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1 Abstract 

Electrochemical reactors often employ high surface area electrocatalysts to accelerate volumetric 

reaction rates and increase productivity. While electrocatalysts can alleviate kinetic overpotentials, 

diffusional resistances at the pore-scale often prevent full catalyst utilization. The effect of 

intraparticle diffusion on the overall reaction rate can be quantified through an effectiveness factor 

expression governed by the Thiele modulus parameter. This analytical approach is integral to the 

development of catalytic structures for thermochemical processes and has previously been 

extended to electrochemical processes by accounting for the relationship between reaction kinetics 

and electrode overpotential. In this paper, we illustrate the method by deriving the expression for 

the potential-dependent Thiele modulus and using it to quantify the effectiveness factor for porous 

electrocatalytic structures. Specifically, we demonstrate the application of this mathematical 

framework to spherical microparticles as a function of applied overpotential across catalyst 

properties and reactant characteristics. The relative effects of kinetics and mass transport are 

related to overall reaction rates, revealing markedly lower catalyst utilization at increasing 

overpotential. Subsequently, we generalize the analysis to different catalyst shapes and provide 

guidance on the design of porous catalytic materials for use in electrochemical reactors. 

Keywords: porous electrocatalyst, actitve area utilization, electrochemical engineering, Thiele 

modulus, effectiveness factor 
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2 Introduction 

Porous architectures have been strategically employed in heterogeneous catalytic processes to 

enhance volumetric reaction rates by increasing active site density. However, there exists a 

trade-off with mass-transport through the porous catalyst, which impacts the effective use of these 

catalyst sites. Classical approaches in chemical reactor design and engineering introduce an 

effectiveness factor to assess the ratio between the observed reaction rate and the reaction rate if 

the entire catalyst surface area been exposed to bulk concentration conditions. Intuitively, particle 

geometry (i.e., size and shape), catalyst surface reactivity, and intraparticle diffusion all impact the 

effectiveness factor. A dimensionless parameter, commonly termed the Thiele modulus, 

conveniently describes the relative balance between kinetic and mass transport resistances in the 

catalyst particle, quantifying the relation between catalyst particle size and activity, and was 

explored in Thiele’s seminal 1939 paper.1–5 Specifically, the Thiele modulus is the ratio of a 

reaction rate to a diffusion rate. At large Thiele modulii, overall reaction rate is limited by 

diffusional resistance and the reaction is confined to the outer catalyst layers, whereas at small 

Thiele modulus values, the overall reaction rate is limited by the catalyst volume (i.e., total amount 

of accessible pore surface area). Generally, increases in this dimensionless group indicate mass-

transport-limited behavior and a more non-uniform concentration profile throughout the catalyst.  

Historically, the Thiele modulus has been used to inform materials design for thermochemical 

processes, wherein relevant reactions are driven by temperature and pressure, supporting the 

development of effective porous media used in catalytic, separation, and adsorption 

technologies.6,7 This analytical approach can be extended to evaluate catalysts for electrochemical 

processes, but the potential-dependence of reaction rates requires a reformulation of the traditional 

effectiveness factor. Unlike temperature and pressure, which still impact reaction kinetics and 
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mass transport in electrochemical systems, potential primarily impacts the reaction rate as it 

perturbs the free energy of the electrode-electrolyte interface, where the heterogeneous reactions 

occur, but does not typically impact bulk electrolyte properties.8 

Traditional reactor engineering approaches have been extended in the development of 

effectiveness factors for electrochemical systems across multiple length scales. These approaches 

have notably been explored in room temperature fuel cells for modeling the activity of 

agglomerates, which can then be incorporated into macroscopic porous electrode models9 or 

multiscale simulations.10 Giner and Hunter first introduced the concept of flooded agglomerates to 

study Teflon-bonded gas diffusion electrodes, predicting the doubling of Tafel slopes in porous 

electrodes at higher current densities due to mass transport limitations from oxygen diffusion.11 

Stonehart and Ross developed a framework to use effectiveness factors in porous layers to measure 

the kinetics of electrocatalysts with high rate constants as well as measure their surface poisoning 

by chemisorbed species, a demonstration which further accentuated the overlap between the fields 

of electrocatalysis and gas-phase heterogeneous catalysis.12 Iczkowski and Cutlip used the Thiele 

modulus for spherical agglomerates to determine the breakdown of overpotentials from ohmic and 

transport losses in fuel cell cathodes.13 The work of Perry et al. modeled mass transport behavior 

in both liquid-electrolyte and polymer-electrolyte fuel cell cathodes by using the rate expression 

for spherical agglomerates embedded into the catalyst layer and adding the effect of ionic mass 

transport in the electrolyte phase for the case of the liquid-electrolyte model.14 Further studies on 

modeling agglomerates and effectiveness factors in room-temperature fuel cells have refined and 

extended modeling and experimental approaches.15–23 In solid oxide fuel cells, Costagmagna et al. 

modeled the active functional catalyst layer using an effectiveness factor approach, where the 

modified Thiele modulus compared the ratio between rates of reaction and ionic charge transport 
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through the active layer;24,24 subsequently, Shin and Nam incorporated Butler-Volmer kinetics into 

the rate expression,25  Baek et al. used this framework to hypothesize performance degradation,26 

and Nam investigated the influence of various charge transfer coefficients.27 Recently, 

effectiveness factor analysis has also been utilized in gas diffusion electrodes for CO2 reduction to 

model agglomerates28 and as part of the development of an analytical model of the catalyst layer. 

29 Effectiveness factors have been applied to thermo-electrochemical cells,30 particulate bed 

electrodes,31,32 electrocatalysis in metal-organic frameworks,33 and in oxygen reduction 

reactions.34 The array of applications and incorporation across multiple modeling length scales 

highlights the ubiquity of the Thiele modulus / effectiveness factor approach. 

