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Abstract 13 

With the recent rapid growth of publicly available ligand-protein bioactivity data, there 14 

is a trove of viable data that can be used to train machine learning algorithms. However, 15 

not all data is equal in terms of size and quality, and a significant portion of 16 

researcher’s time is needed to adapt the data to their needs. On top of that, finding 17 

the right data for a research question can often be a challenge on its own. As an answer 18 

to that, we have constructed the Papyrus dataset (DOI: 10.4121/16896406), comprised 19 

of around 60 million datapoints. This dataset contains multiple large publicly available 20 

datasets such as ChEMBL and ExCAPE-DB combined with several smaller datasets 21 

containing high quality data. The aggregated data has been standardised and 22 

normalised in a manner that is suitable for machine learning. We show how data can 23 

be filtered in a variety of ways, and also perform some baseline quantitative structure-24 

activity relationship analyses and proteochemometrics modeling. Our ambition is this 25 

pruned data collection constitutes a benchmark set that can be used for constructing 26 

predictive models, while also providing a solid baseline for related research. 27 

 28 
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Introduction 34 

Academic computational drug discovery has gained a massive boost with the growth 35 

of publicly available data1,2. One of the areas where this has led to improvement is the 36 

prediction of bioactivity, specifically ligand-protein affinity. Databases such as 37 

ChEMBL and BindingDB provide a wealth of information and relationships between 38 

ligands, proteins, and their interaction3,4. However, public data has a diverse quality 39 

range and is subject to experimental error5,6. In contrast to large datasets like ChEMBL, 40 

there are also smaller more focused datasets available. These typically focus on a 41 

single protein family and usually from a single set of literature such as the Klaeger 42 

clinical kinase drugs dataset7. Such collections contain a trove of high quality data, but 43 

are limited in their scope and are usually not viable as sole data sources in a more 44 

general study. 45 

 46 

In previous work we compared the performance of established bioactivity prediction 47 

methods versus deep neural networks8. In order to publish the results from this 48 

benchmark the creation of a public dataset (to accompany the publication) was 49 

required. ChEMBL (version 20) was used and a high quality subset was extracted and 50 

made available9. There were several problems we ran into. Firstly there was the amount 51 

of work needed to prepare the ChEMBL dataset, leading to an inability to include the 52 

separate smaller scale datasets we were planning to add.. In addition, there was a large 53 

reduction in size due to the selection of high quality data with the final dataset being 54 

2.5% of the total ChEMBL data.  55 

 56 

The current research aims to address these issues and produce standardized diverse 57 

dataset. This dataset, named Papyrus10 (in reference to Leiden Papyrus X), is created 58 

with ease-on-use and filtering in mind. We want to remove some of the limitations 59 

mentioned above and provide a dataset that does not need further curating. Aside 60 

from ChEMBL, we implemented data from the ExCAPE-DB11 database, and added 61 

Sharma et al’s12, Christmann-Franck et al’s13, Klaeger et al’s7 and Merget et al’s14 data.  62 
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This current work contributes by providing a standardised and normalised dataset that 63 

can be used ‘out-of-the-box’. On top of that, we provide multiple sets of integrated 64 

descriptors that are widely used in literature. We also show how to manipulate and 65 

model the data using proteochemometrics and provide the Python scripts that we 66 

used15. Lastly, as the focus in Papyrus is on filtering as well, we provide several Python 67 

scripts for ease of querying the dataset. This includes filters for organism, activity type, 68 

and accession numbers, and a link to the scripts can be found at the end of this 69 

document (under ‘Data Availability’).  70 

 71 

Material and Methods 72 

Construction of Papyrus 73 

ChEMBL 74 

Three levels of quality were defined in the data: high, medium, and low. Data from the 75 

difference sources were all classified in one of these three classifications. ChEMBL 76 

version 29 (ChEMBL29) data16 were first split between high and low quality data In 77 

total 18,635,916 activity data points measured on 2,105,464 compounds and 14,554 78 

targets were extracted. The following data were deemed as low quality: Data flagged 79 

as potential duplicates, of questioned validity (Supplementary Table 1) - unless errors 80 

were confirmed by authors, in which case they were entirely disregarded -, censored, 81 

not associated with any pChEMBL value, or of questioned activity (Supplementary 82 

