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Abstract

We present a formulation and implementation of anisotropic and isotropic electronic

circular dichroism (ECD) using the full semi-classical light–matter interaction operator

within a four-component relativistic framework. The account of both beyond-first-order

light–matter interactions and relativistic effects allows us to investigate the ECD re-

sponse across the electromagnetic spectrum from optical to X-ray wavelengths where

relativistic selection rules and spatial field variations gain increasing importance. We

consider the isotropic and oriented ECD across the valence, sulfur L- andK-edge transi-

tions in the simplest disulfides, H2S2 and (CH3S)2, and evaluate the influence of the full

interaction by comparing to a traditional truncated formulation in the Coulomb gauge

(velocity representation). Additionally, we demonstrate that in the relativistic formal-

ism it is possible to work in the velocity representation, hence keeping order-by-order
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gauge-origin invariance, contrary to multipolar gauge, yet being able to distinguish

electric and magnetic multipole contributions. Going beyond a first-order treatment in

the wave vector is mandatory in the higher-energy end of the soft X-ray region where

the consequent intensity redistribution becomes significant. While the sulfur K -edge

absorption spectrum is essentially unaffected by this redistribution, the signed differ-

ential counterpart is not: at least third-order contributions are required to describe the

differential absorption profile that is otherwise overestimated by a factor of about two.
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1 Introduction

Chirality is fundamental to life on Earth, and the origin of homochirality of natural amino

acids and sugars remains an unresolved question.1 Enantiomers of a chiral molecule interact

differently with chiral objects, such as chiral receptors or left and right circularly polar-

ized light. The former is central in chiral molecular recognition, e.g. drug–receptor binding,

while the latter enables spectroscopic detection of chirality. Electronic circular dichroism

(ECD) is the lowest-order natural chiroptical response: it measures the differential linear

absorption between left and right circularly polarized light in the spectral region of elec-

tronic transitions.2 Many biomolecules are optically active either intrinsically due to the

presence of a chiral center or induced through structural and electronic perturbations by

a chiral environment such as through electronic coupling within a chiral arrangement of

achiral chromophores.3,4 ECD in the valence region is therefore extensively used to provide

stereochemical, conformational and binding information of molecular systems.5 Anisotropic

circular dichroism allows for additional information which would otherwise be lost in the

isotropic signal. As an example, anisotropic ECD was recently proposed as a way to dis-

tinguish different transitions in light-harvesting complex II oriented by its embedding in a

membrane.6,7

While the discovery of natural optical activity in the visible region dates back more

than two hundred years to the work of Arago8 and Biot,9 its existence in the X-ray range

was only established in 1998: the detection of X-ray natural circular dichroism (XNCD)

in non-centrosymmetric crystals,10–13 was enabled by the advent of intense third-generation

synchrotron X-ray sources with full polarization control. Like other resonant core-level spec-

troscopies, XNCD exploits the site- and element-specificity of X-ray probes to provide in-

formation about the local symmetry around the absorbing atom(s). In addition to chiral

crystals, XNCD has also been measured for small organic molecules including several amino

acids (see e.g. Refs. 14–17).

From a multipole expansion of the light–matter interactions in orders of the wave vec-
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tor, the leading-order contributions to ECD (i.e., first order) are governed by the electric-

dipole/magnetic-dipole (E1–M1) and electric-dipole/electric-quadrupole (E1–E2) interfer-

ence terms. The latter is traceless and hence vanishes for isotropic samples. While the

electric-dipole/magnetic-dipole interference dominates in the optical region (in the center-

of-mass frame), it is difficult to observe at K (L1)-edges,18,19 because the magnetic transition-

dipole moment involving the atomic-like 1(2)s-orbitals becomes forbidden within a zeroth-

order approximation in the non-relativistic domain.13,20 The electric-dipole/electric-quadrupole

interference term, on the other hand, gains intensity in the X-ray region, due to its depen-

dency on the spatial variations of the electromagnetic field.20,21 For these reasons, sub-

stantial XNCD signals are expected only for oriented samples, although weak electric-

dipole/magnetic-dipole contributions have been reported in the absence of orientational order

(e.g., in solution or powdered samples19,22).

