Near-infrared-active upconverting niobium-doped black titanium dioxide photocatalysts

Collins Nganou, a Andrew J. Carrier, a Ali Shafiee, a Naizhen Yu, a Ken D. Oakes, b and Xu Zhang a*

a Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, Canada, B1P 6L2

b Department of Biology, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, Canada, B1P 6L2

*Corresponding author. E-mail: Xu_Zhang@cbu.ca

Abstract

Black titanium dioxide is a broadband-absorbing photocatalyst characterized by integration of atomic hydrogen within the outer layers of anatase nanomaterials. In addition to its broad absorbance of visible to near-infrared light, the material has some intrinsic upconversion ability, which is greatly enhanced by the addition of a niobium oxide shell. This yields a highly active photocatalyst as demonstrated in photodegradation experiments.

Introduction

Anthropogenic water pollution is a persistent problem for aquatic environmental health and clean water accessibility in developed and developing communities. Photocatalytic degradation of organic pollutants is an attractive water treatment method because it can be performed passively through the action of sunlight. However, the most prominent and well-studied photocatalytic material, titanium dioxide, is limited in that its bandgap can only be excited by ultraviolet (UV) light, which only represents a small portion of the entire solar spectrum. Electron-hole pairs generated on the TiO₂ surface through UV excitation have high energy, which degrade pollutant molecules, e.g., through the formation of hydroxyl radicals; however, TiO₂ suffers rapid charge recombination and consequently poor photo-efficiency. Rapid charge recombination can be addressed through the formation of composite materials, but poor solar spectrum utilization is not easily solved.

Upconversion nanomaterials are those that absorb lower-energy photons, i.e., visible and near-infrared (NIR) radiation, which are subsequently pumped to populate higher energy states. The presence of dopants in the titanium dioxide crystal structure can modify its electronic band structure, with the presence of hydrogen in the outer layers of anatase generating black titanium dioxide (bTiO₂), which has absorbance in the visible and NIR spectrum. Herein we generated black titanium dioxide and integrated niobium oxides in the outer layers, demonstrated its photocatalytic efficiency, and decoupled the effects of NbO₂ and Nb₂O₅ phases on charge mobility and energy transfer. We demonstrated the intrinsic upconversion ability of bTiO₂, which is greatly enhanced by the addition of niobium oxides to the outer layers.

Experimental

Materials

Titanium (IV) isopropoxide and Rhodamine B were obtained from Sigma Aldrich (Oakville, ON, Canada). Niobium n-butoxide was obtained from Fisher Scientific (Ottawa, ON, Canada). All materials were of reagent grade or higher and were used without further purification.
Instruments

Powder X-ray diffraction (XRD) experiments were performed using an Advance D8 X-ray diffractometer (Brucker, Billerica, MA, USA) using CuK\(_\alpha\) (\(\lambda = 1.5406\) Å) radiation. Transmission electron microscopy (TEM) experiments were performed using an HT7700 transmission electron microscope (Hitachi, Tokyo, Japan) with an acceleration potential of 80 kV. X-ray photoelectron spectroscopy (XPS) experiments were performed using an AXIS Nova spectrometer (Kratos Analytical, Manchester, UK) using an Al X-ray source and a detector with a work function of 4.49 eV. The samples were mounted onto a scanning electron microscope mount (with the pins cut off) using double-sided adhesive Cu tape and were held under high vacuum (10\(^{-9}\) Torr) overnight inside the preparation chamber before transferring into the analysis chamber (ultrahigh vacuum, 10\(^{-10}\) Torr) of the spectrometer. Electron spin resonance (ESR) experiments were performed using a microESR spectrometer (Bruker, Billerica, MA, USA) with a microwave power and digital gain of 15 mW and 12 dB, respectively. Nitrogen physisorption analysis was performed using an ASAP 2020 analyzer (Micromeritics, Norcross, GA, USA). Zeta potential measurements were performed on a Nanosizer (Horiba, Kyoto, Japan). Solar radiation was simulated with a 1 Sunlite simulator (ABET Technologies, Milford, CT, USA) using a Xe arc lamp. NIR light was applied using a diode laser (808 nm, 2 W, Chengchun New Industries Optoelectronics Tech. Co. Ltd., Chengchun, China). Total organic carbon (TOC) was measured using a MULTI N/C UV HS analyzer (Analytikjena, Jena, Germany). UV-Vis spectra were obtained using an Infinite M1000 PRO plate reader (Tecan Group Ltd., Männedorf, Zürich, Switzerland) using Costar 96-well flat-bottom transparent polystyrol microplates (Corning, NY, USA).