Table 2). Remaining activity data were temporarily regarded as high quality. In the 83 

ExCAPE-DB dataset11, if the data source was PubChem17 (source identifier 7), then the 84 

data was flagged as high quality. Protein targets were retrieved along with their 85 

classifications if they had Uniprot18 accessions defined. Accession Q8MMZ4, 86 

corresponding to the secondary accession for the Plasmodium falciparum (isolate 87 

NF54) cGMP-dependent protein kinase was associated with a secondary UniProt 88 

accession and was manually replaced by its primary accession Q8MMZ4. Using 89 

accessions, protein sequences were then obtained from UniProt.  Only molecules 90 

identified as small molecules and associated with a molecular registry number were 91 

kept, then parsed from connection tables and standardised (see Molecular structure 92 
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standardisation). Activity data of high quality were reclassified as low quality if the 93 

target type was other than ‘single protein’ or the assay confidence score was 0, 1, 2, 3, 94 

4 or 6 (Supplementary Table 3). Activity data with assay confidence scores of 5 and 8 95 

were reclassified of medium quality. 96 

 97 

If low quality data were censored, inequality signs of the standard relation were 98 

reversed (Supplementary Table 4) unless expressing an approximation with a tilde, in 99 

which case the data were dropped. Standard values of low quality data with unassigned 100 

pChEMBL values were only considered if they had case insensitive standard type of 101 

either GI50, Ki, Kd, IC50, EC50 or XC50 and if standard units denoted molar or mass 102 

concentrations. Scaling factors were appropriately applied to standard activity values 103 

(Supplementary Table 5), mass concentrations were transformed to molar 104 

concentrations and log-scale transformation applied to all concentrations. Only 105 

exceptions to data with unassigned pChEMBL values were records with derivatives of 106 

the following standard types: pKi, pKd, pIC50, pEC50 or pXC50 (Supplementary Table 107 

6). For those records, no transformations were applied. Finally, data were flagged on 108 

whether activities were derived from IC50, EC50, Ki, Kd or any other data.  The 109 

preprocessed ChEMBL29 high quality data consisted of 1,097,673 activity values, 110 

549,140 compounds and 4,644 targets, the medium quality data of 489,315 activity 111 

values, 263,824 compounds and 2,886 targets, and low quality data of 1,510,494 112 

activity values, 514,302 compounds and 4,711 targets.  113 

 114 

ExCAPE-DB 115 

The ExCAPE-DB dataset, consisting of 70,850,163 activity data points of 998,131 116 

compounds measured on 1,667 targets, was first discarded of records originating from 117 

ChEMBL version 20 or whose assay identifiers were present in the PubChem flagged 118 

data of the preprocessed ChEMBL29. Gene Entrez identifiers were mapped, using the 119 

identifier mapping tool of UniProt, to protein unique Swiss-Prot sequences. Only four 120 

genes were manually mapped,  three genes as they resolved to multiple reviewed 121 

entries and one gene as it resolved to multiple unreviewed entries(Supplementary 122 
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Table 7). ChEMBL29 protein classifications were then assigned to the previously 123 

mapped sequences. Deposition dates of the assays were retrieved from PubChem. 124 

Data with numeric activity values were considered of high quality and binary data of 125 

low quality. Molecular structures failing standardisation (see Molecular structure 126 

standardisation) were downloaded from PubChem and standardised afterwards. Finally 127 

low quality activity data with compound-target pairs present in the high quality subset 128 

were disregarded. The preprocessed ExCAPE-DB high quality data consisted of 129 

278,226 activity values, 201,644 compounds and 1,535 targets, and low quality data of 130 

