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Abstract
Thermodiffusion (or thermophoresis) is the
phenomenon by which the spatial distributions
of constituents of liquid or gas phases become
inhomogeneous in response to a temperature
gradient. It has been evidenced in a vari-
ety of systems and has many practical appli-
cations, as well as implications in the con-
text of the origins of life. A complete molec-
ular picture of thermophoresis is still missing
and phenomenological approaches are often em-
ployed to account for the experimental obser-
vations. In particular, the amplitude of the
resulting concentration-gradients (quantified by
the Soret coefficient) depends on many factors
that are not straightforwardly rationalized. All-
atom molecular dynamics simulations appear as
an exquisite tool to shed light on the molecular
origins for this phenomenon in molecular sys-
tems, but the practical implementation of ther-
mophoretic settings in silico poses significant
challenges. Here, we propose a robust approach
to tackle thermophoresis in dilute realistic solu-
tions at the molecular level. We rely on a recent
enhanced heat-exchange algorithm to generate
temperature-gradients. We carefully assess the
convergence of thermophoretic simulations in
dilute aqueous solutions. We show that simu-
lations typically need to be propagated on long
timescales (hundreds of nanoseconds). We find
that the magnitude of the temperature gradient
and the box sizes have little effect on the mea-
sured Soret coefficients. Practical guidelines

are derived from such observations. Provided
with this reliable setup, we discuss the results
of thermophoretic simulations on several exam-
ples of molecular, neutral solutes, which we find
in very good agreement with experimental mea-
surements regarding the concentration-, mass-,
and temperature-dependence of the Soret coef-
ficient.

Introduction
Thermodiffusion (or Soret effect) is the phe-
nomenon by which the spatial distributions of
constituants of liquid or gas phases become in-
homogeneous in response to a gradient of tem-
perature. It was discovered some 150 years ago
in aqueous salt solutions,1,2 and it has since
been evidenced in a broad gamut of contexts,
ranging from liquid mixture of small organic
molecules to large colloids in water.2–4 While
the term "thermophoresis" is usually employed
to refer to thermodiffusion of large particles in
a solvent, it is sometimes also used for molecu-
lar systems as well.4 In the following, these two
terms will be used indistinctively.
In addition to the ordinary, Fickian parti-

cle diffusion, the motion of particles under a
temperature gradient is phenomenologically de-
scribed in terms of a drift velocity proportional
to the temperature gradient through a thermal
diffusion coefficient Note that this thermal dif-
fusion coefficient should not be confused with a
Fickian diffusion coefficient in isothermal con-
ditions and it does not have the units of a diffu-
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sion coefficient. The ratio between ordinary and
thermal diffusion coefficients defines the Soret
coefficient (SC), whose sign dictates whether
molecules will accumulate on the cold or on
the hot side, and whose amplitude governs the
resulting concentration gradient. Whereas for
electrophoresis, the direction of particle motion
only depends on its charge, the SC sign is sen-
sitive to temperature, pressure, and to the mix-
ture composition: a given molecule can accu-
mulate on the cold or hot side depending on one
or several of these factors.3–5 Because in a mix-
ture, particles of different natures have distinct
SCs, thermophoresis has been used as a poly-
mer separation technique,5,6 and more recently,
it has been measured and characterized in aque-
ous suspensions of polymer beads,7 proteins8
or nucleic acids.9 Technological applications in-
clude the manipulation and the polymerization
of biomolecules in thermal traps,10,11 the mea-
surement of protein-ligand affinity,12 applica-
tions in microfluidics,13 or the tuning of colloid
surfaces.5
A particularly striking implication of this phe-

nomenon pertains to its relevance in the accu-
mulations of reactants in the context of pre-
biotic chemistry.14 While in modern cells, in-
teracting molecules and objects are confined by
membranes in a volume in the 10−14-litre range,
resulting in concentrations that critically en-
hance reaction rates, it is very hard to conceive
efficient chemistry in dilute, open conditions.
Pioneer experiments from the Braun group have
shown that thermally-driven processes, in par-
ticular thermophoresis, can accumulate other-
wise dilute precursors at localized spots acting
as thermal traps for RNA strands oligomeriza-
tion.10,11 Such realizations are not just lab in-
ventions: natural thermophoretic settings oc-
cur e.g. in the pores of rocks of hydrothermal
vents on the ocean’s floor that may have played
a key role in the appearance of biological chem-
istry.14,15
The nature of thermophoresis is still not

completely understood and it remains highly
debated, with a variety of theoretical mod-
els and sometimes contradictory pictures, es-
pecially regarding the ability of concepts from
equilibrium-thermodynamics to explain such an

out-of-equilibrium process.16 As of today, ther-
mophoresis remains often regarded from a phe-
nomenological point of view,3,4 with no defini-
tive and universal physical model able to ex-
plain it. Another limitation in our current un-
derstanding of thermophoresis is that we cannot
fully predict the behavior of any given molecule
under a thermal gradient: what is the ampli-
tude of its SC, its sign, and how does it depend
on thermodynamic conditions?
Simulation approaches could bring very valu-

able information about the microscopic ori-
gin of thermophoresis,4,17 and these strategies
have been employed at several levels of descrip-
tions, ranging from all-atom molecular dynam-
ics (aaMD) simulations18–21 to mesoscale22,23
and finite elements approaches.24,25 The main
interest of aaMD approaches is that they do not
require any major assumptions about the phys-
ical rules that are relevant or not for the phe-
nomenon, and contain all physical interactions
in the system of interest, which evolves follow-
ing Newtonian dynamics. More coarse-grained
descriptions, such as Langevin or Brownian dy-
namics, readily require assumptions (most of
all, treating the solvent as a continuum), which
may not be appropriate to properly describe
thermophoresis.
The main limitation of aaMD is that they are

