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Abstract

Second order Møller-Plesset theory provides a remarkably simple form for the elec-

tron correlation energy with many desirable properties, e.g. it is size-consistent, free

of self-interaction error, and scales with the fifth power of system size. However, MP2

exhibits well-known shortcomings including an incomplete description of dispersion
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interactions and sizable failures for transition metal chemistry. Herein, we first ex-

plore multiple physically justified forms of single-parameter regularization and then

demonstrate that with appropriate parameter choice, regularized MP2 with Hartree-

Fock reference orbitals yields high and transferable accuracy across a wide variety of

noncovalent interactions (S22, S66, XB40, A24, and L7 test sets) and (mostly closed-

shell) transition metal thermochemistry (metal-carbonyl dissociations and a subset of

MOR41). We find that, especially for systems with interacting π systems relevant to

dispersion interactions and dative bonding, regularization serves to damp overestimated

pair-wise additive contributions to the first-order amplitudes that affect correlation en-

ergy and charge-density. The optimal parameter values for the noncovalent and tran-

sition metal sets are 1.1 and 0.4 for two regularizers, κ and σ2, respectively. These two

regularizers slightly degrade the accuracy of conventional MP2 for some small-molecule

test sets which are well-known to be sensitive to charge-density distribution (radical

stabilization energies, barrier heights, dipole moments, and polarizabilities), most of

which have relatively large gaps. Due to the relatively straightforward implementa-

tions of nuclear gradient and other properties, we recommend κ-MP2 with κ = 1.1

as a more accurate alternative to conventional MP2 and other related variants. Our

results suggest that appropriately regularized MP2 models represent promising forms

for the nonlocal correlation part of double hybrid density functionals, at no additional

cost over conventional MP2.

1 Introduction

Reliably and efficiently evaluating the electron correlation energy of the electronic ground

state of molecules at the lowest possible computational cost is a long-standing central chal-

lenge of quantum chemistry. In wavefunction-based quantum chemistry, given the Hartree-

Fock (HF) mean field reference determinant, |Φ0〉, and its energy, E0, the energetic effect
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of other determinants is typically approximated by low-order Møller-Plesset (MP) pertur-

bation theory,1 or by infinite order coupled cluster (CC) theory,2,3 truncated at a relatively

low level of excitation from |Φ0〉. As the lowest order PT correction to HF, MP2 is widely

used, both for relative energies and properties, and also as a component of double hybrid

density functional theory (DFT).4–6

For stable closed shell organic and main group inorganic molecules, on the whole, MP2

provides a considerable improvement over HF in the quality of relative energies for ther-

mochemistry (e.g. isogryic reaction enthalpies7) and non-bonded interactions.8 Of course

these improvements do not compete with the accuracy of the best hybrid density func-

tionals, except for some special cases such as hydrogen-bonding.9,10 There are also notable

improvements in the quality of optimized molecular structures and properties of closed shell

molecules such as dipole moments7,11 and electrical polarizabilities.12

In contrast with conventional DFT, MP2 offers the formal advantage of being free of

self-interaction or delocalization errors.13,14 Yet MP2 is typically less accurate than the best

coupled cluster theory that can be routinely applied, such as taking CC with singles and

doubles (CCSD) and correcting for perturbative triples via CCSD(T).15 However CCSD(T)

has vastly higher compute cost, as it scales O(A7) with number of atoms (A) with O(A4)

memory/storage versus MP2’s O(A5) compute cost and O(A3) memory/storage.

MP2 theory also exhibits some notable failures. One intractable class of failures is for

strongly correlated molecules, where the HF reference is very poor because multiple elec-

tron configurations are of comparable importance.16 Such problems are challenging also for

common CC approaches such as CCSD or CCSD(T), and for many widely-used density func-

tionals. The presence of strong correlation is signified by spin-symmetry breaking in DFT

orbitals, as well as small energy gaps between occupied and virtual orbitals, and other indi-

cators.17–19 Fortunately, strongly correlated problems20 are not very common in main group

chemistry, or even in transition metal chemistry.19 However, when strong correlation oc-
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curs in the ground state, it typically requires substantially more sophisticated multireference

approaches.21–25

A second well-known class of failures for MP2 theory are problems where the HF or-

bitals exhibit artificial symmetry-breaking even though there are no obvious strong correla-

tions.26 Symmetry-restoration is not accomplished by perturbation theory,27 and thus MP2

cannot recover from symmetry-broken references. There are many examples of this type,

most commonly with spin-unrestricted HF orbitals (UHF) leading to spin-contamination.

It is therefore desirable to employ spin-restricted HF (RHF) for closed shell molecules, and

spin-restricted open shell HF (ROHF) for radicals as references for MP2 calculations. The

resulting RMP2 methods28–33 typically perform significantly better provided there is no spa-

tial symmetry-breaking, and orbital gaps remain large (i.e. there are no strong correlations).

Alternatively, at additional cost of performing iterative O(A5) steps, optimizing the orbitals

in the presence of MP2 correlation via orbital optimized MP2 (OOMP2) can also resolve

such issues.34,35 Use of DFT orbitals can achieve similar improvements.36

Addressing a third class of MP2 failures will be the focus of this paper. These are prob-

lems that do not exhibit obvious strong correlations, but we think are instead characterized

by the presence of significant non-additive weak correlation effects. As is clear in the canon-

ical basis, MP2 theory treats electron correlation as a pairwise additive set of contributions

from each double substitution of two occupied orbitals by two virtual orbitals. When non-

additivity is important, one typically needs to attenuate electron correlation effects. A simple

but important illustration may be helpful. MP2 is known to significantly overestimate the

strength of π-stacking dispersion interactions, such as the slipped benzene dimer37–40 and

stacked DNA base pairs.41 This effect becomes larger as the conjugated monomers become

bigger, as exemplified by the coronene dimer, leading to the recent observation that MP2

produces “relative errors of over 100% for several benchmark compounds.”42

These dispersion interactions are collective properties of the π electrons, and evidently
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non-additive effects are important. For this reason, it has been argued that infinite order

methods are necessary to resolve such problems. By contrast, MP2 is known to yield rela-

tively accurate results for hydrogen-bonding, for example in water clusters43 or even between

the same DNA base pairs for which stacking interactions are overestimated.44 The key dis-

tinction is arguably that the hydrogen bond has a strong electrostatic component, and to

the extent that correlation is involved, it is to correct the HF charge distribution of the

monomers45 or the relatively weak charge-transfer from an oxygen lone pair to an H−O σ∗

orbital.