58,445,354 activity values, 650,217 compounds and 646 targets. 131 

 132 

Sharma et al 133 

Sharma et al’s dataset12, consisting of 258,060 activity data points of 76,017 134 

compounds measured on 8 targets was considered of high quality. Gene names were 135 

mapped to unique Swiss-Prot sequences using the identifier mapping tool of UniProt 136 

and protein classifications retrieved from ChEMBL29. A set of 14 custom reactions 137 

(Supplementary Table 8) were applied to molecular structures failing standardisation 138 

(see Molecular structure standardisation), mostly fixing aromaticity-related issues. 139 

Years of filing of patents were collected using Google Cloud BigQuery API patents 140 

public data and manual mapping (Supplementary Table 9 & 10) after having fixed 141 

erroneous patent numbers (Supplementary Table 11). Digital object identifiers or 142 

PubMed identifiers of source articles were added when missing (Supplementary Table 143 

12). If activity values were associated with multiple sources, only the first published 144 

article or filed patent was recorded. Censored activity values or values not associated 145 

with case insensitive standard types GI50, Ki, Kd, IC50 or EC50 and their 146 

logarithmically-derived counterparts were disregarded. Mass concentrations were 147 

transformed to molar concentrations and log-scale transformation applied to all 148 

concentrations but already log-transformed. Finally infinite or activity values lower than 149 

3 and higher than 14 log units were discarded. The preprocessed Sharma data 150 

consisted of 77,562 activity values, 40,738 compounds and 8 targets. 151 

 152 
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Christmann-Franck et al 153 

Christmann-Franck et al’s dataset13, consisting of 344,788 activity data points of 2,065 154 

compounds measured on 448 targets was considered of high quality.  The wrongly 155 

assigned Cryptococcus neoformans mitogen-activated protein kinase (CPK1) with 156 

accession code P0CP66 was corrected to the Plasmodium falciparum calcium-157 

dependent protein kinase 1 (CDPK1) with accession code P62344. Swiss-Prot 158 

sequences were retrieved using accessions and protein classifications retrieved from 159 

ChEMBL29. Sequence mutations of the hepatocyte growth factor receptor (MET) and 160 

the serine/threonine-protein kinase (B-raf) were corrected to M1250T and  V600E 161 

respectively and that of the Fibroblast growth factor receptor 1 (FGFR1) was reverted 162 

to wildtype.  Activity data expressed as proportion of reference activities were 163 

discarded. Finally molecular structures were standardised (see Molecular structure 164 

standardisation). The preprocessed Christmann-Franck data consisted of 135,948 165 

activity values, 1,669 compounds and 485 targets. 166 

 167 

Klaeger et al 168 

Klaeger et al’s dataset7, consisting of 5,916 activity data points of 229 compounds 169 

measured on 520 targets was considered of high quality. Swiss-Prot sequences were 170 

retrieved using HUGO Gene Nomenclature Committee (HGNC) identifiers. If multiple 171 

identifiers were assigned the measurement was discarded. Protein classifications were 172 

retrieved from ChEMBL29. Apparent Kd values were log-transformed and infinite 173 

results disregarded. Finally molecular structures were standardised (see Molecular 174 

structure standardisation), with only RDEA-436 failing for its structure was not 175 

disclosed. The preprocessed Klaeger data consisted of 5,721 activity values, 228 176 

compounds and 500 targets. 177 

 178 

Merget et al 179 

Merget et al’s dataset14, consisting of 260,757 activity data points of 47,774 180 

compounds measured on 241 targets was considered of high quality, except for activity 181 

values originating from ChEMBL22, which were disregarded. Data originating from the 182 
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Published Kinase Inhibitor Set (PKIS) of GlaxoSmithKline (doi:10.1038/nbt.3374) with 183 

activity values of 5 log units were considered as censored and as such reclassified as 184 

low quality data. Swiss-Prot sequences were retrieved using HUGO Gene 185 

Nomenclature Committee (HGNC) identifiers19, a few of which were manually fixed 186 

