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ABSTRACT. Direct dynamics by mixed quantum–classical nonadiabatic methods is an 
important tool for understanding processes involving multiple electronic states. Very often, the 
computational bottleneck of such direct simulation comes from electronic structure theory. For 
example, at every time step of a trajectory, nonadiabatic dynamics requires potential energy 
surfaces, their gradients, and the matrix elements coupling the surfaces. The need for the 
couplings can be alleviated by employing the time derivatives of the wave functions, which can 
be evaluated from overlaps of electronic wave functions at successive timesteps. However, 
evaluation of overlap integrals is still expensive for large systems. In addition, for electronic 
structure methods for which the wave functions or the coupling matrix elements are not 
available, nonadiabatic dynamics algorithms become inapplicable. In this work, building on 
recent work by Baeck and An, we propose new nonadiabatic dynamics algorithms that only 
require adiabatic potential energies and their gradients. The new methods are named curvature-
driven coherent switching with decay of mixing (κCSDM) and curvature-driven trajectory 
surface hopping (κTSH). We show how powerful these new methods are in terms of computer 
time and good agreement with methods employing nonadiabatic coupling vectors computed in 
conventional ways. The lowering of the computational cost will allow longer nonadiabatic 
trajectories and greater ensemble averaging to be affordable, and the ability to calculate the 
dynamics without electronic structure coupling matrix elements extends the dynamics capability 
to new classes of electronic structure methods.  
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1. Introduction 

Simulating the dynamics of processes involving electronically excited molecules requires 

potential energy surfaces, their gradients, the electronic matrix elements controlling their 

coupling, and a nonadiabatic dynamics algorithm.1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 Recent 

advances on these topics have enabled quantitative accurate simulations for medium-size 

molecules and qualitatively accurate simulations for nano-sized molecules or 

clusters.20,21,22,23,24,25,26,27,28,29,30,31 The electronic structure must be treated quantum mechanically, 

and for simulating all but the smallest systems, one uses a semiclassical treatment of nuclear 

motion.  The present article is concerned with direct dynamics, where, instead of requiring 

parametrized analytic functions for the energies and couplings, all required energies, forces, and 

couplings for each geometry that is important for evaluating dynamical properties are obtained 

directly from electronic structure calculations when they are needed in the dynamics calculation. 

Electronic structure calculations directly yield electronically adiabatic wave functions, 𝜙!, and 

the coupling in the semiclassical calculations in the adiabatic representation is provided by the 

nuclear momentum operator, which involves the matrix elements of the gradient with respect to 

nuclear coordinates R:1,2,32 

  (1) 

where  denotes an electronic matrix element. The matrix element in eq 1 is usually 

called the nonadiabatic coupling (NAC). It is a 3N-dimensional vector where N is the number of 

atoms.   The present article is concerned with an efficient approximation to the NAC. 	

In semiclassical methods, the electronic wave functions may also be considered to be 

functions of time (t) because 

  (2) 

where r denotes the electronic coordinates, and R(t) is the trajectory of nuclear motion. A 

popular semiclassical method is trajectory surface hopping (TSH).1,2,9,33,34,35,36,37,38 In TSH one 

only requires the NAC in the direction of the current velocity, �̇�, because the semiclassical 

equations only require the time derivative coupling (TDC): 

  (3) 
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Employing a direct calculation of the TDC is more efficient than calculating the NAC, and it can 

be shown to yield more numerically accurate integration of the TSH electronic equations of 

motion than direct use of the NAC, especially for situations of trivial crossings.39,40,41,42    

More complete semiclassical methods, like semiclassical Ehrenfest43,44,45,46,47 (SE) dynamics 

and coherent switching with decay of mixing4,48,49,50,51,52 (CSDM) dynamics, require all 

components of the NAC. Because the evaluation of the time derivative is more efficient than the 

evaluation of a NAC, we have recently formulated an effective NAC53 that can be computed 

from the TDC and that can be used to carry out SE and CSDM dynamics with only the time 

derivative (without requiring a full NAC calculation). We also reported test calculations showing 

that using the effective NAC instead of the actual NAC does not cause a large error. These 

variants of SE and CSDM are called tSE and tCSDM, where “t” denotes time derivative. The 

TDC needed for such calculations can be approximated in various ways by overlaps of electronic 

wave functions at the current and previous time step of the trajectory.38,53,54 Therefore, TSH, tSE, 

and tCSDM can be all be calculated efficiently without computing NACs from electronic 

structure software.  