Theoretical simulations play a key role in the assignment of experimental ECD spec-

tra. Traditionally these rely on the aforementioned multipole expansion of the ECD signal

through first order in the wave vector. However, caution has to be exercised to ensure gauge-

origin independent results, e.g. by performing calculations in the velocity representation23

or by employing gauge-including atomic orbitals.24,25 An additional aspect arising in the

X-ray regime, where the wavelength of the electromagnetic field approaches molecular di-

mensions, is the importance of higher-order terms in the expansion. To address these issues

in the context of linear absorption of linearly polarized light, we recently proposed using

the full semi-classical light–matter interaction operator in both the non-relativistic26,27 and

relativistic regimes.28 In addition to providing compatible transformation properties for both

light and matter, the relativistic formulation is particularly simple because the light–matter

interaction is linear in both the scalar and vector potentials.

In this work, we present a four-component relativistic formulation and implementation of

isotropic and anisotropic ECD using the full semi-classical light–matter interaction. This al-

lows us to investigate the ECD response across the electromagnetic spectrum, from optical to
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X-ray regimes. So far, previous theoretical studies of the isotropic XNCD of molecules have

only considered the first-order truncated interaction in a non-relativistic framework.18,22,29–35

In these studies, the only source of non-vanishing response at the L1- and K -edges is the

polarization away from atomic symmetry of the core orbitals. Our implementation accounts

for two additional possible contributions: (i) effects of beyond first-order light–matter inter-

actions and (ii) inclusion of relativistic effects, notably spin-orbit coupling that modifies se-

lection rules (in particular, the magnetic transition-dipole selection rule36,37). Consequently,

this allows, for the first time, to realistically examine the ECD response of molecules across

the valence and X-ray regimes.

As test systems, we consider the simplest disulfide chromophore models, dihydrogen

disulfide H2S2 and dimethyl disulfide (CH3S)2. Because of the low disulfide torsional barri-

ers (∼6-11 kcal/mol38–41), the two enantiomeric forms (P - and M -helix) cannot be resolved

experimentally. However, the disulfide bridge is an important structural element in pro-

teins,42 where it preferentially occurs in non-planar, chiral conformations (C2 symmetry)

and hence displays structurally-induced axial chirality. An interesting perspective for com-

plex systems (e.g., proteins) is the potential use of XNCD as a local probe of chirality.30,34

This could potentially complement the delocalized conformational information encoded in

valence ECD. Because of its computational tractability, H2S2 has been widely used to bench-

mark electronic structure methods for the calculation of chiroptical properties.43–49 For the

same reason, Goulon et al. also used it to estimate relative magnitudes of XNCD responses

within the first-order truncated interaction and non-relativistic framework, reporting val-

ues below the experimental detection limits.18 Here, we revisit the ECD of the disulfide

chromophore across the valence, L- and K -edges, going beyond these approximations.
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2 Theory

2.1 Full light–matter interaction

We begin with a description of our ECD formulation using the full semi-classical light–matter

interaction, which has been implemented in a development version of the Dirac electronic

structure program.50,51 We consider a circularly polarized monochromatic (angular frequency

ω) electromagnetic field with electric and magnetic components given by

E(M)(r, t) =
1√
2
Eω
[
ε1 sin(k · r− ωt) + (−1)Mε2 cos(k · r− ωt)

]
B(M)(r, t) =

1√
2

Eω
c

[
ε2 sin(k · r− ωt)− (−1)Mε1 cos(k · r− ωt)

]
, (1)

where appears the polarization vectors ε1 and ε2 that, together with the wave vector k = kek

(k = ω
c
), form a right-handed coordinate system; the field amplitude Eω, and the integer M

that specifies the handedness of the field, i.e., left (even) and right (odd) circularly polarized

light, respectively, following the IUPAC recommendation.52 Such an electromagnetic wave

is conventionally represented in the Coulomb gauge by the scalar and vector potentials