(Supplementary Table 13). Protein classifications were retrieved from ChEMBL29. 187 

Finally molecular structures were standardised (see Molecular structure 188 

standardisation). The Merget preprocessed high quality data consisted of 127,441 189 

activity values, 1,666 compounds and 239 targets, and low quality data of 62,642 190 

activity values, 360 compounds and 195 targets. 191 

 192 

Molecular Structure Standardisation 193 

During the preprocessing of each original dataset parent molecular structures were 194 

gathered after a first standardisation using the ChEMBL structure pipeline20. Then 195 

canonical tautomers were determined using the Pipeline Pilot tautomer enumerator21 196 

with tautomerization of amides enabled. The canonical tautomers were then 197 

standardised once again with the ChEMBL structure pipeline after which the parent 198 

structures were obtained. Any molecule not parsable from simplified molecular input 199 

line entry specification (SMILES) by the RDKit22 at any step of the previous workflow 200 

was considered failing the standardisation process. 201 

 202 

After the individual datasets were processed and aggregated into the Papyrus dataset, 203 

molecular structures were standardised. This last standardisation ensured 204 

normalisation across different sources that each applied different prior 205 

standardisation. For instance, tautomerization tools can alter a compound’s 206 

stereochemistry by removing or introducing a chiral centre. To limit the effects of 207 

having bioactivity values relating to the same molecular compound having different 208 

stereochemistry across sources, a set with removed stereochemistry was created and 209 

deemed of higher quality than the set with conserved stereochemistry. Molecular 210 

structures in the latter, after having removed stereochemistry, were first neutralized 211 

with the RDKit by adding or removing hydrogen atoms. Subsequently they were 212 
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standardised with the ChEMBL structure pipeline after which parent structures were 213 

obtained. OpenBabel23,24 was then used to recreate dative bonds and to neutralize 214 

molecules that were not during the previous step. Tetravalent negatively charged boron 215 

atoms were overlooked in the latter stage, making them erroneously pentavalent. This 216 

was corrected by detecting these pentavalent boron atoms, removing the newly 217 

introduced implicit hydrogen atom and reassigning them a negative formal charge. 218 

SMILES of molecules with the same connectivity differing by overall charge were 219 

converted to InChi25 with OpenBabel, a step that consists in incorporating the 220 

normalisations after the InChI canonicalization process. For these molecules the 221 

canonicalization process removed the dative bonds, these were then recreated using 222 

OpenBabel. Then Dimorphite-DL26 was used to deprotonate molecules by setting 223 

minimum pH to 14.0. This ensured that after the last standardisation step, equivalent 224 

to that applied to individual datasets, in which molecules are neutralised, only one 225 

charge state of the same molecular species was present in the set. 226 

 227 

Papyrus data aggregation 228 

The processed ChEMBL29 high, medium and low quality, ExCAPE-DB high and low 229 

quality, Sharma, Christmann-Franck, Klaeger and Merget datasets were aggregated 230 

together. The first step consisted in ensuring that the activity of any compound-target 231 

pair was contained within 3 to 14 log units. Then compound-target pairs were uniquely 232 

identified by a concatenation of the compound’s connectivity and of the target 233 

accession along with its mutations if any. All activities relating to the same compound-234 

target pair were then filtered depending on the highest data quality available for that 235 

pair. For instance, if high quality activities were identified, any data point deemed of 236 

medium to low quality was filtered out. Considering censored activity values, the data 237 

was filtered out if contradictory relations were identified, if not the highest recorded 238 

activity was retained for lower bounds, and lowest for higher bounds. During this 239 

filtering step, all patents and journal articles associated with the activity of a 240 

compound-target pair were gathered whatever the quality and only the first published 241 

or filed was retained. Finally, activity values were aggregated and mean averages, 242 
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medians, standard errors of the mean, standard deviations and mean average 243 

distances were calculated for each unique compound-target pair. 244 

 245 

Use of Papyrus 246 

Data extraction 247 

The first subset that was extracted from Papyrus consists in adenosine receptors. 248 