There are other examples that appear to fall into the same category. One example

that is particularly important is the fact that MP2 performs relatively poorly for ligand-

dissociation energies of transition metal (TM) complexes with dative bonds in which π

electrons are involved.19,34,46 The presence of multiple electron pairs in the same region of

space is a characteristic feature of many organometallic complexes such as metal carbonyl

species, whose bonding involve forward and back donation with their ligand set. MP2 theory

typically overestimates the strength of such binding, which again suggests that important

non-additive electron correlation effects are at play.19 As for collective dispersion interactions,

this information has been used to argue for the necessity of using infinite order methods.

In simpler terms, by non-additive effects, we mean higher-order contributions to the

wavefunction amplitudes beyond the first-order perturbation theory. The failure of MP2

(or any modification of second-order perturbation theory) can be inferred by inspecting the

magnitude of first-order wavefunction amplitudes. Namely, large first-order amplitudes are

the direct indication of the failure of the second-order energies. When first-order amplitudes

are unphysically large, the subsequent correlation energy contribution is too negative, lead-

ing to the overestimation of dispersion interactions42,47 and dative bond energies.19 Large

amplitudes can arise either from large numerators (matrix elements) and/or small energy

denominators.

5



There have been modifications to MP2 theory which have achieved notable success for

problems where non-additive correlation effects are present. The first major development was

the spin-component scaled MP2 (SCS-MP2), which was shown to significantly improve MP2

for TM complexes as well as main group chemistry by a heuristic scaling of same-spin and

opposite-spin correlation contributions.34,48,49 SCS-MP2 was also successful for dispersion

interactions on smaller conjugated hydrocarbons although different scaling parameters were

required.50 The scaled opposite spin MP2 approach (SOS-MP2) also improved thermochem-

ical results relative to MP2, and reduced the compute cost from O(A5) to O(A4).51,52 For

dispersion interactions, a similar approach was recently applied to MP2-F12;53 alternatively,

attenuating the long-range part of the MP2 correlation energy was also quite successful.8,54–56

However, none of these approaches reviewed above address the phenomenon of non-

additive correlation effects directly. Yet it is well-known that perturbation theory is more

accurate when correlation effects are smaller, and therefore the largest non-additivity errors

in the MP2 correlation treatment will be for pair correlations with the smallest orbital energy

gaps. This suggests that renormalizing the pair correlation amplitudes with the smallest

energy gaps while leaving the perturbation expression for large-gap correlations unchanged

could be a productive way to address the problem of non-additive correlation effects. Other

researchers have indeed emphasized the potential for a renormalized low-order perturbation

theory.57–59

The approach taken in this paper is to revisit an energy-gap dependent renormalization

of the pair correlation amplitudes employed in OOMP260 for MP2 methods with HF orbitals.

In principle renormalization is what is rigorously accomplished in infinite order methods such

as CCD or CCSD, but to avoid their compute cost, it will be accomplished semi-empirically

here. We employ an energy-dependent regularization form that was introduced previously

to stabilize OOMP2 against the potentially divergent correlation contributions associated

with closing the orbital gap.60 Encouragingly, such a regularization strategy was found to be
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effective in correcting the overestimation of noncovalent interactions in MP2,47 although no

attempt was made to optimize the associated parameter. After a brief review of MP2 itself,

we assess the performance and transferability of candidate forms on a wide range of test sets

representative of noncovalent interactions (NCIs), closed-shell TM thermochemistry, main-

group thermochemistry and barrier heights, and properties including dipole moments and

polarizabilities.

2 Theory

MP2 can be derived from time-independent PT with respect to the electron-electron inter-

action, or from second-order analysis of the coupled cluster equations:61

EMP2 =
1

4

∑
ijab

〈ij||ab〉t(1)
ij,ab = −1

4

∑
ijab

|〈ij||ab〉|2

∆ab
ij

(1)

where i and j denote occupied orbital indices, a and b are virtual orbital indices, the energy

denominator ∆ab
ij = εa + εb− εi− εj, and {t(1)

ij,ab} are the first-order wavefunction amplitudes.

The correlation energy from CCD can also be written as a contraction of doubles amplitudes

with two-electron integrals (i.e., t
(1)
ij,ab is replaced by CCD amplitudes), which suggests that

a semi-empirical renormalization of the first-order amplitudes could potentially yield results

of comparable quality to those from CCD.

Our group’s initial effort at regularization involved a simple level shift,62–64 called the δ

regularizer which corresponds to ∆→ ∆ + δ, where δ > 0. However, this form is energy-gap

independent, which, as argued above, is not suited for correcting the non-additivity of the

correlation energy. More sophisticated, energy-gap dependent forms of regularization are

presented and detailed in Ref. 60, which we summarize here briefly. A Laplace transform of
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Eq. (1)65 yields

EMP2 = −1

4

∑
ijab

∫ ∞
0

dτe−τ∆ab
ij |〈ij||ab〉|2 (2)

where it is apparent that when ∆ab
ij → 0 the integral diverges. Setting the upper integration

limit to σ(∆ab
ij )p−1 gives

Eσp-MP2(σ) = −1

4

∑
ijab

|〈ij||ab〉|2

∆ab
ij

(1− e−σ(∆ab
ij )p) (3)

This equation with p = 2 can also be derived from a 2nd order PT analysis of the flow

equations.58,59 However for quantum chemical purposes the σ variable can be determined

empirically. We will refer to p = 1 and 2 expressions as σ and σ2, respectively. In the

limit of ∆ → 0, the corresponding contribution to Eσ-MP2 goes to a finite value, whereas

the contribution to Eσ2-MP2 vanishes. This energy expression corresponds to regularizing the

first-order amplitudes of conventional MP2 theory:

t̃
(1)
ij,ab = −〈ij||ab〉

∆ab
ij

(1− e−σ(∆ab
ij )p) (4)

such that the otherwise large amplitudes corresponding to small gaps are attenuated.

