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Abstract: Design of symmetric phosphonic acid functionalized naphthalene diimide 

bolaamphiphile (NDI 1) is reported. NDI 1 based molecular recognition of saccharides and 

aminoglycoside antibiotics in aqueous media was investigated. UV-vis and fluorescence 

measurements revealed an efficient protocol for NDI 1 as molecular receptor. The sensor 

successfully recognises saccharides and aminoglycoside antibiotics kanamycin and neomycin 

in terms of both absorbance intensity and binding affinity. This protocol provides new platform 

for the design and synthesis of phosphonic acid appended NDI sensor for recognition of 

multifunctional biomolecules.  
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1. Introduction 

Biologically important molecular system such as carbohydrates or saccharides plays a 

significant role in the metabolic pathways of living systems [1-3]. Carbohydrates are placed on 

the cell surface to act as sensors and as biochemical signals [4a] The structural diversity of the 

carbohydrates on the level of complexity far exceeds those of nucleic acids and proteins. 

Carbohydrates or saccharides are the chemical storage in the plant and is the source as a for 
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human body. Among the carbohydrates, monosaccharides possesses several stereocentres 

around each carbon atom creating individual stereoisomers with unique chemical and physical 

characteristics and are biologically important. In recent years, recognition of carbohydrates by 

synthetic molecular architecture has gained momentum. In the metabolic pathways of  living 

systems, saccharides playa a key role. Therefore detecting of the biologically important 

saccharide presence and their concentration in aqueous media is essential in industrial and also 

medicinal fields [4b,c]. Various synthetic receptors for saccharide detection (galactose, 

glucose, fructose, ribose, and xylose) [13-15] was used various techniques such as 

electrochemical [8], colorimetric [10], UV-vis [6], fluorescence emission [5], circular 

dichroism [7], polymeric [9], surface functionalised sensor [11], and also photoinduced 

electron transfer [12]. But these methods display some serious drawback in aqueous media. 

The recognition of saccharides by small molecular receptor based on boronic acid show 

tremendous growth during the last decade [16]. The molecular architecture with boronic 

functional group form complexes with saccharides through covalent interaction and represent 

an important binding force in the detection of saccharides [17]. Recently, the design, synthesis 

and application of novel chromophores with different functional groups [16-19]  for the 

recognition of saccharides and aminoglycoside antibiotics [22] in aqueous media has gained 

great importance.  

In aqueous media recognition of saccharides and aminoglycoside antibiotics remains an 

important challenge due to competitive hydrogen bonding by a solvent [23] Literature search 

revealed that, to date very less examples of saccharide recognition based on phosphonic acid 

functionalized chromophores are reported [24-26]. It is well documented that P=O functional 

groups are strong hydrogen bond acceptor and plays a key role in saccharide recognition [27-

28].  Rao et al. reported the complex formation between phosphate and phosphonate with 1,2-

diols in solid state [29]. The binding of fructose to DNA via phosphonate and 1,2-diol 



interaction was proposed by Pelmore and co-workers [30]. Molecular receptor based on 

phosphonic acid functionalised naphthalene diimide for saccharide and aminoglycoside 

antibiotics are not reported till date [31].  With the aid of better chromophore with hydrogen 

bonding phosphonic acid functional group, it will possible to develop sensitive sensors to detect 

saccharides and aminoglycoside antibiotics in aqueous media. Herein, we report design of 

symmetric bolaamphiphile NDI 1 as a molecular receptor towards saccharides and 

aminoglycoside antibiotics. The NDI 1 bolaamphiphile shows complex formation with 

monosaccharides and aminoglycosides via non-covalent H-bonding interactions. In 

hydrophilic environment NDI 1 exhibits intermolecular π-π stacking interactions, which lead 

to change in UV-vis absorption and fluorescence emission spectral peak intensities.  

2. Experimental Section 

A stock solution of bolaamphiphile NDI 1 (2.0 mM) was prepared in H2O and 20 L stock 

solution added to a quartz cuvette and further diluted in 2 mL H2O (path length = 1 cm) then 

UV-vis absorption and fluorescence emission was measured by manipulating pH by using 

either 0.1 N HCl) or NaOH, respectively. The receptor then further titrated with various 

saccharides and aminoglycoside antibiotics (1 × 10-2 M).  

2.1. UV-vis measurements 

The UV-vis absorption spectra were recorded using a Shimadzu spectrophotometer (model: 

UV 1800) at r.t. in the quartz cell with 1.0 cm path length. Furthermore, the spectra’s NDI 1 

were recorded in H2O with saccharides, kanamycin and neomycin at pH 9.0. 

2.2. Fluorescence measurements 

The fluorescence (FL) was recorded using Schimadzu Fluorescence Spectrophotometer. 