Nb\(_x\)O\(_y\)-TiO\(_2\) core-shell nanoparticles

Titanium (IV) isopropoxide (15 mL, 50 mM) and niobium (V) n-butoxide (5 mL, 10 mM) were dissolved in isopropanol (15 mL) and stirred for 3 h at 1200 rpm. Then, hydrazine hydrate (1 mL) was added dropwise to obtain a white gel that was transferred to a Teflon-lined hydrothermal reactor, which was subsequently sealed and heated to 250 °C for 3 h. The reactor was allowed to cool to ambient temperature before the mixture was transferred to a tube and centrifuged at 5000 rpm for 15 min to isolate the particles from the supernatant, which were washed x times using nanopure water before drying in an oven at 60 °C overnight.

Black Nb\(_x\)O\(_y\)-TiO\(_2\) core-shell nanoparticles

Hydrogen peroxide (1 mL, 30 wt%) was added dropwise to the Nb\(_x\)O\(_y\)-TiO\(_2\) core-shell nanoparticles obtained above, which resulted in the nanoparticles turning yellow. The material was transferred to a vacuum oven (30±2 in-Hg) where it was heated to 550 °C in vacuo for 72 h. The oven was allowed to cool under vacuum to ambient temperature before collecting the resultant black Nb\(_x\)O\(_y\)-TiO\(_2\) core-shell nanoparticles. Black Nb\(_x\)O\(_y\) nanoparticles were prepared through an identical procedure using Nb\(_x\)O\(_y\) nanoparticles.

SiO\(_2\)-coated black Nb\(_x\)O\(_y\)-TiO\(_2\) core-shell nanoparticles

SiO\(_2\)-coated black Nb\(_x\)O\(_y\)-TiO\(_2\) core-shell nanoparticles were prepared from equal volumes of the black Nb\(_x\)O\(_y\)-TiO\(_2\) core-shell nanoparticles (1 wt%) and teträethylorthosilicate (1 mM), which were ultrasonicated for 10 min in 10 mL of EtOH in a 15 mL polypropylene centrifuge tube. No aggregation of the resultant nanoparticles was observed after centrifugation at 12500 rpm for 20 min. The SiO\(_2\)-coated black Nb\(_x\)O\(_y\)-TiO\(_2\) core-shell nanoparticles were washed 10 times with nanopure water.

Computational modelling
To compute the supercell, the selected area electron diffraction (SAED), and the powder ring diffraction patterns of the NbO$_x$-TiO$_2$ core-shell nanoparticles, the anatase and niobium oxide crystal structures were obtained from the American Mineralogist Crystal Structure Database (American Mineralogist, Volume 88, pages 247–250, 2003) and the material project database (doi:10.1063/1.4812323). The crystal structure of TiO$_2$ anatase, NbO$_2$, and Nb$_2$O$_5$ materials were optimized with Jmol and PM7 Hamiltonian of mopac2016. The TiO$_2$ anatase, NbO$_2$, and Nb$_2$O$_5$ diffraction patterns were compared with the crystal diffraction algorithm. Their SAED and powder ring diffraction patterns were modelled with the single crystal 4. The calculated TiO$_2$ anatase SAED was superimposed on the experimental SAED to identify the points associated with the anatase phase, whereas points deviating from the modelled TiO$_2$ anatase SAED were used to identify the NbO$_2$ and Nb$_2$O$_5$ patterns. The powder ring TiO$_2$ anatase, NbO$_2$, and Nb$_2$O$_5$ diffraction patterns were superimposed to corroborate the difference in the experimental SAED. The equivalent stereograph of the diffraction patterns was obtained from single crystal 4. CrystalMaker X was used to generate the supercell of the TiO$_2$ anatase, NbO$_2$, and Nb$_2$O$_5$ composite.