Not only is the effective NAC preferred for its convenience and efficiency, but also it may 

be preferred for new or high levels of electronic structure where NACs are not yet present in 

available software. For nonvariational methods, like configuration interaction without state-

specific self-consistent orbitals,55 coupled cluster theory,56,57 or multi-configuration pair-density 

functional theory,58,59,60 the NAC can be computed by linear response with a Lagrangian 

formulation,61,62,63 but such calculations can be inconvenient and are often unavailable. Another 

class of electronic structure methods where NACs may be unavailable is provided by the recently 

popular machine-learning-based energy calculations.64,65,66,67 For these reasons, it would be 

convenient to have approximate NACs that can be evaluated straightforwardly from energies and 

energetic derivatives. We therefore ask, can we approximate the TDC and effective NAC from 

energy information, and does this provide enough accuracy for efficient propagation of 

dynamics? The present paper addresses this question.  

We will introduce new nonadiabatic dynamics algorithms that utilize curvature of the 

energy gap to approximate the TDC and the effective 3N-dimensional NAC, and we will show 

how they can be used to develop new variants of tSE and tCSDM that we shall call curvature-

driven semiclassical Ehrenfest (κSE) and curvature-driven coherent switching with decay of 
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mixing (κCSDM). Both κSE and κCSDM require only energy and gradient information from 

electronic structure theory. The curvature-approximated TDC introduced in the current work is 

an extension of the approximate NAC previously developed for one-dimensional systems by 

Baeck and An (BA)68  

  (4) 

where  and  are adiabatic potential energies, and q is a one-dimensional nuclear 

coordinate. 

The CSDM algorithm is based on SE, but in CSDM the SE algorithm is augmented by non-

Markovian decoherence and stochastic pointer-state switches. CSDM inherits the self-consistent 

potential advantage of SE and SE’s robustness to on the choice of electronic wave function 

representation, and it shares with TSH the stochastic switching to physical final states, but 

CSDM does not have TSH’s discontinuous nuclear momenta or its frustrated hops problem. 

Perhaps most importantly of all, CSDM balances coherence in strong interaction regions with 

decoherence between them in a fashion consistent with the Liouville-von Neumann equation.  

CSDM was initially applied to processes conserving electron spin, where it showed good 

agreement with accurate quantum dynamics,49,51 and the recent implementation of CSDM in the 

SHARC software package19,52,69,70 has enabled it to conveniently describe intersystem crossing 

processes.71  

2. Theory  

Since eq 4 is the one-dimensional derivative with respect to a coordinate in the direction of 

motion, we generalize it to the following one-dimensional derivative with respect to time: 

  (5) 

where  is the local gap between adiabatic potential surfaces, and we use κ as a prefix 

and as a superscript to denote approximation based on the curvature of the gaps. Since the NAC 

is skew-Hermitian, we also have 

  (6) 
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Employing eqs 5 and 6 for the TDC is the central feature of κSE and κCSDM. This 

approximation can also be employed in TSH, yielding κTSH. We have implemented κSE, 

κCSDM, and κTSH in a new version of SHARC-MN, which is available at our cost at our 

software distribution site.72 Next we give (i) the details of the how we calculate the TDC 

numerically in SHARC-MN and (ii) the remaining details necessary to completely specify κSE 

and κCSDM, which – as stated above – require an effective NAC as well as the TDC. 

κTDC. The curvature-approximated TDC is given in general by eqs 5 and 6. However, there 

are some details that need to be clarified.  

First, when the radicand is negative, we simply set it to zero. This is justified as follows. The 

reason why a formula like eq 4 or q 5 works is best appreciated by considering the nature of two 

potential curves near a locally avoided crossing.  In a typical case the lower curve is concave, 

and the upper curve is convex, so the radicand is positive. Therefore, a situation where the 

radicand is negative is expected to occur only far from conical intersections where the NAC is 

small, so this should not cause a large error.  

Second, we note that  can be re-written as,  

  (7) 

In the practical SHARC-MN implementation, this is computed from backward finite differences 

as follows:  

  (8) 

where 

  (9) 

SHARC employs velocity-Verlet algorithm,73 in which the velocity at time step   is 

evaluated after the nuclear force at  is computed.  

For both SE and CSDM, the nuclear forces are not decidable until one has determined the 

electronic coefficients. And therefore, , which is needed when eq 9 is substituted into 
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eq 8, is not available for evaluating  when one uses the velocity-Verlet algorithm. 