Accordingly, understanding and quantifying the utilization of micrometric porous 

electrocatalysts of uniform composition employed to increase available surface area may be a 

beneficial tool to evaluate new catalytic materials in novel or established systems where this 

approach has remained unused. For example, recent efforts to improve the performance of redox 

flow batteries have included the deposition of high surface carbonaceous microparticles onto the 

surface of carbon-fiber bed electrodes.35–39 While some of the reported surface areas exceeding 

500 m2 g–1 are 2–3 orders of magnitude larger than the low surface area fibrous scaffolds they are 

deposited on (~0.1 – 10 m2 g–1),40 cell-level performance improvements are comparatively 

marginal. While a number of factors can impact flow cell performance,41,42 this discrepancy 

suggests incomplete catalyst utilization, or, specifically, that the benefits derived from increasing 

surface area in this fashion have an upper bound. More broadly, understanding the interplay 

between active surface area and diffusion is universally applicable and has utility in 

electrochemical engineering. The diverse portfolio of electrode configurations (e.g., volumetric 

matrixes,8,43,44 packed beds,31,32 slurry electrodes45,46) tailored to various objectives (e.g., removal 
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of trace contaminants,47,48 electro-assisted selective adsorbent design,49 energy storage,44,50 flow 

capacitors51–53) motivate the general mathematical framework presented in this study. This general 

approach can be refined to specific electrochemical systems by appropriate selection of the 

reaction term and/or modeling domain.   

Here, we present the potential-dependent Thiele modulus to quantify the effectiveness factor 

and utilization of porous electrocatalysts as functions of particle and reactant properties. We 

develop formulations to assess effectiveness factors as a function of applied potential using both 

Tafel and Butler–Volmer kinetics, and assuming one-dimensional reaction-diffusion through a 

porous sphere. We then outline design principles for electrocatalyst sizing based on desired 

utilization. Subsequently, we explore and quantify internal transport limitations arising from 

diffusional processes within the catalyst and external transport limitations arising from mass 

transfer from the bulk electrolyte to the outer surface of the catalyst. Finally, we extend the model 

to other common catalyst geometries using a shape factor analysis. While the reactant and catalyst 

conditions used in this work are based on an aqueous electrolyte at room temperature, the 

mathematical framework is generalizable and applicable to porous electrocatalysts across a range 

of conditions.  
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3 Model Development 

3.1 Assumptions and formulation 

The model described herein considers the effectiveness factor in porous, spherical electrocatalysts 

(depicted in Figure 1). In this treatment, we contemplate a single-electron oxidation half-cell 

reaction (i.e., free electrons are treated as reactants or products) under isothermal conditions using 

full Butler–Volmer kinetics and the Tafel approximation. Alternative reaction orders and 

combinations are not considered in this treatment but can be incorporated by changing the reaction 

term, for which additional mathematical derivation may be needed. We assume dilute solution 

theory holds for describing ion transport properties.43 By convention, oxidative currents are 

positive, while reductive currents are negative. Three distinct concentration regions are considered, 

specifically the bulk region (Cbulk), the external boundary layer from the bulk to the surface of the 

catalyst (Cexternal), and the internal porous electrocatalyst (Cinternal). The electrolyte solution is 

treated as a typical aqueous electrolyte consisting of a dissolved electroactive species with excess 

supporting salt. Several assumptions are made about the catalyst particle and its interaction with 

the surrounding electrolyte. Specifically, we assume that i) the electrolyte wets the entirety of the 

particle; ii) the physical properties of the particle (e.g., porosity and tortuosity) are spatially 

invariant and can be approximated by a single value; and iii) the species diffusion coefficient and 

rate constant remain at the same values throughout the particle.2,3,5 As such, we inherently assume 

that continuum behavior of the electrolyte holds throughout the catalyst and neglect non-idealities 

that may arise in confined spaces of nanometric dimensions,54–56 setting a lower bound on the 

particle and pore sizes that may be considered via this approach. We neglect ohmic losses across 

the particle as these contributions are usually minor in comparison to the charge transfer and mass 

transfer losses. More specifically, potential gradient in the solid phase is assumed to be negligible 
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because the electronic conductivity in the catalyst solid phase is typically orders of magnitude 

greater than the solution-phase conductivity,57,58,20 though we refer the reader to other works that 

include gradients in the solid matrix in porous electrodes.9,17,59–61 Furthermore, if the particle is 

electronically conductive, only the electrolyte conductivity is significant, and if the cross-sectional 

area traversed by the reactants and supporting salt dissolved in the solvent is identical, the ohmic 

drop across the particle (  (V)) can be estimated as Equation (1):12 

  (1) 

where n (-) is the number of electrons transferred, F (C mol–1) is the Faraday constant,     

ΔC (mol cm–3) is the maximum possible concentration drop across the pellet,  (S cm–1) is the 

effective conductivity of the solution, and  (cm2 s–1) is the effective reactant diffusivity through 

the particle. The effective diffusivity in the catalyst pores is assumed to be , 

where  and  are the porosity and tortuosity of the catalyst pellet, respectively, and  

(cm2 s–1) is the molecular diffusivity of the reactant species in the bulk electrolyte absent the 

influence of the catalyst particle.2 Based on this expression, the order of magnitude ohmic loss is 

<< 1 mV for reasonable ranges of bulk active species electrolyte concentrations (ca. 5 × 10–4 mol 

cm–3, or equivalently, 0.5 mol L–1), effective diffusion coefficients (ca. 10–6 cm2 s–1), and effective 

conductivities (ca. 0.2 S cm–1) observed in typical aqueous electrolytes. Thus, as the catalyst size 

is relatively small, the overpotential in the particle remains constant.12,17,62 Considerations for 

potential drop in the electrolyte phase on modeling domains of larger scale (i.e., catalyst layers 

and diffusion media) have been extensively covered in prior art.9,16,41,62,21  
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Figure 1 – Modeling domain. A two-dimensional representation of the reactant concentration in 
a spherical porous electrocatalyst. The concentration profile through the modeling domain can be 
divided into three distinct regions, namely the bulk (Cbulk), the external boundary layer (Cexternal), 
and the internal structure (Cinternal). Important physical properties of the electrocatalyst, including 
bulk porosity (ecat), bulk tortuosity (tcat), and volumetric surface area (av), are listed on the 
schematic. The pore-phase and the solid-phase of the catalyst are represented by blue and gray, 
respectively. 
 