Photodegradation

NIR-driven photocatalysis was performed by irradiating the sample (0.42 wt% of photocatalyst with 50 µM of sample, i.e., RhB or ABDA) with a NIR diode laser every 5 min. During the irradiation, the sample was covered with aluminum to mitigate the effect of any scatter light originating from the computer screen in the darkroom. Blanks were performed in the dark and each reaction was performed in five replicates. Sunlight-driven photocatalysis was performed using SSL with a UV density 4 filter to remove UV photons.

Reactive oxygen species analysis

Reactive oxygen species (ROS) were detected indirectly through the application of specific scavengers. 4-hydroxy-2,2,6,6-tetramethylpiperidine (TMP-OH) was used as an ROS probe that reacts with oxidants to generate the stable 4-hydroxy-2,2,6,6-tetramethylpiperidine oxyl radical (TEMPO-OH), which yields a diagnostic 1:1:1 triplet in its ESR spectrum. Each material was exposed to a solution of TMP-OH (250 mM) either in the light or dark in the presence of one of the following scavengers: t-butyl alcohol (500 mM), coumarin (200 µM), sodium azide (100 mM), XTT (100 µM), or a blank. The EPR spectra of each experiment were then recorded.

Results and Discussion

Syntheses

Black titanium dioxide and/or niobium oxides were formed through the dissociation and diffusion of atomic hydrogen from surface-bound hydrogen peroxide under heat and vacuum conditions. Displacement of water with surface-bound hydrogen peroxide on Nb surface sites immediately transforms the white anatase into a yellow material, which upon heating to 550 °C under vacuum yields a black material through the diffusion of atomic hydrogen generated through thermal homolytic bond cleavage and decomposition of the bound hydrogen peroxide (BDE = 460 J mol$^{-1}$) into the crystal lattice. The remaining oxygen is removed by the vacuum or remains adsorbed to the surface.

Characterization

Black Nb$_x$O$_y$-TiO$_2$ consists of a mixed crystal structure phase, primarily anatase (space group I41/amd) arranged around distorted octahedra. TiO$_2$ anatase forms the nanoparticle core, where epitaxial growth of
NbO₂ occurs on its surface at 550 °C. Subsequent oxidation of the exterior surface to Nb₂O₅ generates a dual interface and prevents further oxidation of the middle NbO₂ phase. The powder XRD pattern consists of anatase peaks with additional tetragonal NbO₂ (2θ-2) and several triclinic Nb₂O₅ reflection planes (Fig. 1). A rutile-like NbO₂ phase is unlikely as it is only formed at >1000 K. The proposed dual NbO₂ phases are supported by the O1s XPS spectrum (Fig. 2), which has peaks at 532.7 and 531.2 eV, corresponding to Nb₂O₅ and NbO₂, respectively.

We postulate that tetragonal NbO₂ grows adjacent to the bulk TiO₂ anatase and triclinic Nb₂O₅ forms on the exterior. Black NbₓOᵧ-TiO₂ was modelled using a supercell structure with TiO₂ anatase set at the nanostructure core (Fig. 3). The NbO₂ phase shares oxygen atoms at the TiO₂ interface whereas Nb₂O₅ shares oxygen atoms at its interface with NbO₂. We used this model to predict the single-crystal electron diffraction pattern, which was superimposed onto the experimental selected area electron diffraction pattern (SAED, Fig. 4) with a good overlap between theoretical and experimental results.