Using the Papyrus Python scripts, data of high quality with protein classification level 249 

5 being “Adenosine receptor” was extracted. This subset, consisting of 15,941 activity 250 

points, 24 protein targets and 7,967 compound structures. 251 

 252 

Data visualization 253 

Unique molecules of Papyrus were collected based on the uniqueness of their 254 

connectivity. Each molecule was encoded using MinHash fingerprint (MHFP6)27 and 255 

then visualized using TMAP28. Molecules were labelled using their fraction of carbon 256 

atom. Unique proteins of Papyrus were collected based on their unique target 257 

identifier. Each sequence was encoded using UniRep29 64, 256 and 1,900 average 258 

hidden states, final cell states and final hidden states. The 6660 dimensions were then 259 

MinHashed and visualized with TMAP. Proteins were labelled using organisms they 260 

originate from. 261 

 262 

Bioactivity modelling: Quantitative Structure Activity-Relationships 263 

Each protein target in the subset was modelled independently using the Papyrus 264 

Python scripts. Targets for which less than 30 activity values or associated with activity 265 

values spanning less than 2 log units were disregarded for modelling. Then for each 266 

target, a temporal split between training and test sets was performed: datapoints 267 

associated with year 2013 and above constituted the test set. If no activity data was 268 

available after year 2013, then the target was disregarded. The 777 Mold2 molecular 269 

descriptors30 were calculated for each molecule and were centered and scaled to unit 270 

variance. Extreme Gradient Boosting (XGBoost version 1.4.2) regressors and classifiers 271 
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were trained on the training set using random seed 1234 and default parameters. 272 

Regressors were trained to predict mean pChEMBL values using 5-fold cross-273 

validation, while classifiers were trained to predict a binary label of activity class with 274 

threshold set at 6.5 log units using 5-fold stratified cross-validation. 275 

 276 

Bioactivity modelling: Proteochemometrics 277 

No subsequent filtering of the subsets was carried out since proteochemometrics 278 

(PCM) handles multiple targets all at once. A temporal split on year 2013 was employed 279 

to split the training and test set. The 777 Mold2 molecular descriptors were calculated 280 

for compounds, UniRep 64, 256 and 1,900 average hidden states, final cell states and 281 

final hidden states were used as 6,660 protein descriptors and were calculated for 282 

each protein. An XGBoost classifier and an XGBoost regressor were trained using the 283 

same protocol as for QSAR models.  284 

 285 

Results and Discussion 286 

A new dataset, called Papyrus of bioactivities, resulting from the aggregation and 287 

extensive standardisation of data from six sources, was created. Unless mentioned 288 

otherwise, only the extensively standardised Papyrus set without stereochemistry is 289 

considered in this section.  290 

 291 

Papyrus dataset statistics 292 

Papyrus consists of 59,763,781 compound-protein pairs, each associated with at least 293 

either one activity value or activity class. Additionally, this represents the data of 294 

1,268,606 unique compounds and 6,996 proteins across 496 different organisms. In 295 

terms of data quality, 1,236,296 datapoints are of high quality, i.e., representing exact 296 

bioactivity values measured and associated with a single protein or complex subunit.  297 

335,854 datapoints are of medium quality, i.e., exact bioactivity values associated with 298 

either potentially multiple proteins or a homologous single protein. 58,191,631 299 

datapoints are of low quality, i.e., exact bioactivity values associated with either 300 
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multiple homologous proteins or homologous complex subunits, censored bioactivity 301 

values and binary activity classes. When considering datapoints across all quality types, 302 