Alternatively, the two-electron integrals can be modified such that the integrand is zero

when ∆ab
ij → 0, e.g.:

〈ij||ab〉 → 〈ij||ab〉(1− e−κ(∆ab
ij )) (5)

This is known as κ regularization,60 and the correlation energy reads:

Eκ-MP2(κ) = −1

4

∑
ijab

|〈ij||ab〉|2

∆ab
ij

(1− e−κ(∆ab
ij ))2 (6)

κ regularization can be viewed as regularizing both the first-order amplitudes and the inte-

grals, rather than the amplitudes alone.
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These energy-gap dependent regularizers have been so far mainly used in the context of

OOMP2.26,47,60,66–68 Only recently, it was found that the κ regularizer (employing the value

originally recommended for κ-OOMP2) can significantly improve noncovalent interactions at

the MP2 level when used with HF orbitals for the systems not contaminated by any spurious

symmetry breaking.47 This encouraging result raises more general questions. What is the

optimal value of κ for use with MP2 itself? Is the κ regularizer particularly suitable, or

are other forms such as σ2 or σ presented above comparable or better? Is the improvement

specific to non-bonded interactions, or how general might it be? Our objective in this work is

to address these interesting questions with the objective of attempting to define a regularized

MP2 method for general use.

3 Data Sets

For NCIs we use the S2241 and S66 sets,69 which consist of hydrogen-bonded and disperson-

bound complexes, the non-iodide-containing subset of XB40 for halogen-containing hydrocar-

bon interactions,70 A24 for small molecule NCIs,71 and the L7 set for very large dispersion-

bound dimers and trimers.72 L7 has been the focus of very recent debate: conventional MP2

has been convincingly argued to be unsuitable,42 and supposedly reference-quality values

from localized CCSD(T) and Diffusion Monte Carlo are not consistent.73–75

To assess the applicability of regularized MP2 variants to TM systems, we use a 39

molecules subset of MOR4146 along with nine 3d metal-carbonyl dissociation reactions. Ref-

erence values are, respectively, from carefully performed DLPNO-CCSD(T) calculations and

experimental results recently validated by an accurate quantum Monte Carlo method.76

We then turn to main-group sets such as W4-1177 which consists of 140 atomization en-

ergies of small molecules and radicals. MP2 performs very well already for RSE43,78,79 which

consists of 43 radical stabilization energy reactions with reference data from D/T extrap-
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olated CCSD(T). We also investigate dipole moments11 and polarizabilities12 with a non-

spin-polarized set of small main-group systems, with reference values taken from CCSD(T)

extrapolated with either aTZ/aQZ or aQZ/a5Z basis sets.

4 Computational Methods

In this work, the reference orbitals are from restricted Hartree-Fock (HF) calculations. ROHF

was used for open-shell species together with the RMP2 correction,32 since unrestricted

orbitals with appreciable spin-contamination are well-known to degrade MP2 results. Main-

group thermochemistry, radical stabilization energies, and barrier heights were extrapolated

to the complete basis set (CBS) limit with the aug-cc-pVTZ and aug-cc-pVQZ basis sets;

dipoles and polarizabilities were extrapolated with the aug-cc-pCVTZ and aug-cc-pCVQZ

basis sets. We used the x−3 form for the correlation energy (x=3,4 for TZ and QZ), and QZ

HF energies.80

As shown in the Supporting Information for the W4-11 and dipole moment data sets

(Tables S2-S5), for a given value of regularization parameter the differences in the RMSDs

that result from augmented triple-ζ and CBS-extrapolated regularized MP2 calculations are

negligible, when comparing with CCSD(T)/CBS reference values. We also confirmed (Table

S1) that for a representative NCI set, S22, the RMSDs and optimal regularization parameter

are very similar in the aTZ and aQZ basis sets when the counterpoise correction is used,

again comparing with CCSD(T)/CBS reference values. We therefore used the aug-cc-pVTZ

basis with counterpoise correction for all NCI sets, with the exception of the L7 set for which

the slightly more compact def2-TZVPD basis set was used.

The def2-TZVPP basis set, with the def2-ECP for 4d and 5d TM complexes, is used

for the MOR39 set, as we compare to reference values in the same basis provided by A.

Hansen. For the MCO9 set the def2-QZVPP basis is used for single-point energies, with
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optimized geometries and thermal corrections obtained from the UB3LYP/cc-pVTZ-DKH

level of theory (as obtained in Ref. 76). For all MP2 calculations, the RI approximation of

the two-electron integrals is used.81 Due to computational limitations, the I functions in the

auxiliary RI basis sets were removed in TM calculations.

For dipole moments we follow Ref. 11 and show root mean squared regularized error

(RMSRD):

µ− µref
max(µref , 1D)

∗ 100 (7)

All MP2 and regularized MP2 calculations were performed in Q-Chem.82

5 Results

5.1 Comparison of regularizer functional forms

The κ, σ, and σ2 regularizers for the S22, MOR39, and W4-11 sets are shown in Fig.s 1a, 1b,

and 1c. For all three sets, the various regularization strategies yield RMSD minima which

differ by sub-kcal/mol quantities: either all are very effective (S22 and MOR39) or none are

(W411). The trends in the results for the S22 and MOR39 sets look qualitatively similar,

further suggesting that there is no single form of regularization which stands out as obviously

preferable in these cases. For W4-11 the σ2 regularizer does not improve upon conventional

MP2, in contrast to the p = 1 regularizers, however we note that the differences are rather

minor given the energy scales.
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(a) S22 (b) MOR39

(c) W411

Figure 1: Comparing κ, σ, and σ2 regularizers for representative data sets of (a) NCI, (b) (mostly)
closed-shell TM thermochemistry, and (c) main-group atomization energies.

