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ABSTRACT
The electron transport through the single-molecule junction of 1,4-Diaminobenzene
(BDA) is modeled using ab initio quantum-classical molecular dynamics of electron
attached states. Observations on the nature of the process are made by time-resolved
analysis of energy differences, non-adiabatic transition probabilities and the spatial
distribution of the excess electron. The role of molecular vibrations that facilitate
the transport by being responsible for the periodic behaviour of these quantities
is shown using normal mode analysis. The results support a mechanism involving
the electron’s direct hopping between the electrodes, without its presence on the
molecule, with the prime importance of the bending vibrations that periodically
alter the molecule–electrode interactions. No relevant differences are found between
results provided by the ADC(2) and SOS-ADC(2) excited state models. Our ap-
proach provides an alternative insight into the role of nuclear motions in the electron
transport process, one which is more expressive from the chemical perspective.
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1. Introduction

Molecular electron transport is in the focus of scientific interest in different fields
from material science to biochemistry. Research in this area was spectacularly boosted
in the past two decades, [1–4] in particular by experimental realization of so-called
Single-Molecule Junctions (SMJs),[4–9] i.e. systems where a single molecule is trapped
between two nanoscale contacts allowing the examination of the electrical properties
of single molecules measuring, for example, its conductivity.

The theoretical modeling of these transport processes was also developed at the
same time and now has an extensive literature [3, 4, 10–20], allowing a reasonable
modelling of such systems. Majority of the investigations on SMJs are based on the
Landauer approach. The key quantity of this model is the transmission function, usu-
ally calculated from scattering theory using Green’s function techniques. The corre-
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sponding model Hamiltonian is usually a simple one-electron representation of the
molecular states, with parameters from density functional theory (DFT) calculations.
[11, 15, 16, 18, 21–23].

Extension of this theory by considering nuclear motion effects is also possible[14–
17] but rarely done. One way to do this is via so called electron-phonon couplings,
[11, 14, 16, 19, 24] usually described using a Hamiltonian of the type

Ĥ = Ĥ0 + V̂ = Ĥ0 + V̂M−out +
∑
i,j,α

Mα
ijQ̂

a
αd̂
†
i d̂j , (1)

where Ĥ0 is the (mean-field) electronic Hamiltonian of the molecule and the terminal
region of the metallic contacts (these combined forming the so-called ,,extended sys-

tem”) and V̂M−out is the interaction of this extended system with the bulk electrodes.
The linear coupling of the electronic and nuclear degrees of freedom is described by
the last term of Eqn. 1, with d̂i being electronic creation–annihilation operators and
Q̂ being the molecule’s vibration coordinate operators – usually also expressed in a
second quantized formalism. The coupling elements

Mα
ij =

∑
n

√
~

2Mnωα
Cnα 〈i|∇Rn

Hel(R)|j〉 , (2)

with C being the transformation matrix between cartesian and normal mode coor-
dinates, are very much reminiscent to the respective terms of the Linear Vibronic
Coupling (LVC) model used widely in chemistry[25–29] and can be regarded as a
perturbation on the system’s electronic structure by the molecule’s vibrations.

The above listed methods are relatively simple to apply, work acceptably in practice
and their different forms are thus widely adopted by the physics community. However,
from the quantum chemist’s perspective this methodology is not quite satisfactory
from the following points of view: a) they do not provide a picturesque explanation
of the mechanism of the electron transport (not distinguishing e.g. so-called ,,inelastic
tunnelling” or ,,hopping”), and the role of the molecule’s electronic structure is hidden
as it plays the role of a ,,scattering center”; b) for complex systems where the number of
nuclear degrees of freedom included in Eqn. 1 is limited by computational complexity,
the selection of considered normal modes is quite difficult without a more in-depth
knowledge of their nature and impact; c) the model assumes a mean-field Hamiltonian
of the system not allowing to check the importance of electron correlation or, in general,
the dependence on the quantum chemical description of the electronic structure.