2,585,248 are associated with exact bioactivity values, 354,981 with censored data 303 

and 56,823,552 with binary activity classes. The repartition of data quality across the 304 

ten organisms with most data (Table 1Error! Reference source not found.) indicates 305 

a clear bias towards human, with more than 93% of the data related to it, but also 306 

emphasizes the interest towards rodent targets with more than 4% of the data 307 

associated with mouse and 2% with rats. 308 

 Quality  

Species High Medium Low Total 

Homo sapiens (Human) 985,579 246,723 54,363,214 55,595,516 

Mus musculus (Mouse) 41,986 6,682 2,465,153 2,513,821 

Rattus norvegicus (Rat) 60,374 32,075 1,151,936 1,244,385 

Escherichia coli (strain K12) 539 11,283 54,800 66,622 

Equus caballus (Horse) 18,326 32 27,987 46,345 

Influenza A virus (A/WSN/1933(H1N1)) 23,813 - 9,143 32,956 

Trypanosoma cruzi 5,886 30 23,927 29,843 

Schistosoma mansoni (Blood fluke) 13,916 - 14,473 28,389 

Bacillus subtilis 12,106 - 11,693 23,799 

Bos taurus (Bovine) 5,923 5,107 8,913 19,943 

Table 1: Activity data of organisms in Papyrus with the most datapoints. 

 309 

When it comes to the activity types Papyrus is derived from (Table 2), most of the data 310 

is either associated with untraceable data types, such as for binary data, or with types 311 

derived from others, for instance the KIBA scores were derived from IC50, Ki and KD 312 

data31 present in the Merget source dataset. 313 

 314 

 315 

 316 
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Activity type 
Original 

datapoints 

Ki 507,821 

KD 118,773 

IC50 1,070,430 

EC50 141,672 

Other 58,315,137 

Table 2: Number of original datapoints in Papyrus for each activity type. 

 317 

Papyrus protein space (Figure 1A) is largely dominated by human proteins, reflecting 318 

the abundance of activity values measured for these. Nevertheless, clusters of 319 

homologous proteins can be observed, mostly aggregating human rat and mouse 320 

protein. As a comparison, the compound space was also visualized (Figure 1B) with 321 

carbon fraction evenly spread across clusters. 322 

Concerning protein classification, enzymes represent nearly half of the classified and 323 

annotated proteins, with more than 25 million data points, and membrane receptors 324 

21% with more than 11 million (Figure 2A). Family A G protein-coupled receptors 325 

represent 37% of proteins annotated with a second level class (Figure 2B), consisting 326 

in more than 9 million datapoints, proteases 23%, more than 5 million, and kinases, 327 

long thought undruggable targets, represent 18% of the data with more than 4.5 million 328 

datapoints. 329 

  330 
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  331 

Carbon atom 
fraction 

Figure 1: Papyrus protein (A) and chemical (B) spaces.  

A 

B 
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 332 

 333 

Bioactivity modeling: Results 334 

To exemplify the potential of Papyrus, an Adenosine receptor (AR) subset was 335 

extracted, considering only the high-quality data. Quantitative structure-activity 336 

relationships (QSAR) and proteochemometrics (PCM) regression and classification 337 

models were trained. A temporal split scheme was chosen, to better asses the 338 

prediction performance of the models32 and minimize congeneric series being split 339 

between training and test sets. 340 

QSAR models were trained on protein targets with sufficient data. This resulted in only 341 

11 of 24 the adenosine receptors in the subset to be suitable for QSAR modelling. PCM 342 

models allowing the use of all related targets, all 24 adenosine receptors could be 343 

modelled. 344 

QSAR regression models for human ADORA2b, rat ADORA1, ADORA2a and ADORA3 345 

and mouse ADORA3 performed well with coefficient of determination R2 between 0.6 346 

and 0.7 during cross-validation (Figure 3A). Surprisingly human ADORA1, ADORA2a, 347 

mouse ADORA3 and bovine ADORA1 performed quite bad with median R2 lower than 348 

0.5 with fold performance reaching -2.3 to -2.1 for the first three. Nonetheless, the 349 

maximum error associated with these first three was significantly lower than that of 350 

other QSAR models although the root-mean-square error (RMSE) and mean absolute 351 