5.2 Assessing transferability across various test sets

For a number of NCI and TM thermochemistry test sets we have computed the root mean

squared deviation [RMSD] from reference values as a function of regularization parameter,

with both κ and σ2 approaches. The results are shown in Tables 1 and 2, respectively.
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Table 1: RMSDs [kcal/mol] for the NCI sets – S22, S66, XB40, A24, L7 – and TM sets – MCO9, MOR39
– from κMP2 over a range of κ values.

κMP2 S22 S66 XB40 A24 L7 MCO9 MOR39
0 (HF) 6.20 4.70 3.40 1.64 27.75 29.23 22.15
0.8 1.00 0.96 0.72 0.43 4.98 5.93 5.13
0.9 0.68 0.73 0.56 0.36 3.27 5.48 5.29
1.0 0.42 0.55 0.44 0.30 2.08 5.65 5.77
1.1 0.25 0.41 0.35 0.25 1.73 6.18 6.49
1.2 0.24 0.31 0.30 0.22 2.22 6.91 7.29
1.45 0.50 0.28 0.30 0.16 4.06 8.67 8.96

∞(MP2) 1.25 0.67 0.58 0.17 9.24 14.42 14.13

Table 2: RMSDs [kcal/mol] for the NCI sets – S22, S66, XB40, A24, L7 – and TM sets – MCO9, MOR39
– from σ2MP2 over a range of σ values.

σ2MP2 S22 S66 XB40 A24 L7 MCO9 MOR39
0 (HF) 6.20 4.70 3.40 1.64 27.75 29.23 22.15
0.2 1.38 1.21 0.92 0.52 7.39 7.22 6.02
0.3 0.66 0.68 0.55 0.36 3.37 5.20 5.14
0.4 0.29 0.37 0.36 0.26 1.48 5.46 5.92
0.5 0.30 0.24 0.28 0.20 2.25 6.49 7.05
0.6 0.48 0.25 0.29 0.16 3.46 7.57 8.11
0.7 0.62 0.32 0.33 0.14 4.44 8.52 9.02
0.8 0.74 0.38 0.37 0.13 5.22 9.33 9.78

∞(MP2) 1.25 0.67 0.58 0.17 9.24 14.42 14.13

In all cases, conventional MP2 provides a substantial improvement to HF, and both κ and

σ2 regularization further improve upon the accuracy of MP2. The improvement in accuracy

due to regularization is, in most cases, quite remarkable, e.g. factors of 3-6x for S22, S66,

and L7 along with nearly 3x for the two TM sets.

More important than the remarkably improved minimum RMSDs obtainable with the

optimum regularizer specifically for that dataset is the fact that both choices of regularizer

show a quite encouraging degree of transferability between data sets. Furthermore, com-

paring S22 (as a proxy for the NCI sets) with MCO9 and MOR39 results, the optimal κ
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values are 1.2, 0.9, and 0.8 for κMP2 whereas the optimal σ values are 0.4, 0.3, and 0.3 for

σ2MP2. Indeed, visual inspection of Tables 1 and 2 shows that the color patterns associated

with performance are remarkably similar. Therefore we cannot confidently suggest that one

regularizer is better than the other: rather the key point is that both regularizers appear to

yield substantial overall improvements versus conventional MP2 and HF.

5.2.1 Non-covalent interactions

The L7 test set consists of adenine and guanine-cytosine adsorbed on circumcoronene (C3A,

C3GC), guinine-cytosine tetramer (GCGC), coronene dimer (C2C2), guanine trimer (GGG),

octadecane dimer (CBH), and the phenylalanine trimer (PHE). Fig. 2 shows the results of

HF, κMP2 with κ = 0.9, 1.1, 1.2, 1.45, and conventional MP2 (all raw values for HF, MP2,

κMP2 and σ2MP2 are given in the Supporting Information). HF drastically underbinds, as

expected since mean-field theories do not account for dispersion interactions. MP2 overbinds

most prominently in the largest π-stacked systems: the two circumcoronene systems (C3A

and C3GC) along with the coronene dimer (C2C2). In contrast, conventional MP2 is nearly

perfect for CBH, wherein each octadecane monomer is completely saturated (with σ-bonds

only). This finding is consistent with a previous study showing that MP2 overestimates

interlayer stacking of graphene but not graphane layers.83 Importantly, Fig. 2 reveals that

the overestimated π-driven dispersion interaction from conventional MP2 can be largely cor-

rected with appropriate regularization, with stronger regularization moving the NCI energies

closer to the HF values.
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Figure 2: HF, κMP2, and MP2 results for the L7 test set. The deviation from reference LNO-CCSD(T)
values [kcal/mol] is shown. A negative value means over-binding.

It is remarkable that a single choice of regularization parameter is simultaneously optimal

for both S22 and L7, i.e. ∼1.1 and 0.4 for κ and σ2 MP2, respectively. Results for the 22

systems in S22 are plotted in the Supporting Information (Figure S1), from which it is clear

again (though with smaller energy scales) that the overestimated stacking interactions from

conventional MP2 can be balanced out via regularization.

The overbinding of π-stacked dispersion-bound systems can be rationalized as follows.84–86

The frontier energy gap of planar, conjugated monomers (denoted A or B) is well-known

to decrease as the area of the molecule increases. We now consider the sum-over-states

expression for the mean, imaginary-frequency-dependent polarizability of a spherical (for
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simplicity) monomer:87

ᾱ(iω) =
1

3
[αxx(iω) + αyy(iω) + αzz(iω)] =

2

3

∑
n6=0

ωn0

∣∣〈n|µ̂|0〉∣∣2
ω2
n0 + ω2

(8)

where the excitation frequencies, ωn0 = En − E0, can be approximated by differences be-

tween eigenvalues of the Fock operator. The attenuation of MP2 first-order amplitudes, as

accomplished by κ and σ2 regularization, effectively reflects an energetic separation of occu-

pied and virtual molecular orbitals involved in each pairwise excitation (moving the virtuals

higher in energy), with the energy-gap-dependent form serving to separate orbitals that are

close in energy more than those with large gaps. Strong regularization, then, will reduce

molecular polarizabilities. Since a large part of the total interaction potential, U , depends

explicitly on monomer polarizabilities via the C6 coefficient,87,88 i.e.