The aim of this proof-of-concept paper is to present an alternative description of the
electron transport process, one which is more familiar from the chemical perspective.
We employ a toolset proven to be effective for studying and interpreting time-resolved
electronic–nuclear interactions: molecular dynamics. Our approach should shed light
on the role of molecular motions and unveil the nature of structural distortions that
facilitate the translocation of an attached electron, thereby providing a chemically
more meaningful picture of electronic conduction. This model easily incorporates all
normal mode vibrations of the investigated molecule and allows to identify the most
relevant ones. This methodology readily allows the use of high level electron correlation
methods, i.e. it does not rely on the mean-field descriptions of the electronic structure
that are quite widespread in the field despite their often controversial accuracy.
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Figure 1. Equilibrium structurea of the model system under study.

a See text for details

2. Computational details

2.1. Model system

The physical picture behind this study is that an electron attached to the natural
model system – imagined as having come from the bulk conductors – could move
across the junction via finite-probability transitions between electron attached states
localized on different sites of the system.

We chose to investigate the single-molecule junction of benzene-1,4-diamine (BDA),
simulating the circumstances of the respective experiments. The conductance proper-
ties of this molecule have been extensively studied many times both experimentally
[30–32] and theoretically [33–35]. The geometry of the BDA junction is rather well-
defined due to the selectivity of the gold-amine bonding, resulting in the narrow spread
of the measured conductance values. Another advantage of this system is that the en-
ergy of the highest occupied molecular orbital (HOMO) of BDA lies relatively close
to the Fermi level of the electrodes, allowing the electron transport to be observed at
a low bias.

Following the concept of Ref. [34], our model system consists of a BDA molecule
placed between two gold electrodes, modeled as 6-atomic clusters in a distorted oc-
tahedral configuration, as shown on Fig. 1. The size of the chosen gold clusters is
an important trade-off between physical accuracy and computational complexity: the
number of tractable explicit gold atoms is limited by the scaling of the electronic struc-
ture method, and the number and density of electronic states – approaching a band
structure in the asymptotic limit – also increases with the cluster size.[36] According
to the ionization properties of gold clusters of various sizes[36–39] the chosen six gold
atoms provide a reasonable model of the terminal region of gold electrodes, approach-
ing the IP and EA values of larger clusters to an extent which is satisfactory for the
aim of this study.

The equilibrium structure of the BDA molecule was obtained at the MP2 level using
the def2-SV(P) basis.[40] In the gold cluster the gold-gold bond lengths were set to the
bulk value of 2.89 Å and the bond angles to 60°, 90° and 120°, based on Ref. [36]. The
BDA was placed between the gold clusters so that the distance between the terminal
gold and amino-nitrogen atoms is 2.38 Å, while the Au-N-C and Au-N-C-C angles
are 112° and 87.5°, respectively. The structure of the model system is available in the
Supplemental material.

An advantage of the chosen model system is its relatively modest size, allowing us
to employ more sophisticated electron correlation methods, surpassing the rather com-
promised reliability of various mean-field approaches found in the existing literature.
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2.2. Ab initio methods

The electronic structure of the system was calculated using the Algebraic Diagram-
matic Construction Second Order (ADC(2))[41–43] method, with the core electrons
excluded from the correlation treatment. The TURBOMOLE[44, 45] program system
was used for the calculations with the Resolution-of-Identity approximation, offering
an attractive computational performance suited for the molecular dynamics calcula-
tions explained below. To also address the concerns raised by the rather controversial
performance of ADC(2) in some cases,[46] results with the spin-component-scaled vari-
ant SOS-ADC(2) were also obtained as comparison. Recent studies by our group[47–49]
revealed that the unsatisfactory performance of ADC(2) is remedied to a considerable
extent by spin-component-scaling, while an agreement with the parent variant is often
an indication of a good accuracy of both techniques. The double-ζ quality def2-SV(P)
basis of Schäfer and co-workers [40] was used in the calculations with a def-ECP ef-
fective core potential (ECP) present on the gold atoms.