Hence, in the current implementation,  is approximated by a forward propagation,  

  (10) 

where  is acceleration vector at time t.  

For TSH, when uses the velocity-Verlet algorithm, one does have  when 

evaluating the TDC. However, when a hop happens, the velocity needs to be adjusted to enforce 

energy conservation. Therefore, to make a consistent approximation over the whole trajectory, 

we employ eq 10 to evaluate  for κTSH as well.  

κTSH. In the curvature-driven TSH method, κTSH, the electronic equation of motion 

employs κTDC computed by eqs 5 and 6 instead of directly computing of the time derivative 

coupling either by eq 3 or from overlaps of electronic wave functions at successive steps. 

Furthermore, in κTSH, the velocity rescaling direction after a successful hop is the difference 

gradient vector (eq 6 in ref 74). 

κSE. The SE method in an adiabatic basis involves an expansion of the electronic wave 

function in an N-state basis: 

  (11) 

where  is the coefficient of adiabatic electronic state . Inserting eq 11 into the time 

dependent electronic Schrödinger equation, using eqs 5 and 6 for the TDC, and performing some 

straightforward calculus gives the electronic equation of motion (EOM) for κSE: 

  (12) 

The nuclear EOM of the regular SE method is  

  (13) 

where P is the momentum conjugate to R, and 
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is an element of the electronic density matrix. For the tSE, method, we re-derived the nuclear 

EOM such that it depends on an effective NAC: 

  (15) 

where  is the effective NAC defined by the difference gradient vector , the velocity 

vector Ṙ, and the TDC: 

  (16) 

  (17)  

  (18) 

We justified calling  an effective NAC because it satisfies 

  (19) 

We now replace  in eq 18  by , such that eqs 17-19 yield a new effective NAC, which 

will be called the curvature-approximated effective NAC and denoted by .  

As before,75 it is necessary to project out the rotational and translational components of the 

effective NAC in order to conserve the total angular momentum and the position of the center of 

mass. This yields75 

  (20) 

where 1 and Q are the identity matrix and a projection operator.75 The operation in eq 20 

removes unphysical translational and rotational components of . Therefore the nuclear EOM 

of κSE becomes:  

  (21) 

Equations 12 and 21 define the electronic and nuclear EOM for κSE.  

κCSDM. Adding decoherence to κSE in the same that it was added to tSE to get tCSDM53 

yields the following electronic and nuclear EOMs for κCSDM: 

  (22) 
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  (23) 

where  and  denote the electronic and nuclear equation of motion from κSE, as 

given in eqs 12 and 21, and where the additional terms are decay-of-mixing (DM) terms, which 

are explained in detail elsewhere.48,53 In tCSDM decoherence contribution to the change in the 

nuclear momentum is53 

  (24) 

in which  is the decoherence time, K is the pointer state, and  is the decoherence vector 

for states I and K given by 

  (25) 

where  is the internal vibrational momentum, and a0 ≡ 1 bohr.  

In CSDM, tCSDM, and κCSDM, we propagate two density matrices; the true density matrix 

is propagated by equations 22 and 14, and another density matrix, called the coherent density 

matrix, is propagated coherently (i.e., by eqs 12 and 14) and is used to control the switching of 

the pointer state. Although the coherent density matrix is in general different from true density 

along the trajectory, it is re-initialized to true density for every complete passage of a strong 

interaction region.   

Beyond the changes already discussed for κSE, two additional changes are required to 

obtain κCSDM: 

In tCSDM, the complete passage of a strong interaction region is defined by local minima of 

  (26) 

In κCSDM, we replace this by  

  (27) 
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  (28) 

3. Computational details  

We implemented κSE, κCSDM, and κTSH in SHARC-MN,72 and we tested κCSDM against 

the previously published CSDM and tCSDM methods. We used nonadiabatic dynamics of the 

ethylene molecule as our test example. The Molpro software package76 was interfaced to 

SHARC-MN to perform direct dynamics. 

Ground-state geometry optimization of ethylene together with vibrational analysis were 

performed with MP2/6-31G**,77,78 and the initial geometries and velocities of the trajectories 

were randomly sampled from the ground-vibrational-state Wigner distribution. Before 

propagating the EOMs, the molecule was raised vertically to the first excited state (S1).  

We performed tests of κCSDM and κTSH. We do not test κSE because we use SE and κSE 

simply as base methods upon which to build CSDM and κCSDM – not preferred choices for 

practical simulations.   