3.2 Tafel Kinetics 

First, consider a species A irreversibly oxidizing to species B in a single-electron half-cell reaction 

(n = 1) as shown in Equation (2): 

  (2) 

The expression for the reaction rate assuming Tafel kinetics relating current to the applied 

overpotential for the oxidation reaction can be written as Equation (3): 

  (3) 
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where  (mol cm–2 s–1) is the reaction rate,  (mA cm–2) is the current density,  (cm s–1) is the 

potential-dependent heterogeneous forward rate constant, and cA (mol cm–3) is the concentration 

of species A. 

The electrochemical rate constant, , can be written in terms of the standard heterogeneous rate 

constant, (cm s–1) in Equation (4) as follows:63 

  (4) 

where (-) is the forward charge-transfer coefficient, R (J mol–1 K–1) is the universal gas 

constant, T (K) is the absolute temperature, and (V) is the overpotential, defined here as 

, where (V) is the potential and (V) is the formal potential. 

The derivation of the effectiveness factor for a porous sphere that is a function of the Thiele 

modulus reflects traditional chemical engineering treatments,2,3 and, for completeness, is provided 

in Section 1 of the Supporting Information. The non-dimensionalized differential equation with 

boundary conditions of 1) reactant concentration at the surface of the sphere equal to the bulk 

concentration,  (mol cm–3), and 2) zero-flux at the center of the sphere can be written as 

Equation (5): 

  (5) 

The dimensionless concentration and dimensionless position are defined as  and 

, respectively, where r (cm) is the coordinate radius, and Rp (cm) is the particle radius; 
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the dimensionless number  is the Thiele modulus, written for electrochemical rate constants with 

units of cm s–1 as Equation (6): 

  (6) 

where (cm–1) is the surface area to volume ratio, or volumetric surface area, of the catalyst 

particle. We note that the inclusion of terms in the differential equation indicates that the scaling 

of the kinetics and diffusion are on the same order of magnitude. The first boundary condition also 

implies rapid mass transfer through the boundary layer compared to mass transfer inside the 

sphere; this assumption is lifted in Section 4.2, where external transport limitations are explicitly 

treated. 

The solution to Equation (5) that gives the dimensionless concentration profile is Equation (7): 

  (7) 

The effectiveness factor, Η, compares the observed reaction rate in the presence of diffusional 

transport limitations through the porous electrocatalyst ( ) to the reaction rate in the presence 

of bulk electrolyte concentrations ( ). The relationship is given by Equation (8): 

  (8) 

where  (cm3) is the geometric volume of the particle. Substituting terms and rearranging leads 

to an expression of the effectiveness factor for any first-order reaction in a sphere, Equation (9): 
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  (9) 

Introducing the potential-dependent heterogeneous rate constant, , into Equation (6) yields a 

modified Thiele modulus, Equation (10): 

  (10) 

where the equation can be separated into two dimensionless entities, an overpotential-independent 

parameter, , and an overpotential-dependent parameter, E, shown in Equation (11): 

  (11) 

is the conventional Thiele modulus squared without potential dependence, relating reaction 

kinetics to diffusion through the characteristic length of the particle. Note the above derivation is 

analogous for a reduction reaction. The formulation above is similar to the treatments that can be 

found in references 14,17,20,62 . The combination of Equation (9) and the dimensionless expression 

in Equation (11) result in a potential-dependent effectiveness factor for a porous sphere. Providing 

input values for the parameters in Equation (11) enables evaluation of catalyst utilization, as will 

be expanded upon in subsequent sections. 

3.3 Butler–Volmer Kinetics 

A similar derivation can be performed for a reversible single electron transfer (n = 1) described by 

Butler–Volmer kinetics, as shown in Equation (12): 

  (12) 
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Assuming that the reactant concentration at the outer surface of the particle can be approximated 

by the reactant concentration in the bulk electrolyte (i.e., initially ignoring mass transport effects), 

the reaction-rate flux is described by Butler–Volmer kinetics with Equation (13): 

  (13) 

where  (cm s–1) is the potential-dependent forward rate constant (here, anodic), and (cm s–1) 

is the potential-dependent reverse rate constant (here, cathodic). Analogous to , the 

electrochemical rate constant can be written in Equation (14) as: 

  (14) 

Substitution of Equations (4) and (14) into Equation (13) leads to Equation (15): 

  (15) 

With Butler–Volmer kinetics, the Thiele modulus now includes forward and backward reaction 

rates, and is defined as Equation (16): 

  (16) 

Similarly, the Thiele modulus can be deconvoluted into two dimensionless entities, shown in 

Equation (17): 

  (17) 
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The effectiveness factor for the Butler–Volmer reaction is identical to Equation (9) with the only 

difference being the use of Equation (16) as the Thiele modulus; the full derivation for the Butler–

Volmer effectiveness factor and recovery of Equation (16) can be found in the Appendix. 

Computational analyses were executed in MATLABÒ R2019a on a Dell Latitude 7280 laptop 

computer with an Intel® Core™ i7-6600U processor (2 Cores, 2.60 GHz) and random-access 

memory of 16 GB. All the calculations for multiples geometries (e.g., spherical, slab, annulus; vide 

infra) and generated plots were run on a single script that required ca. 1.5 – 2 min to execute. 