2.2.1. Continuum orbital strategy

The electron attached states were calculated using the continuum orbital strategy, an
elegant idea first proposed by Stanton[50] which allows the use of excitation energy
methodology to describe such states. This technique was successfully used later by
us[49, 51, 52] and others[53, 54]. In this approach the system is augmented by a
continuum orbital occupied by two excess electrons and the electron attached states
of the neutral system are obtained as excited states of this doubly charged anion,
dominated by an excitation from the continuum orbital to one of the virtual MOs.
Technically, the continuum orbital is included by adding a dummy atomic center to
the calculation, equipped with a single, gaussian type basis function of infinite size
(in practice, an exponent value of 10−8 was used) which, having no overlap with
any other basis function, results in a standalone molecular orbital with an orbital
energy of precisely zero. A great advantage of this idea is that any program code
able to calculate excited electronic states can be made capable of providing ionized
or electron attached states in a closed-shell formalism.[51] This not only has benefits
on the performance side but also eliminates complications associated with open-shell
wave functions. Another important aid of the continuum orbital technique is that
all electron attached states are treated on an equal footing even with single-reference
methods, due to the fact that they are all described with respect to a common reference
– in contrast to, e.g. as excited states of a singly charged anionic ground state.

2.2.2. Analysis of the spatial extent of the wave function

The electron attached states can be conveniently analyzed using the TheoDORE
toolset of Plasser and co-workers.[55–57] This approach is based on a population anal-
ysis of the transition density integrated over the fragments that build up the system.
In our case these are trivially chosen as the molecule (Fragment No. 1) as well as the
left (Fragment No. 2) and right (Fragment No. 3) electrode, while the elements of the
transition density essentially describe the weight of each virtual orbital in the electron
attachment. The Natural Transition Orbitals (NTOs, see Refs. [55, 56]) of the electron
attached states and the respective diagonal elements of the so-called Ω-matrix[56–58]
thus give an expressive picture of the excess electron’s spatial distribution. A quan-
tity very useful for investigating electron attached states is the POSf descriptor[57]
calculated from the Ω-matrix, which tells on which pre-defined fragment the electron
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is attached. For a delocalized EA state the POSf takes a value between the involved
fragments’ numbers.

2.3. Molecular dynamics

The impact of the molecule’s nuclear motions was explored within a nonadiabatic
molecular dynamics framework using the Newton-X software package of Barbatti et
al.[59] Relying on the concept of Trajectory Surface Hopping (TSH), the excited state
process is generally modeled by a large set of Newtonian nuclear trajectories, allowed
to jump from one electronic state into another in case the associated ,,hopping proba-
bility” is sufficiently large. For a detailed introduction to the concept, limitations and
applications of the TSH approach, the reader is advised to check out the excellent
reviews of Barbatti and co-workers.[59–61]

To obtain a picture of the conduction process, the molecular dynamics is started in
an electron attached state localized on the electrodes (called electrode states hereafter,
see below), and the potential hopping events towards other states are investigated from
the electron transport perspective. In order to mimic the solid-state nature of the elec-
trodes, the atoms of the gold clusters were not allowed to move, i.e. the trajectory was
exclusively driven by the BDA molecule’s internal motions. A total of 70 trajectories
were propagated for a duration of 100 femtoseconds with a nuclear integration step of
0.5 fs. The initial conditions were generated for the isolated molecule, following the
uncorrelated harmonic oscillator Wigner distribution model described in Ref.[62]. The
ground state vibrational frequencies and normal modes were evaluated at the DFT /
def2-SV(P) level, using the B3-LYP functional. The initial structures were then placed
between the gold clusters with the addition of the doubly occupied continuum orbital.
Due to the metallic structure of the gold clusters, the number and density of electrode
states is relatively large, which, if trajectories were allowed to actually perform surface
hopping, would result in a high frequency of such events, requiring a very large number
of trajectories to be analyzed. To avoid the complexity arising from this phenomenon,
the trajectories were kept in a single, initially chosen electron attached state while the
hopping probabilities among all states were calculated in each dynamics step using
the wave function overlap described in Refs. [63, 64].

The calculations were performed on the ATLASZ computer cluster of Eötvös Loránd
University.