U(RAB) ∼ −C6,AB

R6
AB

(9)

where

C6,AB =
3

π

∫
dωᾱA(iω)ᾱB(iω), (10)

it becomes clear that regularizing MP2 amplitudes for the π-stacked complexes in L7 and S22

makes the interaction potential less negative / smaller in magnitude. Hence, the predicted

NCIs that are overestimated by conventional MP2 are attenuated via successful regulariza-

tion, which nicely reflects the physical expectation that higher-order terms in the interaction

are repulsive.

Table 3 implies that even for large systems such as the coronene dimer, the MP2 de-

nominators (the minimum value is equal to twice the HOMO-LUMO gap) are far from zero.

Nonetheless, the first-order amplitudes can still be unphysically overestimated, leading to

overbinding of dispersion-bound complexes. In most cases the orbital gap can be taken to
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be a good proxy for the first-order amplitudes (indeed, this is implied by the improved accu-

racy for the present NCI sets due to energy-gap-dependent regularization). Fig. 3 plots the

average HOMO-LUMO gap of the dimeric species in each test set vs the RMSD reduction

over conventional MP2. The R2 value improves slightly going from κ to σ2MP2, though

in both cases regularization is more beneficial as the average gap decreases. The A24 set,

with the largest average HOMO-LUMO gap of 12.9 eV, is interesting in that regularization

actually worsens the accuracy of conventional MP2. As we will see (and as will be further

discussed), even larger gaps are, in fact, characteristic of stable small molecules, implying

that not all cases call for regularization. We note that the non-infinite slopes of the best-fit

lines suggest that κ and σ2 regularizers are by no means perfect, i.e. that alternate forms of

energy-gap-dependent regularization might be more transferable.

Table 3: Average HOMO-LUMO gap [eV] from HF theory for dimer systems in the 5 NCI sets investigated
presently.

NCI set avg. HOMO-LUMO gap

L7 8.8
S22 10.6
S66 11.0
XB40 12.2
A24 12.9
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Figure 3: Correlation between average HOMO-LUMO gap of dimer systems with the factor of improvement
of κ or σ2 regularized MP2 (with κ=1.1, σ=0.4) over conventional MP2.

5.2.2 Transition metal thermochemistry

The TM systems investigated in this work do not display static correlation, as supported

by the absence of spin-symmetry breaking at the UHF level.19 All molecules in the MOR39

set are closed-shell singlets, and the systems in the MCO9 set have relatively large gaps

(compared to other metal complexes) because the carbonyl ligands are strong-field. Indeed,

the MOR39 molecules have an average HOMO-LUMO gap of 10.6 kcal/mol.

The largest errors from conventional MP2 occur for metal-carbonyl dissociations. The

effect of regularization is shown in Fig. 4, in comparison to HF and conventional MP2

results.
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Figure 4: HF, σ2MP2, and MP2 results for the bond dissociations in the MCO9 test set. The deviation
from experimental values [kcal/mol] is shown. A negative value means over-binding. In every case CO
dissociates from the compounds shown in the x-axis, except for CrCO6H2 where H2 dissociates.

As was the case for the NCI sets in the previous section, MP2 strongly overestimates the

strength of the dissociating bond in every case. Interestingly, even the metal-dihydrogen

bond is over-bound with conventional MP2 (see the CrCO5H2 reaction). On the other hand,

HF consistently underbinds, and increasing regularization strength interpolates between the

MP2 (σ →∞) and HF (σ → 0) limits.

To gain further insight, let us consider just the isolated carbonyl ligand – a neutral

diatomic with a triple bond between carbon and oxygen atoms. Despite the vastly more

electronegative oxygen atom (relative to the carbon atom), the dipole moment is very small

(0.127 Debye with CCSD(T)/aTZ,11 0.122 Debye experimentally89). Furthermore, the dipole

is oriented such that the positive end points toward the oxygen. This has been rationalized
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by the recognition of substantial dative (also known as coordinate-covalent) character of the

bond. As can be seen in Table 4, the dipole predicted by HF (κ → 0) points in the wrong

direction due to an underestimation of the charge donation. Although the dipole predicted

by MP2 (κ → ∞) is oriented in the correct direction, it is vastly overestimated, especially

in percentage terms.

Table 4: Dipole moment in Debye as a function of κ regularization parameter for the isolated CO molecule,
in the aug-cc-pVTZ basis. Negative values indicate that the positive end of the dipole points toward the
carbon atom. κ = 0 corresponds to HF theory, and κ→∞ corresponds to conventional MP2 theory.

Method Dipole Moment

κMP2 (κ = 0) -0.27
κMP2 (κ = 0.7) -0.06
κMP2 (κ = 0.8) -0.01
κMP2 (κ = 0.9) 0.02
κMP2 (κ = 1.0) 0.06
κMP2 (κ = 1.1) 0.09
κMP2 (κ = 1.2) 0.11
κMP2 (κ = 1.3) 0.14
κMP2 (κ =∞) 0.28
CCSD 0.068
CCSD(T) 0.127
Expt. 0.122

The key to understanding these trends lies in the molecular orbital (MO) diagram (Fig.

5) and the relative composition of the MOs (Table 5).
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Figure 5: Molecular orbital diagram of the CO molecule, excluding 1s atomic orbital contributions (see
the Supporting Information for quantitative orbital energies). Two-electron excitations from π to π∗ orbitals
corresponds to partial charge-transfer from O to C, and the effective raising in energy of the latter due
to energy-gap-dependent regularization reduces the extent of charge transfer in the dative bond, thereby
counteracting the overestimated dipole moment of conventional MP2.