φ(M)(r, t) = 0

A(M)(r, t) = − 1√
2

Eω
ω

[
ε1 cos (k · r− ωt)− (−1)Mε2 sin (k · r− ωt)

]
. (2)

In the relativistic domain, this leads to an interaction operator for left/right-handed (L/R)

circularly polarized light of the form

V̂L/R(t) = ec
(
α ·AL/R

)
= −1

2
Eω
∑
±ω

T̂L/R(ω)e−iωt; T̂L/R(ω) =
e

ω
(cα · εL/R)eik·r, (3)
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where T̂L/R(ω) is the effective interaction operator (cf. Ref. 28), α are Dirac matrices and

εL/R =
1√
2

(ε1 ± iε2) = ε∗R/L. (4)

For notational simplicity, we tacitly assume the summation over electrons in the effective

interaction operator in Eq. (3). Considerable simplifications arise from the fact that the

relativistic interaction operator is linear in the vector potential and there is no separation

into spin and spatial parts.

The linear absorption cross section between initial and final states, |i〉 and |f〉, respec-

tively, is then given by

σL/R (ω) =
πω

ε0h̄c

∣∣εL/R ·T∣∣2 f (ω, ωfi, γfi) ; T = 〈f | e
ω
cαeik·r|i〉. (5)

The use of Fermi’s golden rule for a transition between discrete states is justified by the

inclusion of a (Lorentzian) lineshape function f(ω, ωfi, γfi) expressing the finite lifetime of

excited states (see discussion in Ref. 28). Moreover, the lineshape function, having the

dimension of time, has to be included in order for the absorption cross section to have

the correct dimension of area. On the other hand, the dimensionless differential oscillator

strength is obtained from the absorption cross section by the pre-factor substitution πω
ε0h̄c
→

2meω
h̄e2

and removal of the lineshape function. In the interest of compact expressions we shall

in the following carry out our derivations using oscillator strengths rather than absorption

cross sections.

Evaluating the differential oscillator strengths between left and right circularly polarized

light starting from Eq. (5) provides the expression for the anisotropic differential oscillator
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strength using the full semi-classical interaction operator

∆f = fL − fR =
2meω

h̄e2
{(εL ·T) (εR ·T∗)− (εL ·T∗) (εR ·T)}

=
2meω

h̄e2
(εL × εR) · (T×T∗) = −i2meω

h̄e2
ek · (T×T∗) (6)

where we have used Eq. (4) and the vector relation

(a× b) · (c× d) = (a · c) (b · d)− (a · d) (b · c) . (7)

This final, compact expression represents the relativistic extension of the expression previ-

ously reported by Hansen and Avery.53

It is instructive to compare the differential oscillator strength in Eq. (6) (ECD) with the

oscillator strength associated with linearly polarized light. The latter is obtained by replac-

ing the complex polarization vector εL/R in Eq. (5) by the polarization vector ε giving the

direction of the electric field vector in the plane perpendicular to the wave vector. One im-

mediately notes that the differential oscillator strength contains no reference to polarization

vectors at all, which can be understood as a manifestation of axial symmetry. This simpli-

fies the rotational averaging appropriate for samples such as liquids and gases, with freely

tumbling molecules. Specificially, the rotational average involves three angles (θ, φ, χ): the

first two are associated with an average over propagation direction, whereas the polarization

angle χ now becomes redundant.

2.2 Truncated interaction

2.2.1 Multipoles in the velocity representation

In our previous work on the absorption of linearly polarized light, we considered two schemes

involving truncated light–matter interaction.28 In the first scheme, referred to as the gener-

alized velocity representation, the truncated interaction is obtained via a Taylor expansion
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of the oscillator strength in orders of the wave vector. Applying this to Eq. (6), we obtain

the following expressions for the differential oscillator strength to even and odd order in the

wave vector

∆f [2n] =
2meω

h̄e2
ek ·

n∑
m=0

(−1)m (2− δm0) Im
{(

T[n+m] ×T[n−m]∗)} = 0 (8)

∆f [2n+1] =
2meω

h̄e2
ek ·

n∑
m=0

(−1)m 2 Re
{
T[n+m+1] ×T[n−m]∗} (9)

where

T[n] · εL/R = 〈f |T̂ [n]
L/R|i〉; T̂

[n]
L/R =

e

ω

1

n!