The potential energy surfaces and gradients for ethylene direct dynamics were calculated by 

state-averaged complete-active-space self-consistent-field theory (SA-CASSCF)79,80 by 

averaging over 3 states with a (2,2) activated space (two active electrons in two active orbitals) 

and the 6-31G** basis set.  

We ran 300 trajectories for κCSDM and 150 trajectories each for CSDM and tCSDM. We 

ran these trajectories with a 0.1 fs nuclear dynamics time step time step and 200 substeps for the 

integration of the electronic EOM. The trajectories were terminated after 250 fs or earlier when 

the ground state population remains larger than 0.98 for 20 fs. (In order to include the early-

termination trajectories in the time-dependent plots of populations and state energies, we keep 

the values of the population and state energies constant from the value at termination out to 250 

fs.) 

We also ran trajectory surface hopping with the energy-based decoherence correction81 

(TSH-EDC). We ran 200 TSH-EDC trajectories – 100 using the time derivative calculated as an 

overlap and 100 using the scalar product of the NAC and the velocity.  With converged ensemble 

averaging and converged step sizes and if one sued the same velocity rescaling at hops, one 

would get the same result by these two methods so in that sense it is legitimate to combine their 

results; however, we ran these trajectories with both algorithms so we could compare the timing. 

κ
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When we need to distinguish thee two algorithms, we label them as  TSH-EDC(TDC) and TSH-

EDC(NAC).   

Finally, we ran 100 trajectories for κTSH-EDC. The decoherence correction is the same as 

in TSH-EDC. The velocity component in the direction of the gradient difference is rescaled to 

adjust the kinetic energy after a successful surface hop for κTSH-EDC and TSH-EDC(TDC), but 

for TSH-EDC(NAC), the direction of the projected NAC is used to adjust kinetic energy after a 

successful surface hop.  

4. Results 

The present results for κCSDM are compared to our previous results53 for CSDM and 

tCSDM. To assess the excited-state lifetime, we employ ensemble-averaged population analysis 

using the following definition of the probability of being in state I: 

  (29) 

where  is the index of trajectory,  is the total number of trajectories, and the probability is 

evaluated when the trajectory is terminated. The ensemble-averaged populations in the ground 

and excited states are shown as functions of time in Fig 1. Alternatively, we can define the 

population of a certain state I as,  

  (30) 

where 𝑁"#$%!  is the number of trajectories for which the pointer state is I when the trajectory is 

terminated. This population is denoted as the pointer-state population. The pointer-state 

population for κCSDM, tCSDM, and CSDM is shown in Fig. S1 in Supporting Information.  

The ensemble-averaged potential energies for S0, S1, S2 and the effective PES (eq 8 of ref 

48) are shown in Fig 2. The effective PES (denoted as Veff) is gradually changing from V1 to V0 

around 50 fs which is consistent with the time region where population transfers from S1 to S0. 

The half-life (τ1/2) obtained from the simulations for decay of the S1 excited state are 60, 52, and 

51 fs for κCSDM, tCSDM, CSDM, respectively, which shows very good agreement among the 

three methods; in fact, the difference is of the same order as the statistical uncertainty in the half-

life due to the finite amount of Monte Carlo ensemble averaging with 150–300 trajectories). 
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To assess the accuracy of curvature-approximated TDC and the curvature-approximated 

effective NAC, we randomly picked three κCSDM trajectories and performed NAC calculation 

at each geometry along the trajectory. The norm of ab initio NAC  and projected curvature- 

approximated effective NAC  for S0 and S1 are shown in Fig. 3. For comparison, this figure 

also shows V0 and V1 along the κCSDM trajectory. It is clear that  and  spike at the 

same position, which is where V0 and V1 get close. However, we also observe a trend that  

seems to be relatively smaller than , and that may explain why population transfer from S1 to 

S0 seems to be slightly faster in tCSDM and CSDM than in κCSDM; however, it is not clear if 

the difference is statistically significant. The bottom line is that the curvature-driven method is in 

good agreement with tCSDM and CSDM. 

The computational cost ratio for κCSDM, tCSDM, and CSDM is roughly 1:3.5:4.5. These 

ratios show a significant speedup for κCSDM, which occurs because no overlap integrals or 

nonadiabatic coupling vectors are computed from electronic structure software.  