3.4 Model Output 

We next examine use of the model for fixed parameters across varying applied oxidative 

overpotential. Figure 2a shows the dimensionless concentration as a function of dimensionless 

length at different overpotentials for the full Butler–Volmer (dashed lines) kinetics and the Tafel 

approximation (solid lines) for a fixed = 1. The transfer coefficient is assumed to be 0.5 for 

both the forward and reverse reactions, with a single-electron transfer. The modified, potential-

dependent Thiele modulus for various values of is shown as a function of overpotential in 

Figure 2b, used to calculate the effectiveness factor in Figure 2c. As expected, an apparent 

deviation at low overpotential between the kinetic treatments disappears at greater applied 

potentials as the Tafel approximation becomes increasingly accurate. The deviation between the 

effectiveness factor using Tafel and Butler–Volmer kinetics is initially exacerbated at low 

overpotential as increases; however, the difference between effectiveness factors becomes < 

1% at ca. 100 mV overpotential, which is observable in Figure 2c. Because the model outputs for 

Tafel and Butler–Volmer kinetics are fairly similar, for simplicity, Tafel kinetics are assumed for 

the remainder of this study. 
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Figure 2 – Effectiveness factor through spherical porous electrocatalysts. (a) Dimensionless 
concentration as a function of dimensionless length for various oxidative overpotentials. (b) 
Modified Thiele modulus and (c) effectiveness factor as a function of overpotential for different 

values (zero-potential Thiele modulus). Solid lines are for Tafel kinetics, while dashed lines 
indicate Butler–Volmer (BV) kinetics. 
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4 Results and Discussion 

In the following section, we apply the framework developed in Section 3 to size catalyst particles 

and generate polarization curves. We consider two regimes where transport effects take place5 

(also depicted in Figure 1). Internal transport limitations arise when the reaction rate greatly 

exceeds the rate of reactant diffusion through the pore space of the catalyst particle. External 

transport limitations result as the reactant diffuses from the bulk to the catalyst surface through 

the boundary layer surrounding the particle. In Section 4.1, we consider solely internal transport 

limitations; in doing so, we implicitly assume rapid external mass transport (i.e., external transport 

limitations have a negligible effect). In Section 4.2, the assumption for rapid external mass 

transport is lifted, and both internal and external transport limitations are assessed. 

4.1 Internal Transport Limitations 

We now use the effectiveness factor derived in Section 2 to estimate the interfacial current density, 

, in the presence of internal transport limitations, shown in Equation (18): 

  (18) 

where Η is the effectiveness factor. Substituting for  and rearranging, we arrive at an expression 

for dimensionless internal current density, Equation (19): 

  (19) 

The dimensionless current density increases exponentially with respect to overpotential. In the 

ideal scenario, Η is 1. The presence of internal transport limitations, however, reduces the 

dimensionless current density, lowering catalyst utilization. 
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The relation between current density and effectiveness factor can be used to size catalysts to match 

a desired utilization efficiency, as shown in Figure 3. Lines in this figure represent the upper bound 

of particle radius for a given desired particle-specific current density for fixed effectiveness factors 

and volumetric surface areas. As particle radius increases, the efficiency (i.e., effectiveness factor) 

decreases; thus, the current density must be lowered to attain the desired efficiency. Similarly, as 

the volumetric surface area increases for fixed desired efficiency, the maximum allowable particle 

radius decreases accordingly. To generate Figure 3, fixed = 10–6 cm2 s–1 and                           

= 5 × 10–4 mol cm–3 (also 0.5 mol L–1) were selected as representative diffusivities and 

reactant concentrations.54,58,64 Ultimately, more precise values will depend on the specific 

electrolyte system (i.e., electrolyte composition, reactant concentration) and catalyst properties 

(i.e., tortuosity, porosity), which are combined into the effective diffusivity shown here. 
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Figure 3 – Utilization and catalyst sizes. Particle-specific current density as a function of particle 
radius for the desired effectiveness factor (Ηmax) and fixed volumetric surface areas ( ).                  

 = 10–6 cm2 s–1 and  = 5 × 10–4 mol cm–3 were held constant. The volumetric surface area 
is denoted by the line color, while the effectiveness factor is denoted by the line style. As particle 
volumetric surface area increases, the maximum allowable particle size at a given current density 
decreases. Similarly, increasing the utilization efficiency results in a lower maximum particle size. 

 

The influence of the effectiveness factor on catalyst performance can also be visualized using 

polarization curves. Figure 4a shows the dimensionless internal current density as a function of 

overpotential according to Equation (19), with the ideal case (no losses, H = 1) shown as the 

dotted black line, while the bold red, blue, and green curves represent the polarization curves for 

the three kinetic rate constants ( ) of increasing orders of magnitude (10–5, 10–4, and 10–3 cm s–

1, respectively). Fixed values of = 3 µm, = 10–6 cm2 s–1, and  = 105 cm–1 were used 

based on experimentally-informed parameters.54,58,64 The volumetric surface area, , is the 

product of the catalyst particle density and BET-derived surface area from nitrogen physisorption, 
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based on approximate densities and surface area of porous carbon particles.65–67 The lightly shaded 

lines in between the bold lines represent intermediate kinetic rate constant values. Increments 

of 10–5 cm s–1 were used to transition from the red to blue curves, while increments of 10–4 cm s–1 

were used to transition from the blue to green curves. We note that while the rate constant was 

varied in Figure 4, changing the particle size by the square root of the proportional change in the 

kinetic rate constant has an equivalent effect on the effectiveness factor. As the kinetic rate constant 

linearly increases, the dimensionless current density gradually consolidates. Figure 4b shows the 

corresponding effectiveness factors which evince severe limitations. The magnitude of the 

reduction in effectiveness is increasingly stark as the intrinsic kinetic rate constant increases, and 

intraparticle diffusion becomes limiting. The results indicate that even if the entire surface area of 

the catalyst particle were accessible for the electrochemical reaction, diminishing returns would 

be observed due to internal diffusional resistances. 
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Figure 4 – Tafel plots for several kinetic rate constants at fixed diffusivity, volumetric surface 
area, and particle size. (a) Dimensionless internal current density as a function of overpotential. 
The black, dashed curve represents ideal polarization (H = 1), while the solid red, blue, and green 
represent the three different kinetic rate constants of 10–5, 10–4, and 10–3 cm s–1, respectively. The 
lightly shaded lines are increments in the rate constant, either 10–5 or 10–4 cm s–1 as indicated in 
the figure. (b) Effectiveness factor as a function of overpotential. The reaction rates follow the 
same coloring scheme as in (a). 
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4.2 External Transport Limitations 

