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Abstract 

We provide a proof-of-principle demonstration of the first dual-spectroscopic 

method for direct and real-time observation of mechanochemical reactions by ball milling, 

supported by high-level molecular and periodic density-functional theory (DFT) 

calculations, including periodic time-dependent (TD-DFT) calculations to model solid-

state fluorescence spectra. By combining standard Raman and fluorescence benchtop 

spectrometers in a single, readily-accessible tandem monitoring technique, we 

simultaneously observe changes to the supramolecular structure during 

mechanochemical polymorph transformation and cocrystallization of the model 

pharmaceutical system indometacin. The observed time-resolved in situ spectroscopic 

data is supported by ex situ X-ray diffraction and solid-state nuclear magnetic resonance 
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spectroscopy measurements. The application of first principles (ab initio) calculations 

enabled the elucidation of how changes in crystalline environment, that result from 

mechanochemical reactions, affect vibrational and electronic excited states of molecules. 

The herein explored ability to interpret both real-time and ex situ spectroscopic data 

through ab initio calculations provides an entry into developing a detailed mechanistic 

understanding of mechanochemical milling processes using real-time spectroscopy. 

Introduction 

Mechanochemical reactions by milling, grinding, or different types of shear, have  

emerged as a uniquely general route to conduct the synthesis of molecules and materials 

without using bulk solvents.1 The potential of mechanochemistry for making chemical 

synthesis more sustainable2 was recognized in 2019 by International Union of Pure and 

Applied Chemistry (IUPAC), who placed it among the top ten emerging chemical 

technologies.3 Despite a wide range of existing and nascent applications, the fundamental 

understanding of mechanochemical reactions by milling remains limited. Time-resolved 

in situ (TRIS)4 monitoring based on X-ray powder diffraction5 (XRPD) or Raman 

spectroscopy6 has recently emerged as unrivaled approach to observe and elucidate 

mechanisms for a breadth of mechanochemical reactions. Currently, in situ XRPD 

approaches depend entirely on a small number of experimental setups at synchrotron 

radiation sources, generally limiting access to this experimental method. Monitoring 

based on in situ Raman spectroscopy is much more accessible, and capable of providing 

real-time information on mechanochemical reactions. However, unlike XRPD data, which 

can often routinely be related to detailed structural information, or even used to generate 

new structural understanding, the structure-based interpretation of Raman spectra of 

multicomponent crystalline materials is not straightforward. 

Here, we present a proof-of-principle demonstration of an unprecedented 

integrated dual-spectroscopy approach for monitoring milling reactions in real time using 

readily accessible bench-top Raman and fluorescence spectrometers. This novel 

approach is coupled with state-of-the-art periodic time-dependent density functional 

theory (TD-DFT) calculations, which enables the association of spectroscopic data with 

the underlying molecular and extended solid-state structures of reactants and products. 
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To the best of our knowledge, this is the first use of visible fluorescence emission 

spectroscopy to follow milling transformations in situ and in real time. The use of 

fluorescence emission spectroscopy provides a so far unique possibility to detect 

changes in molecular structures and their solid-state environments independent of 

crystallinity – including the direct observation of amorphous materials. To both validate 

and complement this mechanochemistry monitoring approach, we integrated the 

fluorescence spectroscopy instrumentation with the established Raman spectroscopy 

monitoring setup,7 enabling tandem time-resolved in situ monitoring of milling reactions 

without the need for synchrotron radiation. Both Raman and fluorescence spectroscopies 

are non-destructive, provide simultaneous sensitivity to changes in molecular and 

extended solid-state structure of crystalline and amorphous solids, and can be conducted 

with highly accessible and low-cost setups capable of high sensitivity and acquisition 

speeds.8-11  

Besides demonstrating how this dual spectroscopy method is capable of 

investigating transformations of organic solids, specifically polymorphic transitions and 

cocrystallization, we also address an important, yet unresolved challenge in mechanistic 

studies of milling processes: the direct, real-time observation of amorphous material. 

Diverse mechanochemical transformations, from synthesizing small molecules and 

cocrystals,12 to metal-organic frameworks and oxides,13 can be mediated by amorphous 

phases. In pharmaceutical materials science, ball milling is a known route to amorphous 

forms of active pharmaceutical ingredients (APIs), with unwanted process-induced 

amorphization being a major concern in materials processing and manufacture.14-16 Direct 

real-time observation of amorphous phase during milling has remained elusive due to the 

well-known difficulty to quantify amorphous content by XRPD without the presence of an 

internal and impact-resistant diffraction standard. While the recent methods for real-time 

in situ monitoring, based on either synchrotron XRPD5 or Raman spectroscopy,6 have 

provided unprecedented insight into kinetics and thermodynamics of mechanisms of 

cocrystal formation,17 the detection of amorphous content has been limited to indirect 

approaches based on Rietveld analysis or X-ray atomic pair distribution function data.18, 