A B 

Figure 2: Protein classification levels 1 (A) and 2 (B) of protein targets in Papyrus. 
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error (MAE) of all models were not significantly different. With regards to external 352 

validation (Figure 4B), the performance of the predictions on the temporally split test 353 

set performed as expected with RMSE around 1 log unit for most models,  only human 354 

ADORA1 and mouse ADORA3 performing noticeably badly. The PCM regression model 355 

performed quite well at cross-validation in terms of R2 and RMSE with values of 0.59 356 

and 0.72 but had higher median maximum error than all QSAR models. These results 357 

were reflected in the temporal validation.  358 

QSAR classification models of human ADORA2a performed very well with Matthews 359 

correlation coefficient (MCC) ranging between 0.62 and 0.70 for cross-validation and 360 

0.48 on the temporal test set (Figure 4). Except for the human ADORA3 and rat 361 

ADORA3 that performed bad both during cross-validation and testing due to the 362 

imbalance of the datasets (ratios of 1:7 to 2:6 of actives to inactives for human ADORA3 363 

and 4:1 to 5:1 for rat ADORA3) and showing very variable sensitivity and specificity, 364 

most models performed equally well at cross-validation and on the test set. The human 365 

ADORA1 and ADORA2a, rat ADORA1, ADORA2a and ADORA2b, mouse ADORA1 and 366 

bovine ADORA1 had balanced accuracy (BAcc) over 0.70 and area under the receiver 367 

operator characteristic curve (AUC) over 0.65, which showed very good predictive 368 

performance in a prospective setting. It is worth noting that the bovine ADORA1 QSAR 369 

regression model R2 was one of the lowest (-0.27). The PCM classification model 370 

showed performance on par with well performing QSAR models during cross-validation 371 

but showed lower performance on test set with MCC of 0.25 and BAcc of 0.62.  372 

Overall models on the AR subset showed similar performance between regression and 373 

classification. It is no surprise that the receptors that performed best, i.e. most of rat 374 

and human receptors, were those with the most datapoints. 375 

 376 
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 377 

Figure 3: Cross-validation performance (A) and temporally split test set 

performance (B) of regression QSAR and PCM models. R2: coefficient of 

determination, RMSE: root-mean-square error, MAE: mean absolute error, Max 

Error: Maximal error. 

A 

B 
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 378 

Figure 4: Cross-validation performance (A) and temporally split test set 

performance (B) of regression QSAR and PCM models. R2: coefficient of 

determination, RMSE: root-mean-square error, MAE: mean absolute error, Max 

Error: Maximal error. 

A 

B 
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Discussion 379 

We have shown the format of the Papyrus bioactivity dataset, as well as a few examples 380 

of baseline models that could be created from this data. While we are confident that 381 

is a reliable publicly available dataset, there are still some limitations present. 382 

 383 

First, the most important limitation in our eyes is that although Papyrus consists of 384 

nearly 60 million activity data points, the data it contains is extremely sparse as only 385 

0.67% of the activity data matrix is represented by the 1.25 million compounds and 386 

almost 7,000 proteins. This is unfortunately hard to avoid as many of the compounds 387 

have simply not been tested on all proteins. Only relatively popular proteins will appear 388 

in the data that is aggregated here. This makes it hard to model proteins that are 389 

understudied, however if data are available they can be added to the Papyrus dataset 390 

to create a more comprehensive set. 391 

 392 

As Papyrus is a static dataset, updates (or corrections) are possible but are reliant on 393 

the aggregated datasets. While this is always a restriction on static datasets, there is 394 

a second degree of reliance here as all the data needs to be updated in their respective 395 

datasets. While we do not think this will pose an issue for modeling, as data freeze 396 

often occurs when a dataset is used in research, updates to Papyrus will have more 397 

time between them than the respective aggregated datasets. 398 

 399 

Another limitation is the choice for the specific datasets that were aggregated into 400 