Next, we discuss κTSH. The S0, S1, and S2 populations (computed by eq 29) as a function of 

time for κTSH-EDC, TSH-EDC(TDC), and TSH-EDC(NAC) are shown in Fig 4. The half-lives 

(τ1/2) for the S1 excited state obtained from the simulations are 63 and 62 fs for κTSH-EDC and 

TSH-ED, respectively. These results indicate that κTSH-EDC is a very good approximation to 

TSH-EDC. The ensemble averaged potential energies as a function of time for κTSH-EDC and 

TSH-EDC are shown in Fig 5.  

The pointer state populations as a function of time for κTSH-EDC and TSH-EDC are shown 

in Fig. S2 in Supporting Information.  

The computation time ratios for κTSH-EDC, TSH-EDC(TDC), TSH-EDC(NAC), and 

κCSDM are 0.7:0.8:1.6:1.0. This shows that the speedup of κTSH-EDC relative to TSH-

EDC(NAC) is more than a factor of two even for this small molecule (as the molecule simulated 

gets larger, this timing savings is expected to become more significant; it could even be 

dramatic). However, κTSH is only 30% faster than the more accurate κCSDM method. 

Furthermore, these timings show that κTDC drops the cost of the mean-field, dual-density-matrix  

κCSDM algorithm below that of TSH-EDC(NAC).  
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5. Concluding Remarks 

In this work, we proposed a curvature-approximated time-derivative coupling formula, and 

we showed how to use this formula to obtain curvature-driven approximations to trajectory 

surface hopping, to the semiclassical Ehrenfest method, and to the coherent switching with decay 

of mixing method for nonadiabatic dynamics. The curvature-driven methods are called κTSH, 

κSE, and κCSDM. We demonstrated for ethylene that nonadiabatic dynamics with κCSDM and 

κTSH-EDC gives results close to those given by CSDM and TSH-EDC. The curvature-driven 

methods do not require the calculations of nonadiabatic coupling vectors (NACs) or time 

derivatives of the wave function. Thus they may  be used to speed up calculations as compared to 

using electronic-structure nonadiabatic couplings (NACs). For ethylene we found a speedup of 

κCSDM by a factor of 4.5 relative to CSDM and a speedup of 20–30% for κTSH-EDC relative 

to TSH-EDC. Such speedup may enable longer-time trajectories and/or better ensemble 

averaging. Even more promising is that curvature-driven couplings can be used for direct 

dynamics calculations of electronically nonadiabatic processes with electronic structure methods 

for which NACs or time derivatives are not available. 

6. Software Availability 

The new methods described in this article are available (free) in SHARC-MN-v1.1,72 which 

is based on SHARC-v2.1.82 
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Figure 1. S0 (red), S1 (blue), and S2 (green) populations as functions of time for κCSDM (solid), 

tCSDM (dotted) and CSDM (dashed).  The curves represent averages over the ensemble of 

trajectories for the given method. 
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Figure 2. S0, S1, S2 and mean-field PESs denoted as V0 (red), V1 (green), V2 (yellow), and Veff 

(blue) as functions of time for κCSDM (solid), tCSDM (dotted) and CSDM (dashed). The curves 

represent averages over the ensemble of trajectories for the given method. 
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Figure 3. The norm of ab initio NAC  and the magnitude of the projected curvature-

approximated effective NAC  along three randomly selected κCSDM trajectories are shown 
in red and green respectively. We also show the adiabatic potentials V0 (yellow) and V1 (blue) 
for comparison. Note that states S0 and S1 are numbered 1 and 2 in the row and column indices 
of the matrix elements. 
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Figure 4. S0 (red), S1 (blue), and S2 (green) populations as functions of time for κTSH-EDC 

(solid) and TSH-EDC (dotted). The curves represent averages over the ensemble of trajectories 

for the given method. 
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Figure 5. S0, S1, S2 and mean-field PESs denoted as V0 (red), V 1 (green), V 2 (yellow), and V eff 

(blue) as functions of time for κTSH (solid) and TSH-EDC (dotted). The curves represent 

averages over the ensemble of trajectories for the given method. 
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Optimized geometry of ethylene with MP2/6-31G** 

 C          0.1253759125       -0.2973946268        0.0548520616 
 C          0.0457468876        0.0009727000        1.3551368234 
 H          1.0405529177       -0.6681691515       -0.3858045654 
 H         -0.7223227760       -0.1792792761       -0.6059533265 
 H         -0.8694303378        0.3717448374        1.7958029647 
 H          0.8934373960       -0.1170394830        2.0159700422 