19 Here, we demonstrate that real-time Raman and fluorescence spectroscopies can 

directly reveal the behavior of amorphous phases during milling.  
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Indometacin (ind, Figure 1) is a versatile target for this proof-of-principle 

exploration of a dual-spectroscopy monitoring approach, as it provides a rich landscape 

of pharmaceutically-relevant, structurally well-characterized crystal forms, that are 

fluorescent and can undergo diverse mechanochemical transformations, including 

amorphization, polymorph transitions, and cocrystal formation.20-22 Our team, and others, 

have previously described fluorescence23 or Raman spectroscopy approaches to 

distinguish and quantify ind solid forms in static systems, including the amorphous form 

(am-ind); the thermodynamically more stable γ-polymorph (γ-ind); the metastable α-

polymorph (α-ind), and the cocrystal of ind with saccharin (sac) (ind-sac).24,25-29 

Consequently, solid ind was chosen as an excellent model system for this study of 

pharmaceutically-relevant cocrystal formation,12, 30,31 and amorphization32,33 processes 

by milling.  

A major challenge in spectroscopic monitoring of milling reactions is the difficulty 

in relating spectroscopic response to structures of participating solid phases. Recently, 

strong changes in luminescence due to amorphization upon grinding have been reported 

for Pt(II)34 and Au(I)35 complexes, and coumarin dyes were observed to undergo an 

aggregation-induced blue shift in luminescence upon impact by a milling ball.36,37  We 

surmise that fluorescence spectroscopy has remained underexplored in monitoring ball 

milling reactions due to the difficulty in interpreting the broad emission profiles typical of 

organic molecules in the solid state. A possible opportunity to overcome such limitations 

and open spectroscopic monitoring of solids to direct and ab initio structural interpretation, 

is offered by the recent periodic density-functional theory (DFT) approaches. In principle, 

DFT calculations should enable the development of an integrated understanding of 

molecular and supramolecular transformations taking place during a mechanochemical 

reaction, by enabling the interpretation of spectroscopic (e.g. fluorescence, Raman, 

infrared, solid-state nuclear magnetic resonance – ssNMR) and XRPD monitoring data. 

As the first steps towards developing such integrated understanding, we now evaluate 

the ability of periodic and time-dependent DFT to interpret in situ fluorescence and Raman 

spectroscopy data, using calculations of ssNMR spectra as a validation benchmark. 

Specifically, we have used periodic DFT to assign observed Raman data to atomic motion 

within the crystal structure, and our recently developed method for calculating solid-state 
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fluorescence emission spectra of crystalline materials (using the periodic implementation 

of TD-DFT in the CASTEP program)38 allowed us to effectively reproduce experimentally 

measured fluorescence spectra. At the same time, we show that the observed 

enhancement and wavelength shift of emission of ind in the solid state, compared to 

solution, is a result of conformational constraints imposed by the crystalline periodic 

environment.  

 

Figure 1. Model mechanochemical transformations monitored in this work using simultaneous fluorescence 
emission and Raman spectroscopies: amorphization and cocrystallization of indometacin (ind). Symbol for 
mechanochemical transformations adopted from Rightmire and Hanusa.39 

Results and Discussion 

Design of the tandem spectroscopic reaction monitoring setup 

We have previously highlighted ind as a notable example of a molecule that 

exhibits strong fluorescence in solid forms, but is very poorly emissive in solution.40 

Excitation and emission spectra of solid γ-ind, sac, and ind-sac suggest an optimal 

excitation wavelength (λ) near 375-380 nm, with sac exhibiting a very weak emission and 

γ-ind displaying a considerably stronger one. The emission maximum of γ-ind is near 

472 nm while ind-sac is slightly red-shifted to ca. 498 nm, with a higher emission intensity 

(Figure S5). The respective emission lifetimes for γ-ind and ind-sac were measured as 

1.8 ns and 5.6 ns. Bandgaps were determined from UV-Vis spectroscopic data and are 

statistically equivalent for both γ-ind and ind-sac (Table S2). The similarity in 

experimental emission wavelengths, band gaps and emission lifetimes suggest similar 

mechanism of optical excitation and emission found in γ-ind and ind-sac.  The lack of 

fluorescence emission above 700 nm suggested the use of a 785 nm excitation laser for 

Raman studies without interference, enabling an effective tandem spectroscopic 
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approach. A fluorescence excitation source consisting of a 375 nm laser with a diverging 

lens to spread the excitation light, and fiber-optically-coupled spectrometer were 

integrated into our existing real-time Raman monitoring setup for milling reactions utilizing 

poly(methylmethacrylate) (PMMA) milling jars (Figure 2).7 

 

Figure 2. Instrumental setup for tandem time-resolved in situ monitoring of milling reactions using solid-
state fluorescence emission and Raman spectroscopies. 