currently limited to systems of small to mod-
erate sizes, typically to molecules smaller than
a few nanometers, and for limited timescales.
AaMD has been e.g. applied for mixtures of
ideal LJ particles,26–28 apolar solutes,19,29 or
aqueous solutions of ions20,30 or of small molec-
ular solutes.18,31 The study of thermophoresis
and the determination of the Soret coefficients
(SC) for a given molecular solute in dilute aque-
ous solutions, is of particular relevance in the
context of reactant accumulation in aqueous en-
vironment; however, it poses several key chal-
lenges in practice. In particular, the associ-
ated SC are on the order of 1–10 ×10−3 K−1,
implying that a 10-K temperature difference
leads to a 1–10% change in concentration only,
which might be hard to converge when only a
handful of solute molecules are present inside
the simulation box. Due to their finite diffu-
sion timescale, each solute should sample sev-
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eral times the total lengthscale of the temper-
ature gradient so that an accurate steady-state
can be determined, especially if the resulting
concentration-gradient is small because of small
values of the SC. While this might not be criti-
cal for concentrated binary mixtures, due to the
large number of solute molecules, this is critical
for dilute solutions, as we shall see in detail.
The concentration gradients can be made

more prominent by imposing larger temperature-
differences across the simulation box;19,20 how-
ever, this could result in temperature-gradients
that are orders of magnitude larger as com-
pared to the experiments. An indirect conse-
quence is that the employed molecular force-
fields, and that of water in particular, should
be chosen with care19 to remain valid on a large
temperature-range.
Another problem pertains to the choice of

a reliable non-equilibrium simulation technique
in order to generate a temperature-gradient in a
MD simulation box. Most studies to date that
have focused on aqueous solutions have relied
on the thermostatting of two regions of the sim-
ulation box;20,30,31 while this has been shown
to be efficient, this usually imposes, consider-
ing the current implementation of thermostats
in simulation codes, to restrain solvent posi-
tions in the thermostatted regions, which can
more generally affect fluid motions in the box.
Moreover, the simulation ensemble is not well-
defined. Another approach consists in imposing
a heat flux32,33 that in turn results in a temper-
ature gradient.19,26,34 The heat flux is imposed
by exchanging momentum33 or kinetic energy32

between two defined regions of the simulation
box, or by symmetrically rescaling the parti-
cle velocities in these regions.35 The simulations
are ideally performed in the micro-canonical en-
semble, which poses the question of total energy
conservation when using finite time-steps, in
addition to problems inherent to the exchange
algorithms themselves.36
Our goal here is to address these challenges

and to propose a robust aaMD approach to
tackle thermophoresis in dilute realistic solu-
tions at the molecular level. We propose to rely
on a recent enhanced heat-exchange algorithm
to generate temperature-gradients,36 which, to

the best of our knowledge, has not yet been ap-
plied in this context. We carefully assess the
convergence of thermophoretic simulations in
dilute aqueous solutions, which is critical for di-
lute and realistic solutions. We show that simu-
lations typically need to be propagated on very
long timescales (hundreds of nanoseconds) to
generate reliable concentration-gradients. We
find that the magnitude of the temperature gra-
dient and the box sizes have little effect on
the measured SC. Practical guidelines are de-
rived from such observations. Provided with
this reliable setup, we discuss the results of
thermophoretic simulations on several examples
of molecular, neutral solutes, which we find in
very good agreement with experimental mea-
surements regarding the concentration-, mass-,
and temperature-dependence of the SC.

Theoretical considerations
and simulation strategy

Thermophoresis and Soret coeffi-
cient

In the following, we will consider a linear and
uniform temperature gradient ∇T along the z
direction. Thermophoresis of a compound s in a
solvent w results from the competition between
ordinary diffusion, characterized by a diffusion
coefficient Ds, and thermal diffusion, related to
a phenomelogical thermal diffusion coefficient
Ds

T . By taking the notations of refs.,7,16 the
total current of (dilute) solute particles present
at a concentration cs(z) at a position z can be
written as a sum of the diffusion current jD(z)
and of the thermal diffusion current jTD(z),
such that

js(z) = jD(z) + jTD(z), (1)

with
jD(z) = −Ds(z)∇cs|z (2)

and
jTD(z) = −Ds

T (z)cs(z)∇T. (3)

Experiments show a steady-state can be
reached, which implies that js(z) = 0 at each
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position. We also note that other derivations
consider the mass currents in place of the par-
ticle currents; for dilute solutions, both ap-
proaches are equivalent, and non-ideal effects
can also be neglected. In the steady-state,
combining these 3 equations leads to

d ln cs
dT

∣∣∣∣
z

= −D
s
T (z)

Ds(z)
, (4)

or, equivalently, into

d ln cs
dT

∣∣∣∣
x

= −Ss
T (z), (5)

where Ss
T (z) = Ds

T (z)/Ds(z) is defined as the
Soret coefficient (SC). In principle, each posi-
tion is associated with a given concentration
cs(z) and temperature T (z), and ST depends
on both the concentration and the temperature.
In the thermophoretic simulations described be-
low, even under pretty significant temperature
gradients but more moderate concentration-
gradients, ln cs is often a linear function of T ,
suggesting that ST can be considered locally in-
dependent of T and cs under these conditions.

