edges or core with Au improves the activity 

significantly, with AuPt core-shell particles displaying the largest activity of all considered cases – except 

for the smallest particles of ~2 nm size where Au edge alloys are more active (see discussion in 

supporting note 9). For randomly alloyed NPs, the largest improvement in activity is seen when alloying 

with 50% Au demonstrating the trade-off between activating some Pt sites through alloying in the first 

coordination sphere, while inhibiting other sites through incorporation of the inert Au atoms. Using the 
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rate per Pt atom metric (Figure 5.G), we find the same ordering as above for the activity of particle types; 

AuPt core-shell particles are displaying the largest rate for most sizes and the Pt0.5Au0.5 alloys have the 

best performance of the random alloys. For the random alloys, a performance peak at around ~3 nm is 

seen, i.e., the same position as for the pure Pt OCTA particles. For AuPt core shell particles the rate 

increases monotonically with particle size. This monotonic increase occurs because all Pt atoms, per 

definition, are at the surface for the core-shell alloys, thus the activity increases with size following the 

same trend as the rate per surface area for the pure particles in Figure 5.A. Hence, we conclude that, by 

using the rate per Pt atom metric alone, the optimal catalysts would be Au-Pt core-shell nanoparticles 

containing an Au core as large as practicable, while maintaining high surface area. Further insight of the 

increased activity of the PtAu alloys can be gained from Figure 5.H using the activity per site (i.e., the 

TOF). Here it is clear that the 9-9-9 sites of bimetallic Pt-Au are more active than the 9-9-9 sites of pure 

Pt NPs. The most active sites are found on the random particles with 75% Au alloying, which lie close 

to the maximal activation of Pt 9-9-9 sites in a pure Au environment. These highly alloyed particles will, 

nonetheless, display a lower rate per particle and per Pt atom than the other alloys because of a lower 

number of active sites. These trends reiterate the conclusion that the most active catalyst particles will be 

the ones balancing the trade-off between having highly activated alloyed sites while minimizing 

inhibition of other sites by extensive Au surface alloying. Through our method, we can design 

nanoparticles by quantitatively evaluating these tradeoffs between intrinsic rates and densities of active 

sites.  
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Figure 5. Predicted rates of NO decomposition for different nanoparticle shapes, sizes, and compositions assuming that the 

9-9-9 site of Pt is the dominant active site. These rates can increase 100-fold compared to Pt by choosing appropriate alloying 

(AuPt core-shell), size (2-3 nm for non-core-shell particles), and shape (OCTA) for the catalysts nanoparticles. In A)-D), rates 

are computed per surface area (see supporting note 11), per particle, per Pt atom and per 9-9-9 site for pure Pt particles. E), 

examples of randomly alloyed PtAu OCTA particles. F)-G) rates per Pt atom, per particle, and per 9-9-9 site as a function of 

size and Au composition. To account for effects of segregation, rates are averaged over 100 randomly selected PtAu particles 
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at a given size and composition. As an example, the rates for the random alloys in F have a standard deviation that increases 

from 1e-6 to 1e-5 s-1 site-1 from the smallest to the largest particles. For WULFF, we generate a distribution of particles as 

described in supporting note 5.  

 

Finally, we compare our rates per active site at different temperatures with those estimated 

in other theoretical studies[48] and measured in experiments.[50,60–62] At a lower temperature of 700 K, 

relevant to application in exhaust gas converters for vehicles, our model-predicted rates on 9-9-9 Pt 

ensembles are 4-5 orders of magnitude lower than those measured in experiments.[50] The rates computed 

in our work at 700 K are, however, within the same order of magnitude as previous mean-field 

microkinetic models for NO decomposition on Pt (111).[48] At a higher temperature of 925 K, our 

computed rates on 9-9-9 Pt ensembles are, instead, within 1-2 orders of magnitude of experiments 

(supporting note S10).[60–62] Based on these two theory-experiment comparisons, we hypothesize that 

the larger difference between computation and experiments at 700 K is mainly due to the omission of 

adsorbate-co-adsorbate interactions in the models. At 925 K, where we operate at low adsorbate 

coverages and hence negligible adsorbate-co-adsorbate interactions, experiment and theory are closely 

aligned.  