The material consists of spheroidal nanoparticles (mean diameter 10 nm, Fig. 5) encased in aggregated amorphous material. High-resolution TEM revealed 3.5 and 2.4 Å lattice fringes in the anatase core and NbₓOᵧ shell, respectively, which is coated in an amorphous layer (Fig. 6). The amorphous exterior was attributed to hydrogenation of the nanoparticle surface layers, which is supported by Ti³⁺-based ESR signals (Fig. 7).

Photodegradation efficiency

Rhodamine B (RhB) was used as a model pollutant to test the photocatalytic activity of black NbₓOᵧ-TiO₂ under simulated sunlight and monochromatic NIR light. The interaction between the hydrophobic surface of black NbₓOᵧ-TiO₂ and the hydrophobic region of RhB was supported by Raman spectroscopy, i.e. the xanthene ring and C=C Raman shifts at 705 and 1642 cm⁻¹, respectively (Fig. 8). An additional Nb-N stretching band indicates additional covalent binding between RhB and the Nb₂O₅ surface. RhB adsorption also narrows the Ti³⁺ band in the EPR spectrum.

Black NbₓOᵧ-TiO₂ displayed superior RhB photodegradation efficiency under NIR and SSL light when compared to black TiO₂ (80 and 25% photodegradation efficiency, respectively under NIR light); however, the difference using SSL light was much less than when using NIR illumination. Photobleaching and photodegradation (as measured via residual TOC) by NbₓOᵧ-TiO₂ under NIR light followed the same trends (Figs. 9 and 10), and the material is highly stable over 5 reaction cycles (Fig. 11).

Photoactivation mechanism

The photodegradation mechanism involves the photogeneration of reactive oxygen species (ROS) generated after the formation of photogenerated electron-hole pairs and their diffusion to the catalyst surface. To identify which ROS were involved we used the conversion of TMP-OH to TEMPO-OH, which is EPR active. This reaction is unselective, and any number of ROS will convert TMP-OH to TEMPO-OH. However, using a series of selective ROS scavengers allows for the identification of important ROS through a process of elimination. Using efficient scavengers, i.e., with a high reaction rate constant, at sufficiently high concentration should eliminate all TEMPO-OH formation. Herein NaN₃, XTT, and TBA are used as scavengers of singlet oxygen, superoxide radical anion, and hydroxyl radical, respectively (Fig. 12). NaN₃ and XTT quench TEMPO-OH formation, suggesting that superoxide radical anion is formed. NaN₃ quenching could indicate the participation of singlet oxygen, but because it does not scavenge superoxide radical
anion and no TEMPO-OH is formed it is likely acting as a potent hole scavenger as part of an upstream process in superoxide radical anion formation.

9,10-anthracenediybis(methylene)dimalonic acid (ABDA) was used as a sensor for experiments designed to probe the effects of charge carrier generation. Irradiation of ABDA and Nb$_x$O$_y$-TiO$_2$ with an IR laser resulted in complete photobleaching within 30 min (Fig. 13); however, the addition of oxalate, an efficient hole scavenger, decreased photobleaching by 75% at the same time. The remaining surface electrons could reduce dissolved oxygen to superoxide radical anions, which could bleach ABDA through either reduction or oxidation. However, sparging the solution with argon or coating the nanoparticles in a SiO$_2$ layer prevents ABDA photobleaching altogether (Fig. 13). Because only 25% of the photobleaching was mediated by surface electrons, 75% must be mediated by holes. Often holes generate hydroxyl radicals via water oxidation; however, the formation of TEMPO from TMP in the presence of TBA, an efficient hydroxyl radical scavenger, suggests that direct hole-based oxidation may occur.