In silico thermophoretic set-up

In order to generate a temperature gradient
along one chosen direction z, parallelepipedic
boxes are considered, such that Lx = Ly and
where Lz is typically larger than Lx or Ly, and
centered in (0, 0, 0). We then define cold and
hot slabs along z, that are symmetrically posi-
tioned at zc and zh respectively, and of thick-
ness δz. These slabs can be taken at the edges
of the simulation box, i.e., zc ≈ −Lz/2 and
zh ≈ Lz/2, leading to a temperature-gradient
along Lz; however, because of periodic bound-
ary conditions, this would result in a discontinu-
ity and a much larger gradient as the cold region
is directly adjacent to the hot region of its image
along the z direction. We thus prefer to posi-
tion the slabs symmetrically, i.e., zc = −Lz/4
and zh = Lz/4. In that case, the temperature-
gradient is established over Lz/2, and is occur-
ring twice in the box (Figure 1). Unless other-
wise specified, the width of the thermostatted
regions δz was set to 4 Å and Lx = Ly = 25 Å.

Creating cold and hot slabs can be achieved
by thermostatting solvent molecules belonging
to these two regions. However, current imple-
mentations of thermostats in simulation soft-
wares require to define particles to be ther-
mostatted a priori, i.e., it cannot be directly
updated on the fly as molecules belonging to
the cold/hot regions leave/enter the slab. As
a consequence, harmonic restraints are usually
employed to constrain solvent molecules in the
thermostatted regions.20,31 Even when not all
the molecules in the slab are thermostatted, it
can clearly affect molecular motions along the
direction of the gradient.
As already mentioned in the introduction,

several methods exist that impose a heat flux
within a molecular dynamics simulation box, by
swapping e.g. kinetic energy,32 momenta,33 or
by performing velocity rescaling moves in pre-
assigned cold and hot regions.35 Here, we will
use a heat-exchange algorithm (HEX), where,
at given time intervals, heat −Q is "pumped"
out of what is decided to be the cold region,
and injected +Q into the corresponding hot
region.32 Formally, such simulations are thus
performed in the microcanonical ensemble, and
should conserve energy (Note that energy con-
servation in this case both depends on the ex-
change algorithm itself, but also on independent
factors that would also lead to poor conserva-
tion in equilibrium simulations, such as the sim-
ulation timestep.). However, it has been shown
that many versions of this algorithm can lead to
energy-conservation problems, which was only
recently solved in an enhanced version of the al-
gorithm (eHEX).36 It is not clear whether other
algorithms that swap momenta or perform ve-
locity rescaling moves would present the same
energy conservation issues when propagated on
tens of nanoseconds, but they probably suf-
fer from the same truncation errors identified
in ref36 when written in terms of an integra-
tion scheme. We rely on the implementation of
eHEX into the LAMMPS simulation package,
and the reader is referred to the correspond-
ing work for details about the algorithm for the
propagation of the equations of motion that al-
low for better energy conservation. Heat ex-
change was performed at each simulation time-
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step (we verified that exchanging heat less fre-
quently did not affect our results).

Simulation details and forcefields

All simulations employed the LAMMPS pack-
age (version 07Aug19), starting from configura-
tions generated using Packmol.37 The TIP4P-
05 water model,38 which reproduces water
structural, dynamical and thermodynamical
properties well on a wide temperature range,
was employed in most cases, except when a
comparison was made with the SPC/E water
model39 when investigating the effect of the sol-
vent forcefield on the solute thermophoretic be-
havior. Because of the presence of a dummy
atom, TIP4P-05 requires to use particular op-
tions in LAMMPS, including a specific ver-
sion of the solver for long-range interactions
(PPPM).40 The real space cutoff for Coulombic
interactions was set at 8.5 Å, and the Lennard-
Jones cutoff to 9 Å (which is slightly larger as
compared to the electrostatic interaction cut-
off because of the difference in the localiza-
tion of the negative charge and of the mass of
the oxygen atom). The effect of the simula-
tion timestep was investigated, as detailed later,
and fixed to 1 fs in most of our simulations.
The solutes were described using state-of-the-
art forcefields from the literature (TMAO,41,42
urea43 (bonded terms from44), methanol45 and
glucose46).

Simulation strategy

The data used to measure the steady-state be-
havior of a given aqueous solutions under a set
thermal gradient is usually averaged over tens
of independent trajectories. Each trajectory is
propagated in the presence of the temperature
gradient after it had been prepared and equi-
librated in the absence of gradient as follows,
and as schematically indicated in Table 1 and
Figure 1.
Solvent molecules are randomly inserted

within the simulation box. In order to avoid
any strong heterogeneity in the (dilute) solute
distribution in the simulation box, we insert
solute molecules uniformly along the thermal

Q

Step 0 (preparation)