To account for the effect of external mass transport from the bulk concentration to the outer surface 

of the catalyst particle, the total reaction rate on the interior of the catalyst particle is set equal to 

the reactant flux to the external surface (i.e., no accumulation on the catalyst surface boundary due 

to fouling, surface species absorption, etc.). Here, we assume that the particle is surrounded by 

electrolyte of uniform concentration without hindrance or obstruction from other catalyst particles, 

substrates, or other system components.2,3,5 Assuming that contributions from reactions along the 

outer surface of the particle are negligible compared to contributions from reactions throughout 

the volumetric internal surface area of the particle,2,3,5 and including the impact of the effectiveness 

factor on the reaction rate throughout the particle, results in Equation (20) for the flux balance: 

  (20) 

where (cm s–1) is the external mass transfer coefficient accounting for effects of diffusion and 

convection, and (cm–1) is the catalyst shape factor, defined as the ratio of the particle external 

surface area to volume. Rearranging to solve for an expression for the surface concentration yields 

Equation (21): 

  (21) 

Thus, the expression for the current density is now given by Equation (22): 

  (22) 
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Now, an expression for dimensionless current density including both internal and external 

transport with Ω as an overall effectiveness factor can be written as shown in Equation (23): 

  (23) 

The effect of bulk mass transport is seen in Figure 5a, where the mass transfer coefficient is varied 

for fixed conventional Thiele modulus ( ), and the current density at η = 0.3 V is shown on the 

ordinate. As the mass transport coefficient increases, losses due to reactant transport from the bulk 

to the catalyst surface decrease, and the dimensionless current density ultimately reaches a constant 

value which is dictated solely by internal diffusive losses through the catalyst particle. In other 

words, Ω ≈ Η in the limit of a high mass transfer coefficient. As increases, the limiting 

dimensionless current density has a lower value, which reflects poor catalyst particle utilization, 

as shown on a log-log base-10 scale with in Figure 5b. 
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Figure 5 – Mass transfer dependence. (a) Dimensionless current density as a function of mass 
transfer coefficient for fixed at η = 0.3 V. (b) Dimensionless limiting current density extracted 

from (a) as a function of . 
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4.3 Extension of Model to General Geometries 

In practice, catalysts assume broad and irregular shapes. To accommodate the range of particle 

morphologies, we describe a simple transformation that can be used to extend the aforementioned 

framework to alternative geometries by using the catalyst volume ( ) to surface area ( ) ratio 

as a characteristic length scale ( ) in accordance with the seminal work of Aris.68 Here, 

we use this facile strategy to analyze additional basic geometries (i.e., slab, cylinder, and annulus) 

as a demonstration for our model generalizability, although we posit that more advanced 

transformations with varying degrees of precision and complexity should also be compatible with 

the model formulation. Derivations for slab and cylinder catalysts are described in detail 

elsewhere;2–4,68 general equations for these geometries are presented in the Section 2 of the 

Supporting Information. A noteworthy geometry for fibrous catalysts is a porous reactive 

annulus that covers an impenetrable core. The porous reactive annulus can be realized via either 

additive or subtractive synthetic strategies. In additive processes, the porous layer is deposited or 

coated onto the fiber using particulate catalysts,69 conformal films,70 or porous mats;71–73 whereas 

in subtractive processes, the porous layer is formed by surface roughening or fiber etching by 

thermal,74,75 chemical,76 or electrochemical77 means.  

 

pV SA

pL V SA=
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Figure 6 – Annulus geometry. Schema showing the annulus geometry and coordinates. is the 
radius of the non-reacting core, while is the shell thickness. The dark gray signifies the non-
porous inert core. In the reactive porous phase, the blue and light gray represent the pore-phase 
and solid-phase of the catalyst, respectively. 

 

Although the annular film morphology and activity varies based on the synthesis route, the 

mathematical framework described here broadly encompasses this category of materials. If the 

porous layer surrounds an impenetrable and nonporous core as a concentric shell, the governing 

equation for the 1D radial diffusion and reaction problem to solve for the dimensionless 

concentration profile becomes Equations (24) and (25):78,79 

  (24) 

  (25) 

where  (-) the dimensionless position,  (cm) the radius of the non-porous core, (cm) the 

thickness of the concentric shell, and  (-) the ratio of the shell thickness to core thickness. A 

schema of the annulus with labeled variables is shown in Figure 6. The full derivation and 
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numerical evaluation of Equation (24) are provided in Section 2 of the Supporting Information. 

The Thiele modulus in this form factor has a diffusion pathway across . We can examine the 

limits of  to ascertain behavior of the annulus at relatively large or small shell thicknesses. As 

 (i.e, ), the effectiveness factor approaches that of an infinite slab. As  (i.e., 

), the effectiveness factor approaches that of a cylinder. 

The numerical solution for an annulus with  = 0.5 as a function of overpotential is shown in 

Figure 7; effectiveness factors for an infinite slab, cylinder, and sphere corresponding to the same 

characteristic lengths are also shown for comparison. At low overpotentials – and consequently 

Thiele modulus — the effectiveness factor increases as the geometry transitions from the sphere 

to the slab. At high overpotentials — and consequently high Thiele modulus — the effectiveness 

factors collapse onto the same curve as diffusive limitations dominate and reactions are confined 

to the external layer, causing all geometries to behave effectively as slabs. Figure 7 may also be 

used to approximate irregular catalysts geometries using the  parameter. 
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Figure 7 – Generalizability for various shape factors. Effectiveness factor as a function of 
overpotential calculated for a flat slab (grey), annulus (red), cylinder (blue), and sphere (green) 
based on their characteristic lengths. The curves collapse onto each other at larger overpotential as 
the reaction utilization shifts towards the outer edges of the catalyst independent of shape. 
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5 Conclusions 