The Raman spectra of solid ind, sac, and ind-sac were consistent with previous reports26, 

27, 29 and suggest that the reaction could be monitored with minimal interference from the 

PMMA jar material by focusing on the 1500-1800 cm-1 region (Figure S12).   

In situ monitoring of the cocrystallization of indometacin and saccharin 

 Our first target in using a tandem fluorescence and Raman spectroscopy approach 

to monitor a mechanochemical transformation was the cocrystallization of ind and sac, 

previously reported to proceed rapidly by liquid assisted grinding (LAG)24 in presence of 

methanol (MeOH) (Figure 3a). Fluorescence spectroscopy monitoring of the milling 

process revealed a rapid increase in both emission intensity and a redshift of the emission 

maximum by approximately 30 nm to ~498 nm, consistent with the formation of ind-sac.23 

While the presence of MeOH could lead to the appearance of a known solvate of ind  

(CSD code BANMUZ),41 the fluorescence emission data indicated that the conversion to 

the cocrystal proceeds without any other solid phases, and was quantitative within 5 

minutes. Completeness of conversion was verified by XRPD analysis of the product 

immediately after milling, revealing Bragg reflections completely consistent with the 

reported ind-sac structure (CSD UFERED),24 and no trace of starting materials (Figure 

S2). Full conversion was also confirmed by comparing XRPD (Figure S4) and 13C cross-
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polarization magic angle spinning (CP-MAS) ssNMR data for the milling product to a 

solution-made sample of ind-sac42 (Figure S20). 

 To verify the reaction profile indicated by fluorescence emission spectroscopy 

measurements, we compared the time-dependent normalized luminescence intensity at 

the fluorescence emission maximum with the reaction profiles determined by non-

negative least squares (NNLS) fitting of both in situ Raman spectroscopy and 

fluorescence emission data. The resulting agreement (Figures 3b-g) was very good, 

indicating that simple monitoring of luminescence intensity can be used to directly 

estimate the time-dependent reaction profile over time. This provides a simple route to 

follow mechanochemical reactions, using a readily accessible experimental setup. 

Moreover, the high fluorescence intensity enables spectra acquisition rates that are 

considerably faster (10-500 ms) compared to either XRPD or Raman spectroscopy, and 

fluorescence spectroscopy is less prone to stochastic changes in intensity as 

fluorescence measures a larger area of the sample which is less affected by different 

motions of the milling assembly.43 Compared to Raman spectroscopy, both fluorescence 

intensity measurement and the NNLS fitting profile suggest a slightly faster conversion to 

the ind-sac cocrystal, which may be a result of the difficulty in detecting low fractions of 

ind or other factors affecting fluorescence emission, such as particle size.23 The similarity 

of fluorescence emission profiles between ind and ind-sac exacerbates the challenge of 

modeling in situ spectra as the sum of the spectra of pure components using the NNLS 

fitting method, as evidenced by patterns in the calculated residuals (Figure S17). 

Nevertheless, fluorescence spectroscopy provides an accessible and simple means of 

monitoring the kinetics of mechanochemical cocrystal formation with significant shifts in 

emission wavelength or intensity.  The formation mechanism of ind-sac by LAG 

established by fluorescence emission spectroscopy was confirmed by separately 
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conducted real-time XRPD monitoring at the Deutsches Elektronen-Synchrotron (DESY) 

Petra III P02.1 beamline (Figures S14a,b). 

 

Figure 3. (a) Illustration of the monitored mechanochemical cocrystallisation of solid ind and sac upon LAG 
in the presence of MeOH. (b) Normalized Raman spectra of ind, sac, and ind-sac. (c) Time-resolved 
fluorescence emission acquired during the mechanochemical synthesis of ind-sac. (d) Relative amounts 
of ind, sac, and ind-sac estimated using non-negative least squares fitting of the in situ Raman dataset. 
(e) Normalized fluorescence emission of ind, sac, and ind-sac. (f) Time-resolved fluorescence emission 
acquired during the mechanochemical synthesis of ind-sac. (g) Comparison of the estimated formation of 
ind-sac via NNLS fitting of both Raman and Fluorescence data sets and normalized maximum fluorescence 
intensity. 
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Spectra interpretation using periodic DFT methods 

 To link the real-time spectroscopic measurements to structures of participating solid 

phases, we have used CASTEP plane-wave DFT calculations to simulate the Raman, 

infrared, and ssNMR spectra from crystal structures of γ-ind, sac and ind-sac solids. 