Step 1-8 (equilibration)

eHex turned on

Convergence temperature-gradient

Convergence concentration-gradient

Production and data accumulation

Figure 1: Summary of the generation of
a steady-state thermophoretic setting. Af-
ter preparation (step 0), the system is equi-
librated (steps 1 to 8) before the heat-
exchange algorithm is activated. Convergence
of first the temperature-gradient and then the
concentration-gradient are assessed before a
production run can be propagated. This is typ-
ically repeated over tens of trajectories that are
generated and equilibrated independently start-
ing from step 0.
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gradient direction z, and randomly along the
perpendicular dimensions (step 0). The sys-
tem is then minimized using a Polak-Ribiere47
version of the conjugate gradient algorithm un-
til relative changes in energy and forces fall
below cut-off values equal to 10−4 and 10−6,
respectively (step 1). Velocities are then set to
correspond to the target median temperature
(step 2), and a NPT equilibration of 0.4 ns is
performed at this median temperature (step 3).
All simulations in this work have been prepared
using a pressure of 1 atm, using a Nose-Hoover
barostat with a damping time of 1 ps, that is
only applied along the x and y dimensions (as
we do not want the thermal gradient direction
to vary in length). The average volume under
these thermodynamic conditions is determined,
and the box rescaled accordingly (step 4). The
system is then equilibrated in the NVT ensem-
ble for 0.2 ns at this equilibrium volume (step
5), using the Nose-Hoover thermostat with a
characteristic damping time of 100 fs. The
last frame of this second equilibration is then
used for a first, short propagation in the mi-
crocanonical ensemble (step 6) for 1 ps. This
portion of the trajectory is used to compute
the average energy and compare it with the
average energy of the NVT trajectory. The ve-
locities of the system particles in the last NVE
frame are then rescaled by the ratio between
these two average energies (step 7), such that
a second propagation in the microcanonical
ensemble for 0.2 ns then leads to the correct
target temperature (step 8). Finally, the heat-
exchange algorithm eHex is turned on and the
simulation is propagated for 10 ns under the
non-equilibrium conditions of the temperature-
gradient but formally in the microcanonical
simulation ensemble.

Data analysis

The solution properties along the gradient first
involve the definition of regularly-spaced slabs
along the x and y directions, and perpendicu-
lar to the direction of the gradient. We typ-
ically divide Lz into 15 to 30 slabs. A larger
number of slabs tend to give smoother data
but at the expense of increased statistical noise,

which turns out to be problematic when study-
ing properties with poor statistics (such as the
solute distributions). Temperature was mea-
sured within each slab by averaging over all so-
lute molecules and taking into account the re-
straints of the water model. Such a functional-
ity is directly implemented in LAMMPS and we
checked that an independent calculation a pos-
teriori gave the same results. Molality (some-
times referred to as concentration here) was de-
fined in each slab by dividing the average num-
ber of solutes centers of mass found in this slab
by the average mass of water solvent molecules
in the same slab, and is given in units of mo-
lal m, which are moles of solutes by kilogram
of solvent. Standard-deviations of the molality
profiles were estimated from a set of typically
20–40 independent trajectories, taking into ac-
count the last 10 ns (as discussed in the main
text). Soret coefficients (SC) were determined
using Equation 5 on the average concentration
profile. Because individual trajectories lead to
very noisy concentration profiles, the determi-
nation of the error bars on SC based on the es-
timation of the SC for each separate trajectory
would be meaningless and lead to unrealistic
uncertainties. In that case, we therefore used
bootstrapping with 50 samples of 10 trajecto-
ries each one to estimate the statistical noise.

Results and discussion

Convergence of the temperature-
gradient and energy conservation

We first assess the ability of the thermophoretic
simulation setup to generate temperature gra-
dients and to conserve the total energy over the
simulation timescale that is required to lead to
a reliable solute concentration gradient, which
is on the order of a few nanoseconds for each
trajectory.
As noted earlier, the original implementations

of the heat exchange algorithm32,33 faced im-
portant energy conservation problems due to
the truncation error in the propagation oper-
ator splitting, which was solved by adding an
extra integration step in the algorithm propa-
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Table 1: Summary of the generation of a steady-state thermophoretic setting.

Step Action Ensemble Length
0 Preparation - -
1 Energy minimization - -
2 Velocity scaling - -
3 Equilibration NPT 400 ps
4 Volume rescaling - -
5 Equilibration NVT 200 ps
6 Energy average NVE 1 ps
7 Energy rescaling - -
8 Equilibration NVE 200 ps
9 Temperature-gradient convergence NVE τT ≈ 100 ps
10 Concentration-gradient convergence NVE τC ≈ 2 ns
11 Production NVE τP = 10 ns

gating the equations of motion.36 We first ver-
ify the quality of energy conservation for the
eHex algorithm over a 10-ns timescale, depend-
ing on the employed timestep (we tested 0.5,
1, 2 or 5 fs). In the first three cases, the rela-
tive energy drift is barely noticeable, and typ-
ically in the range of 1–3×10−6 ns−1. For a
timestep of 5 fs, the measured drift is about
100 times larger. We have verified that the
NVE/eHex simulation exhibits a behavior very
similar to that of a standard NVE simulation,
and does not lead to additional drifts. This can
be compared to drifts that are orders of mag-
nitude larger for the original algorithm imple-
mentations.36 While a timestep of 2 fs would
be reasonable when all bonds involving hydro-
gen atoms are maintained rigid (as it is usually
the case for most water forcefields), we chose to
employ a smaller δt = 1 fs timestep in order to
allow for fully-flexible solute forcefields.
We now turn to the kinetics of the transition

to a steady-state temperature-gradient once the
eHex algorithm has been switched on (Fig-
ure 2), with a value of Q such that ∆T = 60 K.
In agreement with previous studies on model
Lennard-Jones systems,48 a stable and steady-
state temperature-gradient is reached on short
timescales. For pure water with Lz = 50 Å and
thus ∇T = 2.4 K/Å, a steady-state is reached
after ≈ 10 − 20 ps for a median tempera-
ture of Tref = 300 K (Figure 2A) or 330 K
(Figure 2B). Considering that the water ther-