3. Results and Discussion

3.1. Electron attached states

The first eight electron attached states of the model system are summarized in Table
1 and depicted on Fig. 2 using their NTOs. One can see that the lowest six states are
all localized on the gold clusters (electrode states (Elx)), associated with a negative
electron affinity. In the ADC(2) model the first two states show a very low value of
less than -2.0 eV, followed by a rather dense set of another four states between -0.70
eV and -0.62 eV. The symmetric structure of the system has a consequence that in
the absence of a non-symmetric perturbation (e.g. electric field or a distortion of the
molecular structure) the electrode states show up as combinations of those localized on
the left and right electrodes. The first electron attached state that is localized on the
BDA molecule (Molx) is the 7th in the row with a considerably higher electron affinity
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(0.11 eV), dominantly attached to the molecule’s lowest lying π∗ orbital (LUMO).
Considerably higher in energy is the second molecule state found, also of the π∗ type
with a minor component on the amino group nitrogen atoms’ lone pair.

Compared to the ADC(2) data, the SOS-ADC(2) results show very similar features
with all predicted electron affinities higher by 0.35 (± 0.11) eV, with no relevant
differences in the states’ character. This is in agreement with our previous studies[46,
49] where the parent ADC(2) and CC2 methods were found to underestimate electron
affinities, whereas their spin-component scaled variants predicted very accurate results
as compared to CCSD and higher level references. Since the present study focuses on
the energy differences and interactions of EA states, this consistent up-shift of the
energies does not affect the results considerably. Therefore, in the following we present
the ADC(2) results in this paper, while some SOS-ADC(2) data is provided in the
Supplemental material.

Table 1. The first eight electron attached states of the

Au6 · · · BDA · · · Au6 model systema

Notation
EAb / eV EAb / eV

Localization
(ADC(2)) (SOS-ADC(2))

El1 -2.18242 -1.79718 electrodes
El2 -2.18165 -1.79580 electrodes
El3 -0.70086 -0.45942 electrodes
El4 -0.67627 -0.44059 electrodes
El5 -0.67068 -0.28541 electrodes
El6 -0.62142 -0.24389 electrodes
Mol1 0.11328 0.52362 molecule
Mol2 0.48190 0.82417 molecule

a Obtained in the MP2/def2-SV(P) equilibrium configura-
tion described in Section 2.1
b Electron Attachment energy (Electron Affinity)

3.2. Nuclear trajectories

The sixth electrode state El6 was chosen as the state the dynamics was running in.
This is a somewhat arbitrary choice, however, as discussed in Section 2.3, in practice
the newtonian nuclear trajectories are driven by the forces on the BDA molecule’s
atoms and this, with the system remaining in one of the electrode states throughout
the entire trajectory, means that the changes observed during the dynamics simulation
are to a large extent associated with the neutral BDA molecule’s vibrations and their
capability to perturb the electronic structure of the molecule and the electrodes. The
electrode states El3–El6 being very close in energy, these latter effects can be assumed
to be similar in any of them, while the highest lying El6 state should be the most
interesting from the viewpoint of its interaction with the Mol1 state and thus, unveil
a potential explicit role of the latter in the electron transport process. Nevertheless,
transition probabilities were monitored between all potentially relevant pairs of states
via the respective surface hopping probability. The nominal values of these dimen-
sionless quantities are of limited physical relevance per se. Their relative change, in
particular their growth by orders of magnitude at certain regions, however indicate a
strong mixing and a likely nonadiabatic transition between the two states in question.
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Figure 2. Natural transition orbitalsa of the electron attached states listed in Table 1.

El1 El2

El3 El4

El5 El6

Mol1 Mol2

a ADC(2) isosurfaces with the contour value of 0.02 are shown.
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A comprehensive statistics on the trajectories are shown in Table 2 with data pre-
sented for the starting point (t = 0 fs) and two selected (50 fs and 100 fs) timesteps, as
well as for the entire trajectory – the latter showing values averaged over all trajecto-
ries. One can observe that the state energy differences undergo a considerable variation
with the molecule’s structure, dropping to a fraction of the equilibrium value in cer-
tain points. Generally, the approaching state energies can be expected to increase the
corresponding transition probability, and the opposite happens if the energy gap in-
creases. These changes are reflected by the large alteration of the p values, from a
practical disappearance of the transition probability up to two orders of magnitude
larger than the mean starting value.

The general agreement of the mean ∆E and p data with the starting point and
the selected timesteps, as well as the mean entire trajectory is an indication of the
molecule’s practically unperturbed periodic vibration around the reference point, the
phases of which are randomly sampled by the set of initial conditions.