 Periodic DFT simulations of both FTIR and Raman spectra were in good agreement 

with the experiment for γ-ind, sac, and ind-sac (Figures S24-S29). While periodic DFT 

is required to incorporate the effects of supramolecular interactions in solid-state 

structures, less computationally intensive and more accessible gas-phase DFT 

calculations in Gaussian 16 can be used to identify and visualize key molecular vibrational 

modes which are experimentally observed to shift over the course of a reaction. The 

assignment of specific Raman bands to vibrational modes was performed for both ind 

and sac via gas phase DFT, resulting in reasonable correlation to both experimental and 

periodic DFT simulated spectra (Figure S34-S35). These calculations facilitated the 

assignment of Raman active vibrations above 1650 cm-1 as due to carbonyl stretching, 

and those between 1500-1650 cm-1 as C-C stretching of the aromatic rings in ind and 

sac (Figure S36-S37). In this case, the carbonyl stretches in both γ-ind and sac overlap 

near 1695 cm-1, but are observed to diverge in the ind-sac cocrystal. The application of 

periodic DFT enables the assignment of the absorption bands which shifted to higher 

wavenumbers (1714 cm-1) as corresponding to the carbonyl stretching vibrations of sac, 

while the ind carbonyl stretching was found to shift to lower wavenumbers (1681 cm-1) 

(Figure S38). 

Finally, our periodic DFT model was validated by comparing the experimental 13C 

CP-MAS ssNMR chemical shifts for all three phases with the chemical shifts calculated 

using GIPAW method implemented in CASTEP. Good agreement between the calculated 

and experimental values (Table S3, Figures S30-S32) signified the accuracy of our 

computational model for the crystal forms of ind. Notably, the most significant differences 

in 13C chemical shifts calculated for ind-sac and either sac or γ-ind (Table S4) were 

consistent with the carbon atoms adjacent to short contact interactions in the cocrystal 

structure, emphasizing the accuracy of the GIPAW method in quantifying the effect of 

supramolecular interactions on the ssNMR spectra of molecular crystals.   
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Understanding the solid-state fluorescence of indometacin 

Beyond allowing the association of experimental data to structures of participating 

crystalline phases, periodic TD-DFT calculations should also enable a deeper 

understanding of the mechanism underlying fluorescence behavior of solid-state ind. 

Switching between solid γ-ind and the ind-sac cocrystal was reported23 to have a 

significant effect on emission properties of ind, a molecule with very low fluorescence 

quantum yield in solution,40 representing an example of emission enhancement by crystal 

lattice effects. Previous work has shown that cocrystallization can alter optical and 

emission properties of organic chromophores through different mechanisms, notably 

forming or breaking π-π stacking interactions,44 or by direct orbital overlap between 

molecules.45   

To understand the emission properties of ind, we turned to TD-DFT simulations of 

solid γ-ind and ind-sac. While fluorescence emission of individual molecules can be 

readily simulated by TD-DFT, cubic scaling of the calculation with system size quickly 

makes such approach prohibitive for modelling solid-state emission by cluster expansion. 

As an alternative, we developed a method for simulating solid-state fluorescence 

emission spectra of crystalline materials using the periodic implementation of TD-DFT in 

CASTEP.38 Since our method explicitly operates in a plane-wave basis set, it is perfectly 

suitable for studying the role of non-covalent interactions, orbital overlap, and 

conformational effects on the emission of molecular crystals. The simulated emission 

spectrum of γ-ind was in excellent agreement with experiment, demonstrating the power 

of periodic DFT in modelling the emission behavior of crystalline solids (Figure 4). 

Crucially, our calculations showed excellent consistency with respect to the choice of DFT 

functionals: we have tested two methods for geometry optimization of electronic excited 

state (LDA and dispersion-corrected PBE) combined with each of the three hybrid 

functionals (B3LYP, HSE06 and PBE0) for single point calculation of excitation energies. 

All six combinations of functionals resulted in emission maxima within 0.2 eV of each 

other, which corresponds to 22 nm variation in λmax. In terms of orbital contribution, it was 

found that the emission process originates from the S1 excited state, which is dominated 

by the LUMO -> HOMO electron transition.  
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Figure 4. Comparison of the experimental (green) and simulated emission spectra. The experimental 
spectra are shown in green, simulated spectra are colored depending on the hybrid functional used for the 
single point TD-DFT calculation: red - B3LYP; orange  - PBe0; blue – HSE06. a) emission spectra of γ-ind, 
TD-DFT optimization with dispersion-corrected PBE; b) emission spectra of ind-sac, TD-DFT optimization 
with dispersion-corrected PBE; c) emission spectra of γ-ind, TD-DFT optimization with LDA; d) emission 
spectra of ind-sac, TD-DFT optimization with LDA; e) HOMO orbital of an ind molecule, showing electron 
density localized on the indole fragment; f) LUMO orbital of an ind molecule, showing most electron density 
shifted towards the benzoyl moiety. 