mal diffusivity α in this temperature range49
is close to ≈ 0.14− 0.15 mm2/s, we expect the
heat flux to propagate on a (Lz/4)/α timescale,
which for a box length of Lz = 50 Å, corre-
sponds to ≈ 11 ps, which is fully consistent
with our observations. When the box length
along the direction of the gradient is doubled
such that Lz = 100 Å and ∇T = 1.2 K/Å, the
equilibration time increases to ≈ 50 − 100 ps
(Figure 2C). This quadratic dependence upon
the box length was indeed expected from our
back-of-the-envelope estimation based on wa-
ter thermal diffusivity. The addition of so-
lute molecules at a dilute concentration (Fig-
ure 2D) has no noticeable effect on the equili-
bration timescale when compared a pure-water
system in the same conditions (Figure 2B).
We can therefore consider that for systems in
which the temperature-gradient spans over a
few nanometers, a steady-state temperature-
gradient is reached within a few tens of picosec-
onds at most. This timescale would of course
increase if longer simulation boxes were con-
sidered; however, as now studied in detail, the
Soret effect and the establishment of a steady
solute concentration-gradient occur on signifi-
cantly longer timescales.
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Figure 2: Convergence of the water temperature-gradient. The energy flux was set to 0.0375
kcal.mol−1.fs−1 (Lz = 50 Å) and 0.01875 kcal.mol−1.fs−1 (Lz = 100 Å). Data was averaged over 20
independent trajectories. The blue and red bars indicate the regions where heat is pumped and
injected, respectively; their width is at scale. (A) Pure water, Lz = 50 Å and Tref = 300 K; (B)
Pure water, Lz = 50 Å and Tref = 330 K; (C) Pure water, Lz = 100 Å and Tref = 330 K; (D)
Aqueous solution of TMAO (2.2 m), Lz = 50 Å and Tref = 330 K.

Convergence of the concentration-
gradient

Provided with a reliable set-up to generate a
temperature-gradient across a water simulation
box, we now turn to the core topic of the cur-
rent work, namely the study of dilute aque-
ous solutions. As noted earlier, the concen-
tration gradients equilibrate on much longer
timescales as compared to the solvent temper-
ature gradients.20,48 This is even more critical
in dilute solutions, since there are only a few
solute molecules in the simulation box, leading
to poor statistics. Moreover, solute molecules
need to diffuse at least locally to be able to
sense the temperature-gradient. For a typi-
cal, molecular size solute, the diffusion coeffi-
cient under ambient conditions is on the order

of 0.01 − 0.1 Å2/ps, meaning that one solute
molecule will sample 1 nm (which covers less
than half the typical length of the employed
gradient) over ≈ 0.5− 5 ns.
In the following, we will mostly focus on

a particular solute, trimethylamine N -oxide
(TMAO). TMAO has been considered as a
paradigm, small molecular solute containing
both a hydrophilic and a hydrophobic charac-
ter, and it behaves as a protein and polymer
protective osmolyte.50–52 In particular, it has
been used extensively to assess the effect of hy-
drophobic groups on water structure and dy-
namics,53–56 as purely hydrophobic molecules
are not soluble in water. Its large dipole mo-
ment prevents aggregation up to high con-
centrations.57 This aspect is critical since we
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want to avoid spurious effect from aggregation
that could enhance solute accumulation in ther-
mophoretic settings.
In Figure 3, we show the evolution of the

concentration-gradient for the model TMAO
solute in water varying the average tempera-
ture and the concentation. An accurate deter-
mination of the time-dependence of the concen-
tration profile in such "dilute" solutions is not
straightforward, since a given simulation frame
only reports on a few dozens solute molecules.
Even when averaged on tens of frames and when
repeated over tens of trajectories, data remain
noisy, especially at short times where the av-
erage is necessarily performed on shorter time
windows. However, the data shown in Figure 3
readily provides some very useful information
about the involved timescales. For a concentra-
tion of 2.2 m, the concentration profile is seen
to converge on a ≈ 1 ns timescale for a ref-
erence temperature of 300 K (Figure 3A), and
equilibrates twice as fast at 330 K (Figure 3B).
When the concentration is doubled (Figure 3C),
convergence is faster as well, which is expected
since more molecules are present to sample local
temperature environments.
It is useful to compare these timescales to the

corresponding solute diffusion coefficient at the
corresponding temperature, which are equal to
0.049 and 0.101 Å2/ps, respectively. While a
proper determination of a scaling law would re-
quire more extensive tests involving other so-
lutes and concentrations, a rule of thumb that
we can derive here is that the equilibration time
for N solute molecules along a gradient span-
ning Lz/2 is on the order of ≈ L2

z/(D × N).
While we do not expect this relationship to re-
main valid varying extensively the solute or the
simulation conditions, this gives a rough esti-
mate of the required timescale before reach-
ing a steady-state in these systems. If we as-
sume that solute molecules do not directly in-
teract with each others in sufficiently dilute so-
lutions, this timescale also sets a lower limit to
the average concentrations that can be stud-
ied in practice. At the maximum dilution of
1 solute molecule in the simulation box, sim-
ulations involving similar system and gradient
sizes would likely require 50 ns to converge
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Figure 3: Convergence of the TMAO
concentration-gradient. The energy flux was set
to 0.0375 kcal.mol−1.fs−1 in all cases. Data was
averaged over 40 independent trajectories. The
blue and red bars indicate the regions where
heat is pumped and injected, respectively; their
width is at scale. (A) 2.2-m average concen-
tration, Lz = 50 Å and Tref = 300 K; (B)
2.2-m average concentration, Lz = 50 Å and
Tref = 330 K; (C) 4.4-m average concentration,
Lz = 50 Å and Tref = 330 K.