No pronounced directions of structural deformations could be visually identified
within the ADC(2) set of trajectories, meaning that the presence of the excess elec-
tron with no external voltage bias does not cause the system to undergo any particular
structural changes – instead, an MD representation of a quasi-stationary system is ob-
served. In such system a natural behavior of the state energies along the trajectories is
a periodic change with a frequency corresponding to the dominant normal modes – i.e.
the internal motions that affect the energies to the largest extent. However, depending
on the number and relative starting phase of the dominant vibrations – chosen ran-
domly and independently for each trajectory – the change of the energies during the
trajectory can either indeed show a characteristic periodicity or a much less systematic
behavior, eventually even nearly no variation. In the following, for the simplicity of the
interpretation, we discuss selected trajectories that show the above periodical changes,
keeping in mind that other trajectories do not possess any conceptually different be-
havior either. (The presented data is available for all trajectories in the Supplemental
material.) By evaluating the displacements along the molecule’s normal modes it is
possible to analyze the importance of individual motions in the change of transition
probabilities and state energies. This is done by transforming the dynamics snapshots’
displacement vectors into the reference structure’s normal coordinate representation
and correlating the displacements with the investigated quantities.

3.2.1. Transitions to the molecule state Mol1

A sample trajectory is depicted on Fig. 3, with the energy difference of the Mol1 and
El6 state shown, together with the associated hopping probabilities towards the Mol1
state, as well as the POSf values of the states. One can observe that the energy gap
between the states varies considerably with the molecule’s vibrations, going as low as
20 percent of the equilibrium value up to 155% of it. This behavior is typical for all
trajectories, the average minimum and maximum values being 0.29 eV and 1.04 eV,
respectively.

By taking a look at the correlation of the increase of the normal coordinate values
and the energy gap depicted on the top panel of Figure 4, one can see that the coor-
dinates most responsible for altering the Mol1 –El6 energy gap are the 31-34 normal
modes which are the joint bending motions of the BDA’s ring hydrogens and the amino
groups’ scissoring (see the normal modes illustrated in the Supplemental material), the
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Table 2. Statistics on the state energy differences

(∆E, in eV) and hopping probabilities (p, multiplied
by 103) from 70 MD trajectories

t = 0 fs

Mean SDa Min. Max.
∆E (El6,Mol1) 0.578 0.189 0.211 1.056
p (El6 → Mol1) 0.1 0.4 0.0 2.8
∆E (El5,El6) 0.062 0.029 0.011 0.151
p (El6 → El5) 1.2 4.7 0.0 29.6
∆E (El4,El6) 0.120 0.062 0.040 0.347
p (El6 → El4) 0.5 2.4 0.0 15.7
∆E (El3,El6) 0.163 0.069 0.058 0.372
p (El6 → El3) 0.1 0.6 0.0 5.1

t = 50 fs

Mean SDa Min. Max.
∆E (El6,Mol1) 0.628 0.190 0.197 1.070
p (El6 → Mol1) 0.3 1.5 0.0 11.8
∆E (El5,El6) 0.048 0.025 0.005 0.103
p (El6 → El5) 1.0 2.5 0.0 14.7
∆E (El4,El6) 0.119 0.066 0.033 0.313
p (El6 → El4) 1.4 4.6 0.0 31.7
∆E (El3,El6) 0.166 0.079 0.037 0.387
p (El6 → El3) 0.7 2.8 0.0 16.6

t = 100 fs

Mean SDa Min. Max.
∆E (El6,Mol1) 0.744 0.197 0.331 1.174
p (El6 → Mol1) 0.2 1.9 0.0 15.9
∆E (El5,El6) 0.046 0.026 0.006 0.114
p (El6 → El5) 0.9 2.3 0.0 14.3
∆E (El4,El6) 0.115 0.071 0.035 0.328
p (El6 → El4) 0.9 5.4 0.0 45.0
∆E (El3,El6) 0.190 0.107 0.057 0.675
p (El6 → El3) 0.9 4.4 0.0 34.6