 Next, we turned our attention to simulating the emission spectrum of ind-sac 

cocrystal. In cocrystals, orbital overlap between ind and sac molecules may lead to 

formation of electronic excited states different to those found in pure single-component 

crystals, therefore such a possibility had to be explored in our calculations. Through a 

combination of molecular and periodic DFT calculations involving hybrid and range-

separated hybrid functionals we have established that fluorescence emission of the 

cocrystal follows the same mechanism as γ-ind, i.e. transition from LUMO to HOMO of 

ind, without any significant involvement of the sac orbitals. Molecular TD-DFT 

calculations performed in Gaussian 16 with range-separated CAM-B3LYP functional 

convincingly ruled out the charge transfer mechanism and validated our chosen approach 

for periodic TD-DFT calculations (Figure 5). The calculations underestimated λmax for ind-
sac by 50-70 nm. While less accurate than obtained for γ-ind, this presents a good level 

of agreement given the complexity problem of modelling solid-state emission from a 

multicomponent crystal.  



12 
 

 

Figure 5. Molecular TD-DFT calculations using range-separated CAM-B3LYP functional on a cluster 
containing two ind and two sac molecules show that charge transfer state (a) has a very low oscillator 
strength, whereas the electronic transition localized on the ind molecule (b) is two orders of magnitude 
more intense. 

An important question to be answered in the context of ind fluorescence is the 

extremely weak emission in solution, contrasting the strong emission of solid γ-ind. The 

strong solvent dependence of the Stokes shift of ind in solution was postulated to result 

from a dipolar singlet excited state which is produced by intramolecular charge transfer 

from the indole to the benzoyl group.40, 46 Molecular TD-DFT calculations suggest that the 

electronic excitation of an isolated indometacin molecule is accompanied by a 40° rotation 

of the benzoyl group, such that it ends up perpendicular to the plane of the indole system 

(Figure 6). This can be explained by the redistribution of electron density from the indole 

system in the HOMO to the benzoyl group in the LUMO (Figure 4e,f). This rearrangement 

results in a significant reduction of the electronic transition dipole moment and therefore, 

quenching of the fluorescence emission. Conversely, in the crystals of γ-ind and ind-sac, 

such rotation never exceeds 10°, regardless of the functional used for TD-DFT geometry 

optimization.  With the phenyl group still being far from the perpendicular orientation, 

considerable orbital overlap between the indole and phenyl regions of the molecule 

provides for a higher intensity of fluorescence emission in solid-state. Evidently, the 

packing forces exerted by the surrounding molecules in the close-packed crystal structure 
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limit the geometric distortions that a molecule can undergo in the electronic excited state. 

The result also highlights the usefulness of our periodic TD-DFT approach to modelling 

solid-state fluorescence, since no such crystal lattice effects could have been detected 

using molecular calculations. 

 

Figure 6. Calculated variation of the total energy (red) and oscillator strength (blue) for the S1 excited state 
of an ind molecule as a function of the orientation of the carbonyl group (the corresponding torsion angle 
is shown by the highlighted atoms in the molecular diagram). The perpendicular orientation of the benzoyl 
fragment found in the lowest energy conformation of the S1 state is associated with an extremely small 
oscillator strength, which explains low emission intensity of indometacin in solution. Conversely, the solid-
state conformation is locked with the torsion angle value of ~30°, where the oscillator strength is distinctly 
non-zero. 

Milling amorphization of indometacin 

Next, we applied our tandem spectroscopic monitoring method to amorphization of 

ind by neat ball milling (Figure 7a), previously explored by ex situ XRPD47 and Raman 

spectroscopy.27, 28 To the best of our knowledge, this is the first report of milling 

amorphization of an API being monitored in real time by spectroscopy. Raman 

spectroscopy in situ monitoring of milling commercial γ-ind (verified by XRPD, see Figure 

S3) using a shaker mill operating at 30 Hz reveals the participation of at least three distinct 

ind phases: γ- and α-polymorphs (γ- and α-ind) along with amorphous form (am-ind), 

consistent with previously reported Raman spectra.25-29  
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Figure 7. (a) Schematic of the monitored model transformation of neat milling solid γ-ind. (b) Normalized 
Raman spectra of γ-, α-, and amorphous ind synthesized via solution or melt protocols.48,49 (c) Time-
resolved normalized Raman spectra acquired during the milling of γ-ind. (d) Relative amounts of γ-ind, α-
ind, and am-ind estimated using non-negative least squares fitting of the in situ dataset using the reference 
spectra in (b). (e) Estimated fluorescence spectra of γ-ind, α-ind, and am-ind obtained from non-negative 
matrix factorization of the real time fluorescence emission spectroscopy dataset. Due to the low emission 
intensity of the α- and am- forms the effect of detector baseline becomes significant. (f) Time-resolved 
fluorescence emission data acquired during the milling of solid ind. (g) Relative amounts of γ-, α-, and am-
ind estimated using non-negative matrix factorization of the in situ fluorescence emission dataset. 