and then provide very poor statistics anyway.
As a consequence, studying thermophoresis for
dilute solutions within this simulation frame-
work requires a reasonable trade-off between
the number of solute molecules in the system
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and convergence of the concentration-gradient
on accessible timescales.
The above study of the simulation con-

vergence in terms of temperature- and
concentration-gradients allows us to derive a
successful strategy in order to compute Soret
coefficients in dilute aqueous solutions. In or-
der to get detailed estimates of the average
concentration-gradients and of the statistical
errors, many trajectories (typically 20) are run
in parallel following the equilibration procedure
presented before.
The first 2 ns after eHex has been turned

on, corresponding to the transient temperature-
and concentration-gradient regimes, are typi-
cally discarded (which is conservative enough
for all investigated systems but might need to
be adapted for solutes diffusing more slowly).
Another point that we found important was
that because of the diffusion timescale discussed
above, a box that would initially exhibit strong
heterogeneities in the spatial distribution of so-
lute molecules along the direction of the gradi-
ent would need much longer timescales to equi-
librate. One way to solve this issue would be
to randomly select initial frames for each tra-
jectory from a very long preliminary simulation
to cover a range of realizations of concentration
heterogeneities; but considering the size of the
simulation box and the small concentrations,
together with the timescale for solute diffusion,
this could require tens of nanoseconds of simu-
lation, and the transient regime would be much
longer for those configurations with an initial
distribution very far from the final, steady-state
one. In order to limit as much as possible the
timescale of the transient regime, we turned
to an alternate strategy where each trajectory
starts from a configuration where the distribu-
tion of solute molecules is homogeneous in the
direction of the gradient, but random along the
perpendicular directions (step 0).

Dependence upon box size and gradient
amplitude

As compared to experimental setups, simula-
tion approaches require both larger tempera-
ture differences between the hot and cold re-

gions (for the simulated concentration differ-
ence should be larger than the large, stochastic
fluctuations) and much smaller systems, typi-
cally in the 1–10 nm range. Both factors con-
tribute to simulated temperature-gradients that
are much larger than their experimental coun-
terparts. While experimental values are far
from reach for all-atom MD simulations, we can
nonetheless address the question whether the
amplitude of the gradient has any impact on
the measured SC at a given median tempera-
ture and concentration.
We have studied the effect of the gradient

amplitude on the model TMAO solute in wa-
ter at a fixed median temperature of 330 K
and a fixed concentration of 2.2 m. The gra-
dient was first varied by adjusting Lz between
5 and 10 nm while keeping Lx = Ly constant
(which required us to adjust the number of so-
lute molecules in order to maintain a fixed con-
centration). The amount of exchanged heat Q
was adjusted to lead to a temperature differ-
ence between the hot and cold regions of 60 K.
As seen in Figure 4, the concentration-gradient
is virtually insensitive to the box size and thus
the corresponding temperature-gradient.
Second, we have tested several temperature-

gradients, ranging from 0.8 to 3.6 K.Å−1, for
a fixed box length of Lz = 50 Å (Figure 5A
and B). The absolute concentration differences
obviously increase when ∆T increases, but as
shown using the representation of Figure 5B,
similar variations are seen outside the ther-
mostatted regions, leading to very similar SC
values around the median temperature. How-
ever, a critical effect of the gradient amplitude
is to increase the signal-to-noise ratio. While
the smallest investigated gradient of 0.8 K.Å−1,
which corresponds to ∆T = 20 K here, read-
ily leads to a noticeable concentration-gradient,
the resulting profile suffers from statistical un-
certainties that are almost as large as the
concentration-difference themselves. For the
largest investigated gradient (3.6 K.Å−1, i.e.,
∆T = 90 K), the concentration-difference is
much larger than the statistical uncertainties.
A compromise has to be found between the ac-
curacy of the measured concentration-gradient,
that should be large enough to exceed the sta-
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Figure 4: Box size dependence. The heat flux
was set to 0.0375 kcal.mol−1.fs−1 (Lz = 50 Å),
0.025 kcal.mol−1.fs−1 (Lz = 75 Å) and 0.01875
kcal.mol−1.fs−1 (Lz = 100 Å), and Tref =
330 K. Data was averaged over 20 indepen-
dent trajectories Lz = 50 Å, and 40 for Lz =
75 Å and Lz = 100 Å. The blue and red bars in-
dicate the regions where heat is pumped and in-
jected, respectively; their width is not at scale.
Data is shown for three different box lengths
in a 2.2-m TMAO solution: Lz = 50 Å (blue),
Lz = 75 Å (orange) and Lz = 100 Å (green).

tistical uncertainties, while employing a rea-
sonable temperature-gradient where the water
phase lies within, or not too far, from its equi-
librium liquid phase domain (namely, between
273 and 373 K). In the following, we chose to
employ the 2.4 K.Å−1 gradient, which allows to
satisfy these conditions in most cases.