Here we present a general strategy for quantifying potential-dependent effectiveness factors in 

porous electrocatalysts. The methodology extends the traditional Thiele modulus approach to 

include first-order electrochemical reactions, enabling investigation of the effect that diffusional 

losses have on net reaction rate in porous microstructures. Using this framework, we assess 

transport limitations both internally through a spherical particle – from the surface to the center – 

and externally – from the bulk to the surface. We show how this approach may be used to target 

ideal catalyst sizes to achieve desired reaction efficiencies, assuming bulk-averaged morphological 

properties are known. Generally, the model suggests that low effectiveness factors manifest for 

larger driving forces, even at the relatively modest overpotentials examined (≤ 0.3 V). This work 

indicates that effective performance is not only dictated by the electrochemical reaction rate, but 

also by the comparative rate of mass transfer within the system; thus, the insights gained from the 

model findings highlight the existence of an upper-limit for effective surface area, and motivate 

the development of hierarchical structured electrocatalysts to mitigate diffusional pore-scale 

losses. To this end, a shape factor analysis is introduced to accommodate the breadth of catalyst 

geometries that may be used in electrochemical reactors. Future studies aiming to build on these 

methods should contemplate the role of electrolyte velocity and mass transfer coefficients on 

performance, the extension to other electrolyte systems and reaction sequences, along with the 

accurate estimation of the effective diffusion coefficient for liquid-phase reactions in highly 

tortuous microscale catalysts.  
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8 Appendix 

Full Butler–Volmer Kinetics Derivation 

Here, we derive the Thiele modulus for a single-electron reaction described by Butler–Volmer 

kinetics. The reaction rate, , can be expressed as Equation (A1): 

  (A1) 

which can be set equal to Equation (15) in the main text. 

Performing a mass balance, we let the total concentration be defined as C (mol cm–3) as shown in 

Equation (A2): 

  (A2) 

Then, rearranging Equation (A2) and substituting into Equation (A1) results in Equation (A3): 

  (A3) 

Defining a dimensionless parameter K as follows in Equation (A4): 

  (A4) 

Equation (A1) can be rewritten in terms of  and concentration, giving Equations (A5) and 

(A6): 
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  (A6) 

Performing a material balance on the porous sphere (mathematical treatment shown in Section 1 

of the Supporting Information), and assuming that the reactant and product have equal effective 

diffusivities through the particle, we arrive at the following differential equation for a spherical 

particle, shown in Equation (A7): 

  (A7) 

A solution requires rescaling the concentration appropriately to include the total concentration of 

the species, . Non-dimensionalizing the length scale by  results in the 

potential dependent Thiele modulus, Equation (A8): 

  (A8) 

Which is equivalent to Equation (16) in the main text. Re-scaling of Equation (A7) and 

substitution of terms leads to Equation (A9): 

  (A9) 

which is the governing differential equation subject to the surface concentration and symmetric 

boundary conditions. The solution of Equation (A9) leads to a concentration profile for species 

A, Equation (A10): 
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  (A10) 

The effectiveness factor for a sphere with Butler–Volmer kinetics can be derived by relating the 

actual rate of reaction at the external particle surface to the total reaction throughout the entire 

particle volume if the concentration were the same as the outer surface. This leads to Equation 

(A11): 

  (A11) 

Substituting for , inserting the reaction rate, using the scaling for  and modifying by 

 results in Equation (A12): 

  (A12) 

Evaluating the terms and plugging back in to the effectiveness factor yields Equation (A13): 

  (A13) 

Recalling the definition of the Thiele modulus results in Equation (A14): 

  (A14) 
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Which is the same as the effectiveness factor for the first-order reaction shown in Equation (9) in 

the main text, with an additional term for the reverse reaction in the potential-dependent portion 

of the Thiele modulus expression.  
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9 Glossary 

 

List of Symbols 

Symbol Description Units 
ac Exterior volumetric surface area, or shape factor cm–1 
av Volumetric surface area cm–1 
C Concentration mol cm–3 

cA,bulk Bulk electrolyte concentration of species A mol cm–3 
cA,surf Concentration at the surface of the catalyst mol cm–3 
cB,bulk Bulk electrolyte concentration of species B mol cm–3 
Dbulk Molecular diffusivity of reactant species in the bulk electrolyte cm2 s–1 
Deff Effective reactant diffusivity cm2 s–1 

  Formal potential V 
F Faraday constant C mol–1 
i Current density mA cm–2 
K Dimensionless ratio of forward to reverse rate constant -- 
k0 Standard heterogeneous electrochemical rate constant cm s–1 
kf Potential-dependent heterogeneous forward rate constant cm s–1 
km External mass transfer coefficient cm s–1 
kr Potential-dependent heterogeneous reverse rate constant cm s–1 
L Characteristic length scale cm 
n Number of electrons transferred -- 
r Coordinate radius cm 
R Universal gas constant J mol–1 K–1 
rc Radius of the non-porous core in annulus derivation cm 
Rp Particle radius cm 

 Reaction rate flux mol cm–2 s–1 

 Observed reaction rate mol cm–2 s–1 

 Maximum reaction rate mol cm–2 s–1 

 Dimensionless position in annulus analysis -- 
SA Generic catalyst surface area cm2 

T Absolute temperature K 
Vp Generic catalyst volume cm3 

 

Greek 

Symbol Description Units 
 Forward charge-transfer coefficient -- 

 Reverse charge-transfer coefficient -- 

 Electrochemically independent Thiele modulus squared -- 

0
fE

r

obsr
maxr
r!

fa

ra
2g
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 Thickness of the concentric shell cm 
 Porosity of catalyst pellet -- 

 Overpotential dependent parameter -- 
 Overpotential V 

Η Effectiveness factor, internal transport limitations only -- 
 Effective conductivity S cm–1 

 Ratio of the shell to core thickness -- 

 Tortuosity of catalyst pellet -- 

 Thiele modulus -- 
 Dimensionless concentration using bulk concentration as normalizing basis -- 
 Dimensionless position using particle radius as the normalizing basis -- 
 Overall effectiveness factor -- 