Reference spectra for all three solid ind phases were taken using the commercial 

sample of γ-ind, a freshly synthesized sample of α-ind precipitated from a solution in an 

ethanol/water mixture,48 and a sample of am-ind made by quenching of a melt of ind 
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using liquid nitrogen.49 Following the previously reported procedure,7 each measured in 

situ spectrum was fitted by a NNLS procedure using a combination of Raman spectra of 

pure samples to provide an estimate of the relative composition of the reaction mixture. 

This revealed the emergence of an amorphous phase within 10 minutes which co-exists 

with γ-ind, followed by appearance of α-ind after ∼75 minutes. These observations are 

consistent with previous ex situ XRPD study, which suggested that milling produces a 1:1 

mixture of α- and am-ind,47 potentially in the form of α-form crystallites surrounded by an 

amorphous layer consistent with a core shell structure as previously observed for the 

amorphization of trehalose by milling.18 The formation of α-ind may be in part explained 

due to the glass transition of am-ind (Tg = 43 °C),26 as milling at similar conditions was 

previously noted to lead to temperature about 40 °C.7 As α- and am-ind exhibit 

fluorescence profiles similar to, and emission intensity lower than, γ-ind (Figure 7d), the 

NNLS fitting of in situ fluorescence data detects the initial rapid amorphization of the γ-

form but fails to properly differentiate α- and am-ind (Figure S17c). Monitoring the 

maximum emission intensity of each spectrum, however, does reveal a slight increase in 

emission intensity corresponding to the formation of α-ind (S18b). The projected gradient 

method50 for non-negative matrix factorization (NMF)51 was applied to simultaneously 

estimate both the component spectra and their associated profiles. The estimated 

component spectra are similar to both ex situ emission spectra (S18a) and resemble the 

reaction profile estimated by Raman spectroscopy. Accurately distinguishing the relative 

amounts of α- and am-ind based on fluorescence emission only remains challenging 

(Figure 7f), however, highlighting the complementarity inherent to the dual monitoring 

approach.  

Analysis of solid ind after milling by XRPD revealed an elevated baseline and broad 

diffraction signals of α-ind, overall consistent with the presence of amorphous material 

(Figure S3). Attempt to characterize the sample by 13C CP-MAS ssNMR revealed signals 

identical to those for a separately synthesized sample of α-ind but did not reveal any 

amorphous content. The inability to observe am-ind by ssNMR suggests that the sample 

fully crystallized during preparation of the ssNMR experiment, which is remarkable 

considering the apparent steady-state behaviour of the α- and am-ind mixture during 

milling. While this behavior remains poorly understood, it also highlights the value of the 
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presented herein tandem dual spectroscopic approach for detecting mechanochemical 

amorphization, which is of practical importance due to the potential formation of 

amorphous phases during mechanical processing of pharmaceuticals and the desire to 

synthesize amorphous formulations of APIs to improve solubilities.52  

Conclusions 

The utility of solid-state fluorescence emission spectroscopy in real-time monitoring 

of milling reactions has been demonstrated for the first time and validated using 

simultaneous Raman spectroscopy monitoring to yield the first dual spectroscopic 

approach for real-time monitoring of milling reactions. This benchtop, cost-effective  

tandem in situ monitoring technique offers an opportunity to follow and understand 

mechanochemical reaction mechanisms by revealing reaction kinetics and enabling the 

observation of amorphous phases where rapid relaxation prohibits the use of ex situ 

techniques. Such interpretation will enable the fundamental understanding and modelling 

of mechanochemical reactions, opening a path for rational design of solid-state reactivity. 

We also show that DFT calculations provide a powerful link between real-time 

spectroscopic measurements and structural changes in the solid state and facilitate the 

identification of both molecular and supramolecular reactivity. This novel combination of 

real-time spectroscopic measurement with DFT simulations for milling reactions shows 

potential to elucidate reaction mechanisms at the level of molecular and supramolecular 

structure, opening the door to spectroscopy-only techniques that can provide 

interpretable insights without the need for structural information from real-time 

synchrotron X-ray diffraction experiments. 

Experimental 

All chemicals were purchased from Sigma-Aldrich and used without further purification, 

including the purchased indometacin which was γ-form. Milling experiments were 

conducted using a RETSCH MM400 operating at 30 Hz, with a 15 mL volume PMMA 

milling jar and a single 3 g zirconia ball.  
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Milling Syntheses 

The cocrystal ind-sac was prepared mechanochemically by milling 198 mg (0.55 mmol) 

γ-ind  with 101 mg (0.55 mmol) of sac in the presence of 20 µL of MeOH. Neat milling of 

γ-ind to produce am-ind and α-ind was conducted using 198 mg (0.55 mmol) γ-ind. 

Solution syntheses 

Amorphous indometacin was synthesized according to literature procedure49 by heating 

300 mg of γ-indometacin above 165 °C and pouring the resulting melt into liquid nitrogen, 

forming an amorphous mass which was triturated into a powder using a mortar and pestle.  