TMAO solutions: temperature-dependence
and forcefield sensitivity

Provided with a reliable computational ther-
mophoretic set-up, we now turn the investiga-
tion of the temperature-dependence of the Soret
coefficients in aqueous solutions, and we investi-
gate the effect of the employed water and solute
forcefields. We chose to focus on TMAO be-
cause it represents a paradigm and minimal am-
phiphilic system, containing both a hydropho-
bic moiety and a hydrophilic head. Unfortu-
nately, no experimental data could be found re-
garding thermophoresis in aqueous TMAO so-
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Figure 5: Gradient amplitude dependence.
Data was averaged over 20 independent tra-
jectories. The blue and red bars indicate the
regions where heat is pumped and injected, re-
spectively. Data is shown for four different gra-
dients ∇T in a 2.2-m TMAO solution, with
Tref = 330 K. (A) TMAO molality as a function
of z. The shaded areas indicate the standard-
deviations estimated from 20 independent tra-
jectories at the two extreme gradients. (B)
Same data represented on a log-scale for the
molality and as a function of temperature. The
SC at the reference temperature can be inter-
preted as the slope of the curves, which are ba-
sically identical at the center of the gradient.

lutions; however, we can make a direct connec-
tion with experimental work on solutes of simi-
lar sizes and with similar chemical groups,4,31
from which the following observations were
made: first, the SC is on the order of 1–
10 ×10−3 K−1 in dilute solutions; second, in
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dilute solutions, it usually decreases with de-
creasing temperature, which could even lead to
a sign inversion.
We have considered 2 solute forcefields as well

as two different water models, and we have com-
pared 4 different combinations; first, a refer-
ence TMAO forcefield that has been specifically
parametrized (Kast)41,42 and the TIP4P-2005
water model, which was already presented in
the results mentioned above; second, the same
Kast TMAO with the SPC/E water model; fi-
nally, a TMAO forcefield generated using the
Charmm-CgenFF58 procedure, together with
TIP4P-2005, or SPC/E.
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Figure 6: Temperature dependence of the Soret
coefficient in a 2.2-m TMAO solution. Data
was averaged over 20 independent trajectories.
Plain circle indicate the average SC calculated
from simulations performed at a median tem-
perature of Tmed = 300 K (blue), 330 K (green)
and 360 K (red), with a temperature gradient of
≈ 60 K. Squares indicate the SC calculated on
10-K intervals between Tref−20 and Tref +20 K
in each set of simulations (same color code).

We selected two water models that are today
widely employed because they offer some of the
best agreement with experimental data for rela-
tively simple 3- and 4-site non-polarizable mod-
els. They were also shown to reproduce the
thermal conductivity of water reasonably well
on a wide temperature and density range, sug-
gesting that explicit polarizability or flexibility
of water molecules was not required for a proper
description of thermodiffusion in aqueous solu-
tions.59 TIP4P-200538 has become a reference

model because of its ability to reproduce a large
number of features of the water phase diagram
and exhibits a melting temperature close to the
experimental value. SPC/E,39 which is usu-
ally considered to be a decent model as well
but is less recent, suffers from limitations in
that respect, and its melting temperature is
too low as compared to the experimental val-
ues. However, the behavior of these two mod-
els at temperatures above melting is expected
to be pretty similar, as they both give excellent
agreement with experimental structural and dy-
namical data in the liquid state above 273 K. In-
deed, no noticeable change was observed when
we varied the water model (Table 2). The ob-
tained Soret coefficients are the same within er-
ror bars.
In contrast, a larger effect is observed when

changing the TMAO forcefield (Table 2). In
that case, a different solute forcefield, especially
one that has not been specifically tuned to re-
produced thermodynamical, structural and/or
dynamical data, may interact differently with
water. Here, the Charmm-Cgenff is leading to a
SC what is reduced by 40%. Quite surprisingly,
a value more consistent with that obtained with
the reference Kast forcefield is recovered when
the water model was switched to SPC/E. As al-
ready argued, solute–water interactions have a
direct effect on the amplitude of the SC,31 and
while the obtained SC seems to be quite robust,
its exact value is sensitive to the choice of the
employed solute and solvent forcefield.
We now switch to the temperature-

dependence of the SC, which can be estimated
using two different strategies (the Kast/TIP4P-
05 combination is employed). The first one
consists in dividing the simulation box, for a
given median temperature, into a few different
regions for which the concentration profiles are
analyzed separately and the corresponding SC
attributed to the region’s median temperature.
Otherwise, one can also vary the simulation
median temperature and fit the overall con-
centration profile along the gradient to get an
average SC at this median temperature.
In Figure 6, we show the temperature-

dependence of the SC as calculated with both
approaches, from 3 simulations ran at median
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Table 2: Measured Soret coefficients at 330 K for 2.2-m aqueous solutions of several
molecular solutes, together with their molar mass and average molecular volume.

Solute M (g.mol−1) V (Å3) ST (10−3 K−1)
Methanol 32.0 66.1 2.9 ± 0.7

Urea 60.1 77.7 4.4 ± 1.0
TMAO (Kast/TIP4P-05) 75.1 122.8 5.0 ± 0.8
TMAO (Kast/SPCE) 75.1 119.9 5.3 ± 0.8

TMAO (Cgenff/TIP4P-05) 75.1 105.7 3.1 ± 1.3
TMAO (Cgenff/SPCE) 75.1 103.0 4.8 ± 0.9

Glucose 180.2 147.1 3.1 ± 1.1

temperatures of 300, 330, and 360 K respec-
tively, with a temperature difference of 60 K.
These two approaches lead to very similar re-
sults along the investigated temperature-range.
As expected, the SC decreases as with temper-
ature, and a sign inversion is expected around
260–270 K, which is consistent to what was e.g.
observed experimentally for aqueous solutions
of urea at similar concentrations.31
Both the magnitude and the temperature-

dependence of the SC thus appear to be cor-
rectly predicted by our thermophoretic simula-
tions.