Table 5: Molecular orbital number (bonding type), occupation number, energy eigenvalue [eV], and sum
of Löwdin reduced orbital populations on C and O atoms [%], respectively (from left to right). Values from
a HF/def2-QZVPP calculation, as performed in ORCA.90

MO index Occ. Energy % C %O

9 (σ∗) 0 5.0 88.7 11.3
8 (π∗) 0 3.1 83.7 16.1
7 (π∗) 0 3.1 83.6 15.9
6 (σ) 2 -15.1 85.3 14.6
5 (π) 2 -17.3 34.2 65.6
4 (π) 2 -17.3 34.2 65.5
3 (σ∗) 2 -21.9 19.3 80.7
2 (σ) 2 -41.3 43.7 56.1

With the exception of the highest occupied MO (index 6, σ), all occupied MOs are predom-

inately derived from the atomic orbitals of the oxygen, while all virtual MOs are mostly
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derived from those of the carbon. If only the configuration shown in the MO diagram is used

to derive the charge density, as is done in HF theory, it is no surprise that the negative end

of the dipole moment will incorrectly reside on the oxygen. In contrast, the conventional

MP2 density will have sizable contributions from doubly-substituted configurations wherein

electrons are excited from the occupied to virtual HF MOs. Due to the composition of these

orbitals, this dynamical correlation provides some description of dative bonding from the O

to the C, with the amplitudes controlling the extent of charge-transfer.

We can understand on physical grounds why a theory which dynamically correlates only

two electrons at a time in a pair-wise additive way overestimates such amplitudes as follows.

A pair excitation creates two holes and two particles, all of which polarize the surrounding

electrons; however, MP2 cannot describe these higher-order polarization effects. Further-

more, simultaneous pair excitations can be non-negligible in these systems (e.g. a quadruple

excitation involving π and π∗ orbitals, both of which are doubly degenerate), but in a pair-

wise additive description of each pair excitation will not adequately “feel” the instantaneous

presence of the other electron pairs in the vicinity of the carbon. These effects must be rela-

tively strong given that multiple σ and π electron pairs are confined to a relatively localized

bonding region.

Hence, we find again that higher-order correlation effects will tend to reduce first-order

amplitudes, and in the specific case of CO their inclusion will moderate the extent of electron

donation from O to C. Indeed, the dipole moments predicted from infinite-order theories,

CCSD and CCSD(T), are attenuated vs that of conventional MP2 (Table 4). This implies an

effective picture in which the virtual MOs populated in the 1st-order wavefunction are too

low in energy due to the exclusion of higher-order dynamical correlations. In this context

regularization of MP2 first-order amplitudes acts to raise the virtual MOs higher in energy,

in accordance with the physics of Pauli repulsion.

Table 4 shows that the optimal κ value for the dipole moment of carbon monoxide is
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between 1.2 and 1.3 (depending on whether CCSD(T) or experiment is taken as the point of

comparison). This optimal range for the dipole moment is close but not equal to the optimal

κ value of 0.9 determined above for metal-carbonyl thermochemistry (Table 1). This suggests

that only part of MP2’s overestimation of M-CO bond strengths can be attributed to the

exaggerated attractive electrostatic contribution to the metal-carbon bond that arises from

the overestimated dipole moment of isolated CO. The M-CO bond, like the CO bond, is also a

dative bond involving ligand-to-metal σ donation and metal-to-ligand π-backbonding. While

an MO analysis is more complicated for the full metal complex (and we omit it here), the

same physical effects discussed above are operative. We will just note that regularization

pushes up the overstabilized antibonding π∗ orbitals, which weakens π-backbonding and

serves to destabilize the M-CO bond. MP2’s overestimation of the metal-dihydrogen bond is

likely due to the overestimated charge-density on the metal which is available to strengthen

the metal-dihydrogen bond via π back-donation.

The fact that the HOMO-LUMO gap of isolated CO is 18.5 eV (i.e. very large rel-

ative to the average values for the metal complexes and NCI dimers above) should serve

to reiterate that regularization does more than tame divergent small gap contributions to

the correlation energy or 1st-order wavefunction. We find that it provides an appropri-

ate description of dative bonding both within isolated ligands like CO and between metal

and π-donating or -accepting ligands. More generally, appropriate regularization attempts to

semi-empirically correct deficiencies due to the pair-wise additive form of the MP2 correlation

energy, which can lead to overestimated interactions in both collective, π-driven NCIs and

TM bonding in many organometallic systems. Both involve strong, dynamical interactions

between multiple electron pairs, and therefore require (at least approximate) incorporation of

beyond-2nd-order diagrams. (It is no surprise that the direct random phase approximation,

which contains bubble diagrams to infinite order in many-body PT, performs much better

than MP2 for NCI sets such as L742 and TM chemistry91,92). In summary, regularization
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enables higher-order correlation effects to be incorporated effectively, and at MP2 cost, into

a second-order theory, by damping first-order amplitudes that are artificially overestimated

at the level of MP2 theory.

5.2.3 Main group thermochemistry, barrier heights, dipoles and polarizabilities

In this section we investigate the effect of regularization on main-group thermochemistry

(W411) and selected properties that are known to be sensitive to a theory’s rendering of the

charge-distribution, namely radical stabilization energies (RSE43), barrier heights (HTBH38,

NHTBH38), dipole moments and polarizabilities. We preface this section by noting that only

small molecules are considered, due to the use of full CCSD(T) values extrapolated to the

CBS limit, and thus conclusions can only be drawn for this restricted class of systems. For

the electric properties we include only the non-spin-polarized subsets, for which R to U insta-

bilities are not present. The resulting RMSDs and RMSRDs as a function of regularization

parameter are shown for κ- and σ2-MP2 in Tables 6 and 7, respectively.

Table 6: RMSDs [kcal/mol] (and RMSRD [%] for electric properties) for main group thermochemistry –
W4-11 and RSE43 – and sets which are particularly sensitive to the electron density distribution – HTBH38
and NHTBH38 (barrier heights), dipole moments, and polarizabilities – from κMP2 over a range of κ values.