Entire trajectoryb

Mean SDa Min. Max.
∆E (El6,Mol1) 0.655 0.187 0.291 1.038
p (El6 → Mol1) 0.1 0.8 0.0 12.8
∆E (El5,El6) 0.045 0.023 0.004 0.100
p (El6 → El5) 1.8 7.9 0.0 126.2
∆E (El4,El6) 0.105 0.049 0.030 0.236
p (El6 → El4) 0.8 3.8 0.0 57.1
∆E (El3,El6) 0.156 0.060 0.059 0.316
p (El6 → El3) 0.6 3.5 0.0 53.9

a Standard deviation
b The presented values are the averages of the respec-
tive data of all trajectories

9



0.2

0.4

0.6

0.8

1.0

1.2

E(
El

6,M
ol

1)
 / 

eV

1.0

1.5

2.0

2.5

3.0

PO
S f POSf(El6)

POSf(Mol1)POSf(Mol1)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
t / fs

0.00

0.01

0.02

0.03

0.04

p(
El

6
M

ol
1)

Figure 3. Energy gap (top panel, the equilibrium value marked with dashed line) and POSf values (middle

panel, see text for explanation) of the Mol1 and El6 electron attached states and the El6 → Mol1 hopping
probability (bottom panel) as functions of the sample MD trajectory timestep
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latter being more significant. The respective plots of the correlation with the individual
states’ electron affinities on the middle and bottom panels indicate that this periodic
variation of the energy gap is practically attributed to the Mol1 state energy alone –
the El6 state is not articulately affected by these motions. This means that although
the distortion of the aromatic ring and the amino groups’ displacements towards the
gold electrodes are inseparable in these relevant vibrations, the HCC bendings are
likely to be the more important due to their destabilization effect on the aromatic ring
and thus, the reduction of the Mol1 state energy.

The reduced energy gap is normally expected to be accompanied by an increased
hopping probability and some very pronounced peaks in the probability are indeed
found (see the bottom panel of Fig. 3). However, the precise position of these peaks
do not coincide with the energy gap minima. This is probably due to the fact that the
molecule and electrode states have very different wave functions with a low overlap,
which can thus remain insignificant even with the energies falling close to each other.
This is true for other electrode states as well, as none of the El3 -El6 states was found to
have a considerably higher overlap with Mol1. Nevertheless, the repetitive occurrence
of points with an extraordinarily high transition probability (up to 86 times the mean
value) is an indication that the molecule’s vibrations indeed create probability for the
transition to take place, even though the absolute values remain minuscule throughout
the entire trajectory. This is partially explained by the absence of delocalized states,
as indicated by the excess electron’s positions (middle panel of Fig. 3): in the electrode
state the excess electron is essentially hopping back and forth between the left and
right electrodes (fragments 2 and 3), remaining on one of them for longer periods of
about 10 fs, while the Mol1 state is constantly localized on the molecule (fragment 1).

The preserved quasi-orthogonality of the electrode and molecule state wave func-
tions can be regarded as an indication that the explicit role of the El6→Mol1 transition
in the electron transport process is, despite how low the energy separation can become,
rather unlikely.

It has to be noted that at the SOS-ADC(2) level, a slow rotation of the BDA
molecule between the electrodes can also be observed during the dynamics, presum-
ably caused by the large Coulomb repulsion of the excess electron and the molecule’s
electron density. Simultaneously, the energy gap of the Mol1 and El6 states slowly
increases while the electrode states approach each other further with the dynamics
timesteps. This effect, a possible artifact caused by our choice of modeling the exter-
nal electron in the system, is found negligible at the ADC(2) level.

3.2.2. Transitions to other electrode states

The six states localized on the electrodes are, as discussed previously, close in energy,
so the transition probabilities between them should be expected to be significant. The
states are, due to the symmetry of the system, delocalized in the reference configura-
tion, but become localized on one of the electrodes if the molecule has a non-symmteric
structure during the dynamics, i.e. most of the time.