α-indometacin was synthesized using a modified literature procedure48 dissolving 300mg 

of γ-indometacin in 5 mL of ethanol at 80 °C before adding 10 mL of room temperature 

distilled water and filtering the resulting precipitate. 

Fluorescence, FT-IR, XRPD, UV-Vis, Lifetimes, and SS-NMR Characterization 

Preliminary fluorescence measurements were performed in clear polystyrene 96-well 

microplates, with sample densely packed into each well, and loaded into a Biotek Synergy 

2 multi-mode microplate reader. All fluorescence lifetime measurements were conducted 

on a Horiba DynaMyc fluorescence lifetime mapping microscope equipped with a 

DeltaDiode-375L light source. Fluorescence lifetime data was fit using a single 

exponential function. Fourier-transform infrared attenuated total reflectance (FTIR-ATR) 

were measured on a Bruker Vertex 70 spectrometer with a RockSolid interferometer from  

3500 cm–1 to 400 cm–1. X-ray powder diffraction (XRPD) patterns were collected using a 

Bruker D2 Phaser powder diffractometer equipped with a Cu Kα (λ = 1.5419 Å) source, 

nickel filter and Lynxeye detector. Ultraviolet-visible (UV-Vis) measurements were 

performed on a Lambda 750 UV/Vis/NIR spectrometer from Perkin-Elmer. BaSO4 (ACS) 

was used as a standard for instrumental calibration (autozero correction). Samples were 

filled into a 1 cm3 quartz cuvette. Full spectra were recorded in reflectance in the range 

of 2500-300 nm with 5 nm intervals and between 620-300 nm with 0.5 nm intervals for 

calculating the band gap. 13C Solid-state NMR spectra were collected using a Varian 

VNMRS 400 MHz NMR Spectrometer, with a magic angle spinning rate of 14 kHz using 
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a tancpx pulse sequence and calibrated with respect to the carbonyl signal of alpha-

glycine signal at 176.4 ppm.  

Real-time synchrotron diffraction measurements 

In situ diffraction measurements were collected at the Deutsches Elektronen-Synchrotron 

(DESY) Petra III P02.1 beamline at an X-ray wavelength of 60 keV (λ ~ 0.207 Å) with a 

1x 1 mm2 collimated X-ray beam and a PerkinElmer 2D area detector operating at a time 

resolution of 10 seconds and a modified RETSCH MM400. All 2D XRPD patterns were 

integrated using Dioptas53. Sequential Rietveld analysis was performed in TOPAS-

Academic V5.54 The instrumental peak profile was determined using a silicon standard 

measured under identical experimental conditions.55 For visualization purposes, datasets 

were baseline corrected, truncated, and plotted using custom scripts in MATLAB R2018a 

with PMMA baseline subtraction performed using the Sonneveld and Visser algorithm.56 

In situ Raman Spectroscopy measurements 

All Raman spectra were collected RamanRxn1™ analyzer by Kaiser Optical Systems Inc. 

every 5 seconds using a 785 nm laser. Spectra were dark and intensity corrected using 

the Holograms® software package before being processed. Pure samples of starting 

materials and products were loaded on glass slides and measured. In situ datasets were 

subsequently imported into MATLAB2018a57 and baseline corrected using the Sonneveld 

and Visser algorithm56, truncated to the limits shown in the data sets, and normalized 

using vector normalization (L2 norm). Background subtraction of the PMMA milling jar 

was performed by performing a linear regression of a previously recorded PMMA 

spectrum to each in situ spectrum and subtracting the PMMA spectrum. After these 

corrections, the data was analyzed via NNLS, where in situ collected spectra were fitted 

as a sum of the normalized component spectra using a non-negative linear least squares 

algorithm (“lsqnonneg” in MATLAB) and profile estimates were normalized by setting the 

sum of all components in each spectrum to one.7 

Real-time fluorescence emission spectroscopy measurements 

Fluorescence measurements were conducted using a Coherent OBIS 375 nm LX 50mW 

excitation source and fiber-optically coupled QE65000 spectrometer from Ocean Optics. 

Pure samples of starting materials and products were loaded on glass slides and 
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measured. In situ datasets were subsequently truncated to the limits shown in their 

respective figures and plotted using custom scripts in MATLAB R2018a57. NNLS profiles 

were obtained in an identical manner as described for Raman spectra. Normalized 

fluorescence intensity values were calculated by subtracting the minimum value of each 

in situ spectrum and dividing the spectrum by the maximum intensity value. 

Periodic density-functional theory calculations of fluorescence spectra. 