κMP2 W4-11 RSE43 HTBH38 NHTBH38 Dipoles Polarizabilities
0 (HF) 55.72 4.92 19.07 16.14 12.07 6.93

1 9.65 1.43 6.94 6.45 7.51 5.91
1.1 9.08 1.33 6.47 5.81 6.82 5.53
1.2 8.71 1.24 6.09 5.27 6.24 5.19
1.3 8.50 1.16 5.79 4.81 5.75 4.89
1.4 8.38 1.10 5.55 4.41 5.34 4.61
1.45 8.34 1.07 5.44 4.24 5.17 4.49
1.5 8.32 1.04 5.35 4.08 5.01 4.37
1.6 8.31 0.99 5.20 3.81 4.73 4.16

∞(MP2) 8.73 0.77 4.64 2.55 3.60 2.17

24



Table 7: RMSDs [kcal/mol] (and RMSRD [%] for electric properties) for main group thermochemistry –
W4-11 and RSE43 – and sets which are particularly sensitive to the electron density distribution – HTBH38
and NHTBH38 (barrier heights), dipole moments, and polarizabilities – from σ2MP2 over a range of σ values.

σ2MP2 W4-11 RSE43 HTBH38 NHTBH38 Dipoles Polarizabilities
0 (HF) 55.72 4.92 19.07 16.14 12.07 6.93
0.4 9.90 1.49 6.71 6.39 7.85 6.41
0.6 9.02 1.22 5.62 4.70 6.17 5.37
0.8 8.77 1.06 5.12 3.76 5.27 4.69
1.0 8.71 0.95 4.87 3.24 4.75 4.24
1.2 8.70 0.88 4.75 2.94 4.42 3.92
1.4 8.71 0.84 4.68 2.78 4.21 3.69

∞(MP2) 8.73 0.77 4.64 2.55 3.60 2.17

W4-11 is the only test set for which any choice of regularization improves upon conven-

tional MP2, yet with κ = 1.1 and σ = 0.4 (the optimal values for the NCI and TM sets)

the RMSDs are slightly worse at 9.08 and 9.90 kcal/mol (vs 8.73 kcal/mol for conventional

MP2). This choice of κ worsens the MP2 accuracy by factors of 1.7, 1.4, 2.3, 1.9, and 2.5

for RSE43, HTBH38, NHTBH38, dipoles, and polarizabilities, respectively. That said, the

absolute deviations from conventional MP2 are only 0.56, 1.83, and 3.27 kcal/mol; and 3.22

and 3.37 percentage points for the respective test sets. For σ = 0.4, these factors are equal

or slightly larger, at 1.9, 1.4, 2.5, 2.2, and 3.0.

No significant correlation was found between the average HOMO-LUMO gap (of all

species) and the ratio of the RMS(R)Ds from regularized vs conventional MP2, yet we point

out that the HOMO-LUMO gaps, respectively, are 13.4, 11.8, 14.3, 12.5, 12.4, and 13.1 eV

for W411, RSE43, HTBH38, NHTBH38, dipoles, and polarizabilities. Compared to the NCI

sets for which regularization yielded very large improvements, such as S22 and L7, these gaps

are relatively large, with the possible exception of RSE43 (whose gap lies between those of

S66 and XB40).

It is clear that regularizing MP2 first-order amplitudes can affect the accuracy of the

predicted charge-density distribution, for better or worse. The case of CO (Table 4) provides
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an example of a substantial improvement. We now focus on the hydrogen fluoride molecule

(FH), to investigate a representative case from the dipole moment set for which regularization

worsens MP2’s prediction (albeit only slightly and quite slowly with increasing regularization

strength).

Table 8: Dipole moment in Debye as a function of κ regularization parameter for the FH molecule, in the
aug-cc-pVTZ basis. κ = 0 corresponds to HF theory, and κ→∞ corresponds to conventional MP2 theory.

Method Dipole Moment % dev. CCSD

κMP2 (κ = 0) 1.93 6.3
κMP2 (κ = 0.7) 1.88 4.0
κMP2 (κ = 0.8) 1.87 3.3
κMP2 (κ = 0.9) 1.86 2.7
κMP2 (κ = 1.0) 1.85 2.2
κMP2 (κ = 1.1) 1.84 1.8
κMP2 (κ = 1.2) 1.84 1.4
κMP2 (κ = 1.3) 1.83 1.1
κMP2 (κ =∞) 1.80 0.4
CCSD 1.81
CCSD(T) 1.79

In light of our previous analysis, showing that MP2 overcorrelates π interactions both

in the context of stacked NCIs and dative bonding involving multiple electron pairs, we

immediately notice that the bonding in FH is purely covalent, and that there are no π-

interactions. Furthermore, FH contains only one bonding orbital in its valence shell, involving

correlations between two electrons. MP2 is tailor-made for this type of σ-bonding, and the

shift from the MP2 prediction toward that from HF (which, in effect, is what is accomplished

via intermediate regularization strengths) is relatively small vs the shift that occurs for the

dipole of CO, and certainly counterproductive in terms of accuracy. We also note that

although FH has the same HOMO-LUMO gap as CO (18.5 eV), the LUMO of FH is a

Rydberg orbital (while the HOMO is of π symmetry) which implies that the first-order

amplitude corresponding to the HOMO to LUMO transition is small on the grounds of a

small numerator. Therefore the relevant frontier gap is likely to be larger than that of CO,
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hence the accuracy of conventional MP2.

6 Conclusions

κ and σ2 MP2 regularization have been shown to be viable models for a wide variety of

non-covalent interactions, (typically closed shell) transition metal reactions, and main-group

thermochemistry as represented by the W4-11 set. The energy-gap dependent forms are

physically justifiable, in contrast to the spin-component-scaled or attenuated MP2 models.

Overestimated MP2 first-order amplitudes (vs infinite-order theories) are more prominent for

smaller orbital energy gaps, and in situations where the neglect of inter-electron-pair correla-

tions is especially consequential. We find, quite generally, that interacting π systems fit this

bill, both in the context of dispersion interactions between stacked, polarizable monomers

and dative bonding that involves the dynamical correlation of more than one pair of elec-

trons in a small region of space in that leading first-order amplitudes are overestimated.

Energy-gap dependent regularizers attenuate those overestimated first-order amplitudes and

significantly improve the description of dispersion-bound complexes and dative bonds.