(model:  RF-6000) in H2O at pH 9 at room temperature with excitation wavelength (λex = 384 

nm). 

3. Result and discussion 



In aqueous media the molecular recognition of carbohydrates and aminoglycoside antibiotics 

leads to give important information. The interaction between NDI 1 bolaamphiphile with water 

soluble phosphonic acid head groups offer an important platform for recognition of saccharides 

and aminoglycoside antibiotics. The recognition study was performed at pH 9, since 

phosphonic functional group completely deprotonated at this state. The deprotonated 

phosphonic acid able to interact with carbohydrates and aminoglycoside antibiotics via non-

covalent H-bonding. Herein, we investigated the molecular recognition characteristics of the 

bolaamphiphile NDI 1 against the various monosaccharides such as D- form of galactose, 

glucose, fructose, lyxose, ribose, xylose as well as aminoglycosides antibiotics (kanamycin and 

neomycin) as illustrated in Fig. 1.  The molecular recognition properties were examined using 

UV-visible and fluorescence emission spectroscopic techniques. 

 



Fig. 1 Molecular structures used in this study: (a) NDI 1, (b) monosaccharides and (c) 

aminoglycosides antibiotics. 

 

3.1. UV-Visible spectroscopy 

The UV-vis spectroscopic measurements of NDI 1 bolaamphiphile was performed in aqueous 

media at pH 9. At room temperature, NDI 1 bolaamphiphile (1 x 10-5 M) exhibits strong two 

absorption maxima one at 363 nm and second one at 384 nm with small peak at 347 nm which 

attributed to π–π∗ transition [32]. The titration experiments of NDI 1 with carbohydrates such 

as D- form of galactose, glucose, fructose, lyxose, ribose, and xylose and also aminoglycoside 

antibiotics e.g. kanamycin and neomycin in aqueous media. The concentration of the 

saccharide is 1 × 10-2 M. As illustrated in Fig. 2a, upon addition of D-galactose, peak intensity 

of the absorption maxima at 363 nm and 384 nm decreases and stabilized with the addition of 

20 equiv. of the D-galactose. Furthermore, the addition of other carbohydrate as well as 

aminoglycoside moieties display the same trend with respective change in absorption at 363 

nm and 384 nm (Fig. 2b-f). The changes of the bolaamphiphile NDI 1 complexes with these 

sugars via non-covalent H-bonding interactions and in water media NDI 1 undertakes strong 

π-π intermolecular interactions which lead to change in absorption peak intensities. 



 

Fig. 2 UV-visible absorption spectra of bolaamphiphile NDI 1 (1 x 10-5 M) at pH 9 in H2O upon 

incremental addition of D- form of sugars (1 x 10-2 M) as: a) galactose, b) glucose, c) mannose, d) 

lyxose, e) ribose and f) xylose  



 

Fig. 3 UV-visible spectrums of NDI 1 (1 x 10-5 M) in H2O at pH 9 upon addition of a) 

kanamycin (0-20 equiv., 1 x 10-2 M), b) neomycin (0-20 equiv., 1 x 10-2 M). 

 

To generalise the recognition ability of NDI 1 bolaamphiphile, we further examined the UV-

via absorption changes upon addition of kanamycin (0-20 equiv.) and neomycin (0-20 equiv.) 

at pH 9.  The absorption maxima at 363 nm and 384 nm of NDI 1 with the addition of 

kanamycin and neomycin display the decrease in intensity as illustrated in Fig. 3a and 3b, 

respectively.  We presume that the deprotonated phosphonic head group may interact with –

OH and –NH2 functional groups via non-covalent hydrogen bonding present in kanamycin and 

neomycin. Thus, UV-vis absorption study indicates the presence of phosphonic head group 

lead to recognise these carbohydrates and aminoglycosides. Furthermore, we employed UV-

vis absorption experiments to determine the binding (association) constant of NDI 1 towards 

these sugars and aminoglycosides  

    The binding constant (Ka) of the bolaamphiphile NDI 1 with the examined carbohydrates 

and aminoglycoside antibiotics were calculated using UV-vis measurements. As illustrated in 

Fig. 4a-h, the plot between 1/(A0-A) versus 1/[monosaccharide or aminoglycoside antibiotics) 

was utilized to calculate the association constant. As summarized in Table 1, the binding 

constant Ka were obtained from the linear fitted data to the Benesi-Hildebrand equation.  



 

Fig. 4 Benesi-Hilderbrand plot of bolaamphiphile NDI 1 with D- form of sugars as: a) galactose, b) 

glucose, c) mannose, d) lyxose, e) ribose, f) xylose as well as antibiotics: g) kanamycin and h) 

neomycin. 

 

 

 



Table 1: Binding constant of bolaamphiphile NDI 1 with saccharides and aminoglycoside 

antibiotics in H2O. 