SHARC-MN input file for 𝛋CSDM calculation 

printlevel   0 
geomfile     "geom" 
veloc        external 
velocfile    "veloc" 
 
nstates      3 0 0 
actstates    3 0 0 
state        2 diag 
coeff        auto 
rngseed      5895967 
 
ezero        -78.054411630961 
tmax         250.0 
integrator   fvv 
stepsize     0.1 
nsubsteps    200 
 
method       scp 
surf         diagonal 
coupling     etdc 
neom         gdiff 
nogradcorrect 
decoherence_scheme dom 



 S-4 

SHARC-MN input file for tCSDM calculation 

printlevel   0 
geomfile     "geom" 
veloc        external 
velocfile    "veloc" 
 
nstates      3 0 0 
actstates    3 0 0 
state        2 diag 
coeff        auto 
rngseed      5895967 
 
ezero        -78.054411630961 
tmax         250.0 
integrator   fvv 
stepsize     0.1 
nsubsteps    200 
 
method       scp 
surf         sharc 
coupling     overlap 
nogradcorrect 
decoherence_scheme dom 
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SHARC-MN input file for CSDM calculation 

printlevel   0 
geomfile     "geom" 
veloc        external 
velocfile    "veloc" 
 
nstates      3 0 0 
actstates    3 0 0 
state        2 diag 
coeff        auto 
rngseed      5895967 
 
ezero        -78.054411630961 
tmax         250.0 
stepsize     0.1 
nsubsteps    200 
 
method       scp 
surf         sharc 
coupling     ddr 
nac_projection 
nogradcorrect 
decoherence_scheme dom 
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SHARC-MN input file for 𝛋TSH-EDC calculation 

printlevel   0 
geomfile     "geom" 
veloc        external 
velocfile    "veloc" 
 
nstates      3 0 0 
actstates    3 0 0 
state        2 diag 
coeff        auto 
rngseed      5895967 
 
ezero        -78.054411630961 
tmax         250.0 
integrator   fvv 
stepsize     0.1 
nsubsteps    200 
 
method       tsh 
surf         diagonal 
coupling     etdc 
ekincorrect  parallel_diff 
decoherence_scheme edc 
nogradcorrect 
grad_select 
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SHARC-MN input file for TSH-EDC(TDC) calculation 

printlevel   0 
geomfile     "geom" 
veloc        external 
velocfile    "veloc" 
 
nstates      3 0 0 
actstates    3 0 0 
state        2 diag 
coeff        auto 
rngseed      5895967 
 
ezero        -78.054411630961 
tmax         250.0 
integrator   fvv 
stepsize     0.1 
nsubsteps    200 
 
method       tsh 
surf         diagonal 
coupling     overlap 
ekincorrect  parallel_diff 
decoherence_scheme edc 
nogradcorrect 
grad_select 
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SHARC-MN input file for TSH-EDC(NAC) calculation 

printlevel   0 
geomfile     "geom" 
veloc        external 
velocfile    "veloc" 
 
nstates      3 0 0 
actstates    3 0 0 
state        2 diag 
coeff        auto 
rngseed      5895967 
 
ezero        -78.054411630961 
tmax         250.0 
stepsize     0.1 
nsubsteps    200 
 
method       tsh 
surf         sharc 
coupling     ddr 
ekincorrect  parallel_pnac 
nac_projection 
nogradcorrect 
decoherence_scheme edc 
grad_select 
nac_select 
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Figure S1. S0, S1, and S2 populations as a function of time are shown in red, blue, and 

green colors respectively for κCSDM (solid), tCSDM (dot) and CSDM (dash) trajectory 

ensemble results. At 250 fs the S0, S1, and S2 pointer state populations are 0.94, 0.05, 

0.01 for κCSDM, 0.96, 0.04, 0.00 for tCSDM, and 0.97, 0.03, 0.00 for CSDM 

respectively. The half-lives time τ1/2 obtained from the simulations for S1 excited state 

are 59, 51, and 51 fs for κCSDM, tCSDM, CSDM, respectively.  
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Figure S2. S0, S1, and S2 populations as a function of time are shown in red, blue, and 

green colors respectively for κTSH (solid) and TSH-EDC (dotted). The half-lives time 

τ1/2 obtained from the simulations for S1 excited state are 63 and 61 fs for κTSH and 

TSH, respectively.  
 