Extension to other aqueous solutions

We finally extend our approach to other solutes,
at the same dilute concentration. Experiments
have shown that in general, the SC increases for
larger, heavier, and more hydrophobic solutes.4
Our goal here is not to precisely assess the de-
tails of each of these effects, but rather to test
whether aaMD simulations with conventional
forcefields are able to capture these experimen-
tal observations and measurements. Results are
shown in Table 2 for methanol, urea, TMAO,
and glucose, together with their average vol-
ume and their molar mass. State-of-the-art so-
lute forcefields were chosen in each case (see
Methods), together with the TIP4P-2005 water
model.
These solutes were chosen so that they do not

aggregate at this concentration, which could
lead to spurious effects in their thermophoretic
behavior by enhancing solute accumulation. As
a consequence, all these solutes contain at least

one or several hydrophilic groups that inter-
act favorably with water molecules by engag-
ing in intermolecular hydrogen-bonds. TMAO
also contains a large hydrophobic moeity, but is
very soluble because of its large dipole moment,
which contributes to prevent aggregation.
Overall, the results presented in Table 2 sug-

gest that larger/heavier solutes tend to exhibit
larger Soret coefficients, with a value that is
almost doubled when the mass/volume of the
solute doubles when going from methanol to
TMAO. Glucose appears as an outlier in this
series, with a SC close to that of the much
smaller methanol. While the detailed inves-
tigation of this result is not the focus of this
work, we can comment on the possible origins
of this phenomenon. For large solutes, diffu-
sion gets slower and therefore the equilibration
of the concentration gradient could take longer
than a few nanoseconds. To check that this SC
value was well-converged, we doubled the set of
trajectories (40 instead of 20 as employed for
the other systems), but we did not observe any
significant statistical difference in the estima-
tion of the SC. A second explanation could be
that despite its larger mass and size, the molec-
ular interactions between glucose and water are
different from that of methanol such that what
has been attributed to the "chemical" contri-
bution26,28 to the SC might compensate for the
mass/volume effect; another cause could be the
employed forcefield, which, as exemplified for
the TMAO case, can have a significant impact
on the measured SC. While it is not possible to
conclude solely based on one concentration with
one given solute forcefield, this observation is
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consistent with the fact that, under given ther-
modynamic conditions, the SC depends on mul-
tiple factors4,5 (size, mass, chemistry) that can
lead to some degree of compensation regarding
the thermophoretic effect.

Conclusions
In this work, we develop an all-atom MD strat-
egy to reproduce thermophoretic settings in sil-
ico and to quantify the amplitude of solute ac-
cumulations in dilute aqueous solutions. While
such simulations have been reported before for a
variety of molecular systems,17–20,27,28,30,31,33,34
dilute aqueous systems pose significant chal-
lenges that were carefully addressed and dis-
cussed. In particular, the solute concentration-
gradients that result from the temperature-
gradient converge on timescales on the order
of a few nanoseconds, and because of the poor
statistics resulting from the low solute concen-
tration, they have to be averaged over tens of
trajectories to lead to reliable estimates of the
Soret coefficients. An additional novelty of our
work is to apply a recent heat-exchange algo-
rithm36 that lead to excellent energy conserva-
tion and that does not require to employ ther-
mostats with restrained solvent molecules and
an ill-defined simulation ensemble. This ap-
proach leads to temperature-gradients that con-
verge on short timescales (< 100 ps) as com-
pared to the concentration-gradients, and al-
lows to perform simulations in the microcanon-
ical ensemble.
Provided with this simulation strategy on a

paradigm aqueous solution, we show that the
SC is independent of the employed system sizes
and temperature-gradient amplitudes, at least
within the ranges that were studied here. The
obtained values are consistent with existing ex-
perimental data on other dilute solutes in wa-
ter. We demonstrate that the SC is to some ex-
tent sensitive to the employed solute and water
forcefields, which is expected since it has been
shown to depend on solute–water interactions
that may differ when switching forcefields. We
have used two different approaches to measure
the temperature-dependence of the SC within

the temperature domain of liquid water. Both
approaches lead to similar results and recover
the temperature-dependence of the SC that is
usually observed experimentally in such solu-
tions, i.e., a decreasing SC as temperature is
lowered and premises of a sign inversion around
270–280 K.4,5
Finally, we extend our approach to other so-

lutes. In agreement with experimental data,4,5
the SC is generally larger for bigger/heavier so-
lutes but is also seen to depend on the solute
chemistry, i.e., its interactions with solvent wa-
ter molecules. A much more detailed and sys-
tematic study would be required to extensively
discuss these aspects, but our results readily
demonstrate that such a simulation strategy
can be deployed and trusted in order to repro-
duce and study thermophoresis in dilute aque-
ous solutions in silico at an atomistic level. It
would be interesting to compare the results of
simulations performed in such thermophoretic
settings, with that of the approach suggested by
Galliero et al.60 and later refined by Lusebrink
et al.,23 which proposes to quantify thermod-
iffusion by measuring the force acting on har-
monically restrained particle in a solvent (infi-
nite dilution limit). We also hope that more
and more experimental data can be accumu-
lated on these systems, as they are most of-
ten performed on binary mixtures (that can be
seen as concentrated solutions), and as different
techniques might lead to conflicting results.3,61
Combined with a computational effort along
the lines presented here, and as others have
also pursued before, these could contribute to a
better understanding of the molecular origin of
thermophoresis in dilute solutions.
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