   
  

d

cate
E
h

effk
x

catt
f
y
w
W



35 
 

10 References 

1. E. W. Thiele, Industrial & Engineering Chemistry, 31, 916–920 (1939). 

2. O. Levenspiel, Chemical reaction engineering, 3rd ed., p. 668, Wiley, New York, (1999). 

3. H. S. Fogler, Elements of Chemical Reaction Engineering, p. 607–625, Prentice Hall, 
Englewood-Cliffs, (1986). 

4. G. Froment, K. Bischoff, and J. De Wilde, Chemical reactor analysis and design, Wiley, New 
York, (1990). 

5. M. E. Davis and R. J. Davis, Fundamentals of Chemical Reaction Engineering, p. 385, 
Courier Corporation, (2012). 

6. J. Pérez-Ramírez, C. H. Christensen, K. Egeblad, C. H. Christensen, and J. C. Groen, 
Chemical Society Reviews, 37, 2530–2542 (2008). 

7. R. T. Driessen, S. R. A. Kersten, and D. W. F. Brilman, Industrial & Engineering Chemistry 
Research, 59, 6874–6885 (2020). 

8. D. Pletcher and F. C. Walsh, Industrial Electrochemistry, p. 669, Springer Science & Business 
Media, (2012). 

9. J. Newman and W. Tiedemann, AIChE Journal, 21, 25–41 (1975). 

10. R. Zhang, P. He, F. Bai, L. Chen, and W.-Q. Tao, International Journal of Green Energy, 18, 
1147–1160 (2021). 

11. J. Giner and C. Hunter, J. Electrochem. Soc., 116, 1124 (1969). 

12. P. Stonehart and P. N. Ross, Electrochimica Acta, 21, 441–445 (1976). 

13. R. P. Iczkowski and M. B. Cutlip, J. Electrochem. Soc., 127, 1433–1440 (1980). 

14. M. L. Perry, J. Newman, and E. J. Cairns, J. Electrochem. Soc., 145, 5–15 (1998). 

15. T. Duan, J. W. Weidner, and R. E. White, Journal of Power Sources, 107, 24–33 (2002). 

16. A. Z. Weber and J. Newman, Chem. Rev., 104, 4679–4726 (2004). 

17. W. Sun, B. A. Peppley, and K. Karan, Electrochimica Acta, 50, 3359–3374 (2005). 

18. M. Lee, M. Uchida, H. Yano, D. A. Tryk, H. Uchida, and M. Watanabe, Electrochimica 
Acta, 55, 8504–8512 (2010). 

19. X. Zhang, Y. Gao, H. Ostadi, K. Jiang, and R. Chen, Electrochimica Acta, 150, 320–328 
(2014). 



36 
 

20. R. M. Darling, Journal of The Electrochemical Society, 165, F571–F580 (2018). 

21. R. Darling, J. Electrochem. Soc., 166, F3058–F3064 (2019). 

22. R. M. Darling, J. Electrochem. Soc., 167, 084505 (2020). 

23. R. M. Darling and S. F. Burlatsky, J. Electrochem. Soc., 167, 104506 (2020). 

24. P. Costamagna, P. Costa, and V. Antonucci, Electrochimica Acta, 43, 375–394 (1998). 

25. D. Shin and J. H. Nam, Electrochimica Acta, 171, 1–6 (2015). 

26. S. M. Baek, D. Shin, S. Sohn, and J. H. Nam, Fuel Cells, 16, 591–599 (2016). 

27. J. H. Nam, J. Electrochem. Sci. Technol, 8, 344–355 (2017). 

28. Y. Chen, N. S. Lewis, and C. Xiang, J. Electrochem. Soc., 167, 114503 (2020). 

29. J. W. Blake, J. T. Padding, and J. W. Haverkort, Electrochimica Acta, 393, 138987 (2021). 

30. J. H. Kim and T. J. Kang, ACS Applied Materials & Interfaces, 11, 28894–28899 (2019). 

31. K. Scott, Electrochimica Acta, 27, 447–451 (1982). 

32. K. Scott, Electrochimica Acta, 28, 1191–1200 (1983). 

33. B. A. Johnson, A. M. Beiler, B. D. McCarthy, and S. Ott, J. Am. Chem. Soc., 142, 11941–
11956 (2020). 

34. C. Du, X. Liu, G. Ye, X. Gao, Z. Zhuang, P. Li, D. Xiang, X. Li, A. Z. Clayborne, X. Zhou, 
and W. Chen, ChemSusChem, 12, 1017–1025 (2019). 

35. D. Aaron, S. Yeom, K. D. Kihm, Y. Ashraf Gandomi, T. Ertugrul, and M. M. Mench, 
Journal of Power Sources, 366, 241–248 (2017). 

36. M. H. Moghim, R. Eqra, M. Babaiee, M. Zarei-Jelyani, and M. M. Loghavi, Journal of 
Electroanalytical Chemistry, 789, 67–75 (2017). 

37. M. Park, J. Ryu, Y. Kim, and J. Cho, Energy & Environmental Science, 7, 3727–3735 
(2014). 

38. Y. Jiang, Y. Li, J. Zhu, Z. He, W. Meng, H. Zhou, L. Wang, and L. Dai, J. Electrochem. 
Soc., 165, A1813–A1821 (2018). 

39. C. T.-C. Wan, D. López Barreiro, A. Forner-Cuenca, J.-W. Barotta, M. J. Hawker, G. Han, 
H.-C. Loh, A. Masic, D. L. Kaplan, Y.-M. Chiang, F. R. Brushett, F. J. Martin-Martinez, and M. 
J. Buehler, ACS Sustainable Chem. Eng., 8, 9472–9482 (2020). 