Papyrus in addition to ChEMBL. Firstly we have implemented ExCAPE-DB, like we did 401 

in previous work. The single article datasets are a reflection of some of the interests 402 

of our group, and we value the high quality data present. There are enough arguments 403 

to include a certain dataset that we did not mention here, which would improve the 404 

quality of the dataset even more. We do provide the full dataset and all the descriptors 405 

that are used. So if anyone wants to add a certain dataset the tools are available to do 406 
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so. Our goal was to create a benchmark set to set a reliable standard to perform 407 

bioactivity modeling on, and we think that Papyrus meets that goal. 408 

 409 

Additionally repetition of data in the source datasets was scrutinized and where 410 

possible only the most recent bioactivity data was kept. This is for instance the case 411 

of the KIBA scores of Tang et al6 that used a combination of activity types of ChEMBL 412 

to increase the quality of single measurements, or of ExCAPE-DB or the ChEMBL 413 

subset in Merget et al14 aggregating data from ChEMBL versions 20 and 21 414 

respectively. While Tang’s data was kept as is and subsets in ExCAPE-DB and Merget 415 

et al were not, this phenomenon is not isolated and several activity values in Papyrus 416 

might have originated from the same source. This over representation of the same 417 

values would, in turn, bias the aggregated mean and standard deviation for specific 418 

compound-target pairs. 419 

 420 

Stereochemical aspects were discarded in Papyrus to ensure that differing molecular 421 

standardisation processes of sources would not have an impact on the aggregation of 422 

activity values. However, the procedure of removing stereochemistry completely 423 

overlooked the potential of chiral molecules having opposing therapeutic or toxic 424 

effects and does not allow for the modelling of activity cliffs. 425 

 426 

Another related shortcoming of Papyrus is its disregard for peptides and nucleic acids, 427 

even more so since one of the most abundant protein classes of level 3 are family A 428 

GPCR peptide receptors. This means that, though many drugs and compounds have 429 

been designed for these receptors, they do not have a single related data point in the 430 

dataset. In turn, related peptide derived models will only show limited performance. In 431 

a future version we would like to explore the possibility of increasing peptide 432 

representation in the Papyrus dataset, but for now this is what we settled on. 433 

 434 
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In a similar vein as the datasets, the descriptors that were added are a selection of 435 

descriptors that we frequently use. We believe that the provided set will be sufficient 436 

for anyone investigating a specific protein (family), and that high quality results can be 437 

obtained. However, we understand the need to tinker with all options of the process, 438 

and we separated the descriptors from the main dataset instead of adding them 439 

together. This gives the option for researchers to implement their own descriptors if 440 

so desired, while keeping the format of the original Papyrus dataset.  441 

 442 

We have provided several implementations of filters, to narrow down the data for use 443 

in modeling (or perhaps other purposes). Using the entirety of Papyrus is not feasible 444 

without adequate computational resources, and we recommend users to reduce the 445 

data using the provided filters or in their own manner. It should be noted that the 446 

quality annotation filter does not imply that only high-quality data should be used, 447 

especially since classification models can leverage both the censored and binary data, 448 

the latter constituting more than 95% of the dataset.  449 

 450 

Conclusion  451 

We created an extensive benchmark set named Papyrus, that contains high quality 452 

data aggregated from multiple data sources. This standardised set is primarily used 453 

as a reliable data source for modeling ligand-protein interactions. We have shown the 454 

statistics of the Papyrus dataset and several classification and regression models 455 

using QSAR and PCM, with performance on par with prior results. We anticipate that 456 

the Papyrus dataset can be exploited in a myriad of ways and filtered or altered for 457 

specific research questions. We believe the strength of the dataset lies in its 458 

standardisation, normalisation and quality, while providing the necessary tools for 459 

further manipulation to specific needs. 460 
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