All periodic DFT calculations were performed in CASTEP 16.11. Calculation of solid-state 

fluorescence spectra of ind and ind-sac was performed using our previously described 

procedure.38 The experimental crystal structures were converted to CASTEP input format 

using the program cif2cell. Initially the crystal structures were then geometry optimized in 

their ground state electronic configurations using either LDA functional or PBE functional 

combined with Grimme D2 dispersion correction. The plane-wave basis set was truncated 

at 750 eV cutoff combined with norm-conserving pseudopotentials, while the 1st electronic 

Brillouin zone was sampled with 2πx0.03 Å-1 k-point spacing. The crystal structures were 

geometry-optimized with respect to unit cell parameters and atom positions, subject to 

the space group symmetry constraints. Convergence was determined using the following 

criteria: maximum energy change: 10-5 eV atom-1; maximum atomic force: 0.05 eV Å-1; 

maximum atomic displacement: 10-3 Å, maximum residual stress: 0.05 GPa. The 

optimized unit cell parameters were kept fixed through all the subsequent steps of the 

fluorescence calculation. 

CASTEP TD-DFT calculations can only be performed at one k-point in the Brillouin zone. 

The k-point offering the best approximation to the converged k-point grid was selected by 

calculating the singlet-triplet energy difference for a series of k-points. The special k-point 

found to accurately reproduce the singlet-triplet energy difference for the converged k-

point grid, analogous to the idea of the so-called Baldereschi point58 was found at (1/4; -

3/8; 1/8) for γ-ind and at (1/4; 1/8; 1/8) for ind-sac. Next, excited state TD-DFT 

calculations were performed. In the case of γ-ind the 1st excited state was optimized, 

which corresponded to the HOMO-LUMO transition on indometacin. In the case of ind-

sac, the 1st TD-DFT excited state involved transition from HOMO(ind) to LUMO(sac), 

which corresponded to a low-intensity charge transfer (CT) state, known as an artefact of 
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TD-DFT. With the aid of molecular range-separated TD-DFT calculations (see below), 

this was ruled out as an incorrect solution, and instead a higher rank TD-DFT excited 

state corresponding to the HOMO(ind)-LUMO(ind) transition was chosen. That way both 

γ-ind and ind-sac follow the same mechanism of phosphorescence emission.  

The selected excited states were geometry-optimized using CASTEP TD-DFT module. 

Same input settings and convergence criteria were used here as for ground-state 

geometry-optimization, except for unit cell parameters which were kept fixed. The final 

step of the fluorescence calculation was a single point TD-DFT calculation using each of 

the three functionals: PBE0, B3LYP and HSE06. The hybrid calculations were performed 

both on the ground state- and TD-DFT-optimized geometries, the energy difference 

between these two geometries being used to approximate the width of the spectral line, 

approximated by the Gaussian curve. 

Periodic DFT calculations of vibrational and NMR spectra 

The ground-state optimized structures for the fluorescence calculations were used as a 

starting point for the Raman and NMR calculations. 

For the Raman calculation the crystal structures were reoptimized with tighter a tighter 

atomic force convergence criterion of 0.01 eV Å-1. Further, the standard and fine FFT grid 

scales were changed from their default values to 2 and 3, respectively. The vibrational 

frequencies at the Γ phonon q-point were calculated using the density-functional 

perturbation theory (DFPT) approach. The polarizability tensors were then calculated for 

the Raman-active modes. Spectra were simulated as using Gaussian functions for each 

Raman active vibration, using the calculated Raman frequencies, scattering activities, 

and a peak width of 6 cm-1. All spectra were normalized to via the highest intensity for 

plotting. 

FT-IR spectra were simulated as a summation of Gaussian functions for IR active 

vibrational modes using a peak width of 15 cm-1, the calculated vibrational frequency, and 

relative peak amplitudes obtained from the CASTEP calculation. All spectra were 

normalized to a maximum intensity of 0.5 and converted into transmittance for 

comparison to experimental spectra. 
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The NMR parameters were calculated using the gauge including projector augmented 

waves (GIPAW) method.  The plane-wave basis set cut-off was increased to 1000 eV, 

the standard and fine FFT grid scales were set to 2 and 3, respectively, and ultrasoft on-

the-fly generated pseudopotentials were used.  

Molecular DFT calculations 

Vibrational spectra were simulated using gas phase DFT calculations run using 

Gaussian16W using the PBE and B3LYP functionals and the 6-311G(d,p) basis set using 

“tight” optimization convergence criteria. Gas phase spectra calculation and vibrational 

modes visualization were conducted in GaussView 6.1 using the default settings. 

Molecular TD-DFT calculations for an isolated ind molecule were performed at the CAM-

B3LYP/6-311G(d,p) level of theory. The 1st electronic excited state was geometry 

optimized with the default convergence criteria, and then a 360° torsion angle scan in 10° 

steps was performed to describe the rotation of the benzoyl part of the molecule with 

respect to the indole fragment. The oscillator strength for the electronic transition between 

the 1st excited and the ground state was computed at each step of the torsion angle scan. 
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