37 
 

40. A. Forner-Cuenca and F. R. Brushett, Current Opinion in Electrochemistry, 18, 113–122 
(2019). 

41. A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick, and Q. Liu, J Appl 
Electrochem, 41, 1137 (2011). 

42. Y. Yao, J. Lei, Y. Shi, F. Ai, and Y.-C. Lu, Nature Energy, 1–7 (2021). 

43. J. Newman and K. E. Thomas-Alyea, Electrochemical Systems, p. 672, John Wiley & Sons, 
(2012). 

44. K. Jae Kim, M.-S. Park, Y.-J. Kim, J. Ho Kim, S. Xue Dou, and M. Skyllas-Kazacos, 
Journal of Materials Chemistry A, 3, 16913–16933 (2015). 

45. M. Duduta, B. Ho, V. C. Wood, P. Limthongkul, V. E. Brunini, W. C. Carter, and Y.-M. 
Chiang, Advanced Energy Materials, 1, 511–516 (2011). 

46. Z. Li, K. C. Smith, Y. Dong, N. Baram, F. Y. Fan, J. Xie, P. Limthongkul, W. C. Carter, and 
Y.-M. Chiang, Phys. Chem. Chem. Phys., 15, 15833–15839 (2013). 

47. X. Zhao, B. Jia, Q. Sun, G. Jiao, L. Liu, and D. She, Royal Society Open Science, 5, 180472. 

48. B. P. Chaplin, Acc. Chem. Res., 52, 596–604 (2019). 

49. H. Dong, Z. Wu, M. J. Liu, and W. A. Tarpeh, Chemical Engineering Journal, 407, 127821 
(2021). 

50. L. F. Arenas, C. Ponce de León, and F. C. Walsh, Current Opinion in Electrochemistry, 16, 
117–126 (2019). 

51. V. Presser, C. R. Dennison, J. Campos, K. W. Knehr, E. C. Kumbur, and Y. Gogotsi, 
Advanced Energy Materials, 2, 895–902 (2012). 

52. M. Boota, K. B. Hatzell, E. C. Kumbur, and Y. Gogotsi, ChemSusChem, 8, 835–843 (2015). 

53. T. Tomai, H. Saito, and I. Honma, J. Mater. Chem. A, 5, 2188–2194 (2017). 

54. W. M. Deen, Analysis of Transport Phenomena, (1998). 

55. B. Corry, S. Kuyucak, and S. H. Chung, Chemical Physics Letters, 320, 35–41 (2000). 

56. H. Daiguji, Chem. Soc. Rev., 39, 901–911 (2010). 

57. R. M. Darling and M. L. Perry, J. Electrochem. Soc., 161, A1381–A1387 (2014). 

58. J. D. Milshtein, K. M. Tenny, J. L. Barton, J. Drake, R. M. Darling, and F. R. Brushett, J. 
Electrochem. Soc., 164, E3265–E3275 (2017). 



38 
 

59. M. Secanell, K. Karan, A. Suleman, and N. Djilali, Electrochimica Acta, 52, 6318–6337 
(2007). 

60. V. Ramadesigan, R. N. Methekar, F. Latinwo, R. D. Braatz, and V. R. Subramanian, J. 
Electrochem. Soc., 157, A1328 (2010). 

61. J. W. Haverkort, Electrochimica Acta, 295, 846–860 (2019). 

62. T. F. Fuller and J. N. Harb, Electrochemical Engineering, p. 450, John Wiley & Sons, 
(2018). 

63. R. G. Compton and C. E. Banks, Understanding Voltammetry (Second Edition), p. 429, 
World Scientific, (2011). 

64. S. Zhong and M. Skyllas-Kazacos, Journal of Power Sources, 39, 1–9 (1992). 

65. A. Alazmi, O. E. Tall, M. N. Hedhili, and P. M. F. J. Costa, Inorganica Chimica Acta, 482, 
470–477 (2018). 

66.  https://www.fuelcellstore.com/spec-sheets/vulcan-xc72-spec-sheet.pdf. 

67.  
http://www.mtixtl.com/TIMCALGraphiteandCarbonSuperPConductiveCarbonBlack100g/bag-
EQ-Li.aspx. 

68. R. Aris, Chemical Engineering Science, 6, 262–268 (1957). 

69. K. Amini, J. Gostick, and M. D. Pritzker, Advanced Functional Materials, 30, 1910564 
(2020). 

70. M. H. Gharahcheshmeh, C. T.-C. Wan, Y. A. Gandomi, K. V. Greco, A. Forner‐Cuenca, Y.-
M. Chiang, F. R. Brushett, and K. K. Gleason, Advanced Materials Interfaces, 7, 2000855 
(2020). 

71. D.-S. Yang, J. H. Han, J. W. Jeon, J. Y. Lee, D.-G. Kim, D. H. Seo, B. G. Kim, T.-H. Kim, 
and Y. T. Hong, Materials Today Energy, 11, 159–165 (2019). 

72. X. Zhang, Q. Wu, Y. Lv, Y. Li, and X. Zhou, Journal of Materials Chemistry A, 7, 25132–
25141 (2019). 

73. J. Sun, H. R. Jiang, M. C. Wu, X. Z. Fan, C. Y. H. Chao, and T. S. Zhao, Applied Energy, 
271, 115235 (2020). 

74. B. Sun and M. Skyllas-Kazacos, Electrochimica Acta, 37, 1253–1260 (1992). 

75. K. V. Greco, A. Forner-Cuenca, A. Mularczyk, J. Eller, and F. R. Brushett, ACS Appl. Mater. 
Interfaces, 10, 44430–44442 (2018). 

76. B. Sun and M. Skyllas-Kazacos, Electrochimica Acta, 37, 2459–2465 (1992). 



39 
 

77. Y. Men and T. Sun, Int. J. Electrochem. Sci., 7, 7 (2012). 

78. D. K. Stevens, P. M. Berthouex, and T. W. Chapman, Journal of Environmental 
Engineering, 113, 1149–1155 (1987). 

79. J. P. Lopes, S. S. S. Cardoso, and A. E. Rodrigues, Chemical Engineering Science, 71, 46–55 
(2012). 

 