 

Sr. No. Carbohydrates/Aminoglycoside 

antibiotics 

Association Constant (Ka) 

   
1 D-galactose 4.13 x 10-2 M 

 

2 D-glucose 3.85 x 10-2  M 

 

3 D-mannose 4.39 x 10  M 

 

4 D-lyxose 9.26 x 10-2  M 

 

5 D-ribose 5.39 x 10-2 M 

 

6 D-xylose 8.12 x 10-2  M 

 

7 kanamycin 1.86 x 10-2  M  

 

8 neomycin A 1.10 x 10-3 M  

 

3.2. Fluorescence spectroscopy 

The fluorescence emission spectroscopic technique was utilized to study the binding 

interactions of bolaamphiphile NDI 1 with monosaccharides at pH 9 in H2O. The fluorescence 

emission spectroscopy results of the bolaamphiphile NDI 1 and their non-covalent interaction 

with different carbohydrates is illustrated in Fig. 5a-f. The molecular receptor NDI 1 (1 x 10-5 

M) at pH 9 in aqueous media, displays the two strong emission peaks at 414 nm and 547 nm 

(ex = 384 nm). This is attributed to the monomeric form of the bolaamphiphile NDI-1. At first 

emission spectral changes of NDI 1 was recorded with the addition of various monosaccharides 

(20 equiv.). The addition of various monosaccharides to a solution of bolaamphiphile NDI 1 

show significant changes in fluorescence emission intensity (Fig. 5a-f) was resulted. As 

illustrated in Fig. 5a, with the addition of D-galactose to NDI 1, the emission peak at 414 nm 

increases significantly, whereas, the peak at 547 nm decreases. This changes in fluorescence 

peak intensity resulted into isosbestic point at 525 nm, indicating the formation of complex. 



Similar trend of emission intensity changes was observed for NDI 1 with the addition of other 

sugars (Fig. 5b-f). Such change in emission spectra is attributed to the complex formation 

between NDI 1 and tested monosaccharides via non-covalent H-bonding interactions.   

Furthermore, to generalise the molecular recognition of NDI 1, we tested kanamycin and neomycin 

aminoglycosides. As illustrated in Fig. 6a and 6b, with the addition of kanamycin and neomycin, 

respectively, NDI 1 display the change in emission peak, at 414 nm increase in intensity and at 547 

nm decrease in peak intensity was observed. Herein, as shown in Fig. 6a and Fig 6b, at 525 nm 

isosbestic point formation was observed. This suggests that bolaamphiphile NDI 1 interacts with 

kanamycin and neomycin via complex formation. This complexation is attributed to the non-

covalent hydrogen bonding formation. Thus, the similar trend for molecular recognition of 

monosaccharides and aminoglycoside antibiotics was observed.  

 

 

 



 

Fig 5 Fluorescence of NDI 1 (c = 1 x 10-5 M) with addition of various saccharides in the D- 

form such as: a) galactose, b) glucose, c) mannose, d) lyxose, e) ribose and f) xylose (0-20 

equiv., 1 x 10-2 M)) at pH 9 in H2O.  

 

Fig. 6 Fluorescence of bolaamphiphile NDI 1 (1 x 10-5 M) upon excitation at λex = 380 nm) 

with the addition of a) kanamycin (0-20 equiv., 1 x 10-2 M) and b) neomycin (0-20 equiv., 1 x 

10-2 M)) at pH 9 in H2O.  



 

In Fig 7, we demonstrated that the plausible binding mode of phosphonic appended bolaamphiphile 

NDI 1 with monosachharides/aminoglycosides. Herein, we presume that at pH 9, the fully 

deprotonated phosphonic functional group interacts with monosachharides/aminoglycosides 

through non-covalent hydrogen bonding. The change in UV-vis and fluorescence emission spectra 

was observed due to intermolecular π-π interactions of core of NDIs.  

 

 

Fig. 7 Schematic presentation displaying the plausible binding mode between bolaamphiphile NDI 

1 with monosachharides/aminoglycosides. 

 

4.  Conclusion 

In summary, we developed phosphonic acid appended NDI 1 bolaamphiphile for molecular 

recognition of monosachharides of the D- form such as galactose, glucose, fructose, lyxose, 

ribose, and xylose and aminoglycoside antibiotics e.g. kanamycin and neomycin with 

association constant ranging from 10-2 M to 10-3 M. The binding between fully deprotonated 

phosphonic acid with –OH and/or –NH2 is attributed to the non-covalent H-bonding. We 

believe that NDI 1 receptor with phosphonic head group undergoes molecular recognition for 

monosachharides/aminoglycosides could be valuable tools to recognise the specific molecular 

entities and opens new avenue in the field of research. 
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