Upconversion

bTiO$_2$ has some intrinsic upconversion activity as exemplified by photoluminescence and photoelectrochemical measurements, the intensities of which are greatly enhanced by the presence of the niobium oxide shell. Upon excitation at 785 nm (30 mW cm$^{-2}$), most light is re-emitted in that envelope, but with significant emission upconverted to 625 nm (Fig 14). This is more apparent with 15 wt% Nb loading. Additionally, in photoelectrochemical measurements, i.e., the I-V characteristic (Fig. 15), shows no photocurrent generated in the dark or by white TiO$_2$, but upon excitation of bTiO$_2$ at 655 nm (30 mW cm$^{-2}$) there is a distinct photocurrent visible. Similar results are observed upon excitation at 785 nm, but the enhancement in photocurrent induced by the addition of niobium oxide layers is dramatic.

Conclusion

Black Nb$_x$O$_y$-TiO$_2$ nanoparticles have broad light adsorption into the infrared region, enabling efficient solar spectrum and NIR light utilization compared with contemporary black TiO$_2$ materials through enhanced charge transfer enabled by Nb$_x$O$_y$ phases, increased conductivity, and rapid exciton splitting, and enhanced upconversion. Photobleaching of dyes appears to be dominated by direct hole oxidation with significant participation of superoxide radical anion formation. This material has potential applications in IR imaging, photochemical/thermal treatment of cancer, and antibiotic and anti-biofouling surfaces.

References

37. Penn, R. L.; Banfield, J. F., Formation of rutile nuclei at anatase {112} twin interfaces and the phase transformation mechanism in nanocrystalline titania American Mineralogist 1999, 84 (5-6).
Figures

Fig. 1. Powder X-ray diffraction patterns for anatase and black NbₓOᵧ-TiO₂ nanoparticles.

Fig. 2. O₁s X-ray photoelectron spectra for black TiO₂ and black NbₓOᵧ-TiO₂ nanoparticles.
Fig. 3. The proposed supercell for Nb$_x$O$_y$-TiO$_2$ nanoparticles.

Fig. 4. Theoretical and observed selected area electron diffraction patterns for Nb$_x$O$_y$-TiO$_2$ nanoparticles.
Fig. 5. Transmission electron micrograph of spheroidal black Nb$_x$O$_y$-TiO$_2$ nanoparticles.

Fig. 6. High resolution transmission electron micrograph of a black Nb$_x$O$_y$-TiO$_2$ nanoparticle showing a hydrogenated amorphous layer.

Fig. 7. Electron paramagnetic resonance spectra of black and white Nb$_x$O$_y$-TiO$_2$ nanoparticles.
Fig. 8. Raman spectra of black Nb$_2$O$_5$-TiO$_2$ nanoparticles with and without adsorbed Rhodamine B.

Fig. 9. Photobleaching of Rhodamine B by varying photocatalysts under (left) 830 nm radiation and (right) simulated sunlight.
Fig. 10. Photomineralization of Rhodamine B by various photocatalysts. Residual total organic carbon (left) before irradiation (adsorption only) and (right) after irradiation at 830 nm.

Fig. 11. Photodegradation of Rhodamine B over several cycles by black Nb$_2$O$_5$-TiO$_2$ nanoparticles irradiated by (left) 830 nm light and (right) simulated sunlight.
Fig. 12. Electron paramagnetic resonance spectra of 4-hydroxy-2,2,6,6-tetramethylpiperidine after irradiation in the presence of black Nb$_x$O$_y$-TiO$_2$ nanoparticles in the presence of various radical scavengers.
Fig. 13. Photodegradation of ABDA in the presence of black Nb$_x$O$_y$-TiO$_2$ nanoparticles with varying scavengers.
Fig. 14. Photoluminescence experiments using varying photocatalysts (excitation wavelength = 785 nm).

Fig. 15. Photoelectrochemical experiments using varying photocatalysts. I-V characteristic photocurrents generated by (left) 655 nm and (right) 785 nm irradiation (30 mW cm$^{-2}$).