A possibility to move the model closer to reality at lower temperatures, where adsorbate-

co-adsorbate interactions are important,[63–65] is to account for spill-over effects from one site (e.g., N-O 

scission on step edges) to another (e.g., N-N recombination on terraces) by enabling site communication. 

Such communication requires a multiple-site model moving beyond the single-site mean-field approach 

used herein.[66,67] For example, such a communicating multiple-site model could directly evaluate 

whether or not edge sites are poisoned by a high surface adsorbate coverage and are no longer available 

as adsorption sites. If such a coverage-dependence and inter-site communication are incorporated within 

the microkinetic model, our described methods remain valid with 𝐵𝐸̅̅ ̅̅ 𝑀 as the sole descriptor.   

Taken together, we have demonstrated that our method efficiently provides active-site-

resolved energetics and kinetic constants at low coverages for nanoparticles having arbitrary shapes, 

sizes, and compositions. If co-adsorbate effects and communications between sites is strong, these 

interactions can be added on to appropriately correct rate constants. Leveraging the inherent link between 

active site stability and its reactivity, our work serves as a generalized approach for the in-silico design 

of nanoparticles.  

 

CONCLUSION 

We present a method for evaluating active site-resolved reaction rates of nanostructures using the 

stability of active sites, 𝐵𝐸̅̅ ̅̅ 𝑀, as the sole descriptor. 𝐵𝐸̅̅ ̅̅ 𝑀 is, in turn, efficiently predicted using a 
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coordination-based scheme. By propagating 𝐵𝐸̅̅ ̅̅ 𝑀 through a microkinetic model, our approach 

instantaneously probes site-specific catalytic properties with good accuracy compared to DFT for 

nanoparticles  in the 2-12 nm size range. We have illustrated this strategy by designing bimetallic 

nanoparticles for a model reaction, NO decomposition. Our findings indicate that catalytic turnovers can 

be enhanced up to 100-fold by alloying Pt with Au (e.g., AuPt core-shell) and by choosing the optimal 

particle size (2-3 nm, for non-core-shell particles) and shape (octahedral particles). While our 

contribution focuses on the activity of monometallic sites in bimetallic environments for NO 

decomposition, we stress that our approach is generally applicable to evaluate the catalytic activity of 

mixed metal sites in various coordination and chemical environments. Hence, the methods introduced 

herein pave the way towards precisely tailoring the nanostructure of materials to design next-generation 

catalysts for metal-catalyzed processes. 

  

COMPUTATIONAL DETAILS 

All DFT calculations within this work were performed in Quantum ESPRESSO [68] within the Atomic 

Simulation Environment.[69] Total energies were determined using the RPBE functional,[70] on k-point 

grids (Table S1) generated with the Monkhorst-Pack method.[71] Atomic cores were represented by 

ultrasoft Vanderbilt pseudopotentials.[72] A dipole correction was included for surface calculations.[73] 

Further computational details are given in the SI. Atomic structures, energies, and scripts employed for 

analysis are uploaded to Catalysis-Hub[74] (https://www.catalysis-

hub.org/publications/HalldinAssessing2021) and Git-Hub (https://github.com/kjhstenlid/ASM_alpha-

scheme) repositories.  
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Using the site stability (𝐵𝐸̅̅ ̅̅ 𝑀) as unifying descriptor for activity and durability, we identify design 

principles for catalytically active sites. By modifying the local structure and alloying, we propose that 

the catalytic activity in NO decomposition over Pt-based nanoparticles can be enhanced by orders of 

magnitude. Our methods are general for metal active sites, and pave the way towards the inverse design 

of tailor-made heterogeneous catalysts. 

 

 