Figures 5 – 7 show the same trajectory as Figure 3 for the El6 / El5, El6 / El4
and El6 / El3 state pairs, respectively. For the former is clearly seen that the 0.05
eV energy gaps at the reference structure reduce considerably at many steps during
the trajectory, down to a quasi-degeneracy of less than 0.01 eV. For the other two
pairs the gaps barely drop below the equilibrium value, but show well defined minima
with a characteristic periodicity. It is common to all states that they are localized on
one of the electrodes most of the time, jumping to the other with ∼ 10 fs periods,
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probability (bottom panel) as functions of the sample MD trajectory timestep
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Figure 7. Energy gap (top panel, the equilibrium value marked with dashed line) and POSf values (middle

panel, see text for explanation) of the El6 and El3 electron attached states and the El6 → El3 hopping
probability (bottom panel) as functions of the sample MD trajectory timestep
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El3 El4 El5 El6
Mean 25.98 25.65 31.02 23.86
SD 6.18 7.71 12.52 5.30

Table 3. Statistics on the fitted periods (in fs) of

the electrode state POSf values, considering all tra-
jectories

spending very short times in the delocalized range. While El6 and El5 jump almost
simultaneously between the left and right electrodes, the El6 / El4 and El6 / El3 pairs
show a pattern of periodic swapping. In the latter cases, the locations of the energy
gap minima precisely coincide with the delocalized points. The peaks of the hopping
probability are also predominantly located at these regions, and orders of magnitude
larger than towards the Mol1 state, indicating that with both states delocalized on
both electrodes the non-adiabatic transition is facilitated. In the adiabatic picture, the
back and forth oscillation of the excess electron’s locality corresponds to the electron
transport between the electrodes. Naturally, in the absence of an external voltage bias
these swapping events show a more or less symmetric pattern whose periods correspond
to those of the internal motions that drive the process.

The oscillations’ period can be conveniently determined by fitting a periodic sine
function to the POSf curves of the states. The results, shown in Table 3, are similar
for all electrode states under investigation: considering all trajectories we obtain mean
periods of 24-31 fs. This corresponds to that of the 21-28 normal modes, which are
also combinations of the in-plane ring hydrogen bendings and the twisting/rocking
and wagging of the amino groups.

Due to the fact that all electrode states appear to be almost equally affected, the
swapping effect is likely to be attributed to the periodic oscillation of the molecule–
electrode interaction. This is reasonably driven by the regular reduction and elongation
of the amino groups’ distance from the electrodes via its wagging and rocking motions.

4. Conclusions

The main objective of the current study is to test a new methodology providing an
alternative for the description of electron transfer in Single-Molecule Junctions, based
on a picture that is more adapted to the chemical perspective. The Newtonian molec-
ular dynamics of electron attached states simulate the fate of an excess electron in the
system, allowing to see many details of the transport process, including the nature of
internal motions that influence the conduction.

Our results do not support a transport mechanism involving the excess electrons
localization on the molecule as the transition probabilities are seen to be very low
to and from the electrodes. The translocation from one electrode to another is more
likely to happen in the electrode states directly: the periodic swapping of the excess
electron’s position in the adiabatic electrode states is a characteristic behavior driven
by the molecule’s vibrations and their effect on the electrodes. This picture is in line
with the inelastic tunneling formulation of the electron transport in the physicist
community.

We found that in this respect, the terminal groups’ bending motions that alter the
molecule-electrode interactions in a periodic manner are of great importance. This can
potentially be exploited in the application of models where the number of considered
vibrations is limited by computational tractability and the selection of relevant motions
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is critical.
Our approach also presents an alternative to the widespread single-orbital mean

field descriptions based on density functional theory as it allows electron correlation
to be incorporated at a higher level via many-body wave functions. The agreement
of the ADC(2) and SOS-ADC(2) models employed in this work is, based on earlier
experience, reassuring that both provide a reasonable description of electron attached
states in this model and can be recommended choices for studying chemically similar
single-molecule junctions.

It should be emphasized that the MD approach used in this paper is not intended
to provide a quantitative model for the electrical conductance. It is clear that for real
electron transport events to be observed, the application of an external voltage bias
would be indispensable. A molecular dynamics study of this kind could eventually be
even more expressive as it would reflect an asymmetry of the observed oscillations.
Therefore such calculations will be performed in our group in the near future.

Nevertheless, the present results still provide a chemically meaningful interpretation
of vibronic effects in such processes, thereby facilitating the harmonization of different
viewpoints and formulations in the scientific community.
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