Comparing κ and σ2 regularizers, similar improvements in statistical accuracy over con-

ventional MP2 can be obtained. Considering the range of data presented here, we recommend

κ = 1.1 and σ = 0.4. From the standpoint of ease of implementing nuclear gradients and

other properties, we think there is some advantage to κ-based regularization,60 although the

σ2-MP2 gradient has also been successfully implemented.59 More broadly, the exploration of

other computationally tractable energy-gap-dependent regularization forms would be worth-

while in the future: could even better results be obtained? Likewise, a regularizer whose

strength depends on the magnitude of the amplitudes directly is an interesting option to

explore though the implementation of molecular properties could be challenging.

The presently-investigated approaches to regularizing MP2 can also be understood as
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an interpolation between zero- and infinite-valued limits of the regularization parameter,

representing HF and conventional MP2, respectively. Regularization is, then, most effec-

tive when HF underestimates and conventional MP2 overestimates – conditions which are

satisfied with relatively small HOMO-LUMO gaps and/or collective π-electron effects (as

beautifully exemplified in S22, L7, and the TM sets). The good correlation (Fig. 3) between

the average HOMO-LUMO gap and the change in accuracy relative to conventional MP2

implies that we can expect systems with gaps larger than some threshold to be worsened by

κ or σ2 regularization. This was predicted from the trend in the NCI sets shown in Fig. 3.

Another thing to note is that RSE43 and the other sets which are degraded by regularization

incidentally are known to be very sensitive to the charge-density distribution, namely electric

dipole moments and polarizabilities, radical stabilization energies, and barrier heights.

In a previous work on regularized orbital optimized MP2,60 κ = 1.45 was recommended

based on training by only the W4-11 set, in addition to requiring Coulson-Fischer points to

occur at shorter bond distances going from C2H6 to C2H4 to C2H2. Our present work reveals

that while this value is roughly optimal for the W4-11 set, a significantly smaller value of

1.1, corresponding to stronger regularization, is recommended for most NCI and TM sets

while no regularization may be preferable for systems with very large HF energy gaps (e.g.

> 12.4 eV). It will be interesting and useful to carefully revisit the optimal choice of κ for

κ-OOMP2 in light of the results presented here, as well as in light of the use of that method

for distinguishing artificial and essential symmetry-breaking.26 We hope to report a study

that addresses this question in due course.

Our group has previously shown that orbital choice is important in both perturbative

and coupled-cluster approaches.36,68,93,94 In this context, it is rather remarkable that for the

cases investigated presently the use of HF orbitals leads to excellent results in the context

of regularized MP2.

Finally, another significant step forward that we would like to emphasize is our use of
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TM systems along with standard main-group test sets on the same footing. The majority

of (mono-metal) TM complexes do not exhibit static correlation, and in our view there

is no reason such systems should not be included in training sets for the development of

quantum chemical methods such as regularized MP2. A second point is that our findings

challenge the commonly accepted assumption that second-order PT is generally unsuitable

for transition metals, as regularization largely eliminates the drastic errors previously found

for systems such as metal-carbonyl complexes (and those with metal-ethene bonds which also

represented large errors in the MOR39 set). Furthermore, 2-3 fold reductions in statistical

errors in the MOR39 and MCO9 sets with κMP2 (or σ2MP2) can be obtained with the same

regularization parameter that is simultaneously nearly optimal for NCI sets such as S22 and

L7. That said, we realize that closed-shell systems are not representative of the whole of TM

chemistry, and are investigating the κ and σ2 regularization for species with higher and/or

changing spin multiplicities.

We are optimistic that this study could pave the way for future development of double-

hybrid density functionals based on nonlocal correlation expressions that are more appropri-

ate than conventional MP2 for large dispersion-bound systems and organometallic bonding,

yet still free of self-correlation errors. κMP2 and σ2MP2 are promising candidates in this

regard. It is also interesting to examine orbital optimized MP2 for open and closed shell TM

systems with the stronger regularization parameter that this work shows is necessary. We

hope to report on this in due course.
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(65) Almlöf, J. Elimination of energy denominators in Møller—Plesset perturbation theory

by a Laplace transform approach. Chem. Phys. Lett. 1991, 181, 319–320.

(66) Lee, J.; Head-Gordon, M. Two single-reference approaches to singlet biradicaloid prob-

lems: Complex, restricted orbitals and approximate spin-projection combined with

regularized orbital-optimized Møller-Plesset perturbation theory. J. Chem. Phys. 2019,

150, 244106.

(67) Bertels, L. W.; Lee, J.; Head-Gordon, M. Third-order Møller–Plesset perturbation the-

ory made useful? Choice of orbitals and scaling greatly improves accuracy for ther-

mochemistry, kinetics, and intermolecular interactions. J. Phys. Chem. Lett. 2019, 10,

4170–4176.

(68) Bertels, L. W.; Lee, J.; Head-Gordon, M. Polishing the Gold Standard: The Role

of Orbital Choice in CCSD (T) Vibrational Frequency Prediction. J. Chem. Theory

Comput. 2020,

(69) Rezác, J.; Riley, K. E.; Hobza, P. S66: A well-balanced database of benchmark inter-

action energies relevant to biomolecular structures. J. Chem. Theory Comput. 2011, 7,

2427–2438.

(70) Rezac, J.; Riley, K. E.; Hobza, P. Benchmark calculations of noncovalent interactions

of halogenated molecules. J. Chem. Theory Comput. 2012, 8, 4285–4292.

(71) Rezac, J.; Hobza, P. Describing noncovalent interactions beyond the common approx-

imations: How accurate is the “gold standard,” CCSD (T) at the complete basis set

limit? J. Chem. Theory Comput. 2013, 9, 2151–2155.

38



(72) Sedlak, R.; Janowski, T.; Pitonak, M.; Rezac, J.; Pulay, P.; Hobza, P. Accuracy of

quantum chemical methods for large noncovalent complexes. J. Chem. Theory Comput.

2013, 9, 3364–3374.

(73) Al-Hamdani, Y. S.; Nagy, P. R.; Zen, A.; Barton, D.; Kállay, M.; Brandenburg, J. G.;
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