(
icα · εL/R

)
(k · r)n . (10)

Note that only odd-order terms are sensitive to the handedness and hence contribute to the

expansion. This is a consequence of the time-reversal symmetry of the truncated interaction

operators, making the corresponding transition moments real.28

In the second scheme, referred to as generalized length representation, we transform to

multipolar gauge (mg).28,54–58 Using the Einstein summation convention, the full interaction

operator is then expressed as

V̂mg (ω) =
∞∑
n=0

V̂ [n]
mg (ω) ;

 V̂
[0]

mg (ω) = −Q̂[1]
p E

[0]
p

V̂
[n6=0]

mg (ω) = − 1
(n+1)!

Q̂
[n+1]
j1...jnp

E
[n]
p;j1...jn

− 1
n!
m̂

[n]
j1...jn−1;rB

[n−1]
r;j1...jn−1

,

(11)

where appears electric and magnetic multipole operators

Q̂
[n+1]
j1...jnp

= −erj1rj2 . . . rjnrp (12)

m̂
[n]
j1...jn−1;r =

n

n+ 1
rj1rj2 . . . rjn−1(r× ĵ)r; ĵ = −ecα (13)

that couple to the electric and magnetic fields and their derivatives

F
[n]
p;j1...jn

=
∂nFp

∂rj1∂rj2 . . . ∂rjn

∣∣∣∣
r=0

; F = E,B (14)
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at a selected expansion point, here set to the origin. The corresponding nth-order effective

interaction operator is given by

T̂
[n]
mg;L/R (ω) = −e

[
1

(n+ 1)!

(
r · εL/R

)
(ik · r)n − i

ω

n

(n+ 1)!

(
ik× εL/R

)
· (r× cα) (ik · r)n−1

]
.

(15)

On component form, the effective interaction operator is conveniently expressed as

T̂ [n]
mg (ω) = inεL/Rpkj1kj2 . . . kjnX̂

[n]
j1...jn;p (ω) , (16)

in terms of a multipole operator28

X̂
[n]
j1...jn;p (ω) =

1

(n+ 1)!
Q̂

[n+1]
j1...jn,p

− i

ω

1

n!
m̂

[n]
j1...jn−1;rεrjnp, (17)

(εrjnp is the Levi–Civita symbol). However, in contrast to the generalized velocity represen-

tation, we now loose origin independence of oscillator strengths.28

In our previous work,28 however, we have have shown that it is possible within the gen-

eralized velocity representation to distinguish electric and magnetic multipole components,

while maintaining origin independence of the oscillator strengths, although its individual

components still exhibit this dependency. The operator manipulations required for this sep-

aration do not involve commutators with the Hamiltonian and are therefore also valid when

using finite basis sets. We here review and expand this result. Using the vector relation in

Eq. (7), the effective interaction operator of Eq. (10) can be rewritten as

T̂
[n]
L/R =

e

ω

[
1

(n+ 1)!

{(
icα · εL/R

)
(k · r)n + n (k · icα)

(
εL/R · r

)
(k · r)n−1}

+
n

(n+ 1)!

(
k× εL/R

)
· (r× icα) (k · r)n−1

]
, (18)

As evident upon comparison to Eq. (15), we have effectively recovered the magnetic mul-

tipole part of the operator, and, in fact, writing the corresponding nth-order interaction
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operator V̂ [n]
L/R out on component form, we recover the expression of Eq. (11), with the im-

portant modification that the electric multipole operator in the length represention Eq. (12)

is replaced by its counterpart in the velocity representation

Q̂[n+1]
j1...jnp

=
ie

ω
rj1 . . . rjn−1 ((cαp) rjn + n (cαjn) rp) . (19)

This somewhat curious form is perhaps best understood by noting that the operator can

equally well be expressed as

Q[n+1]
j1...jnp

=
ie

ω
(cαj1rj2 . . . rjnrp + . . .+ rj1rj2 . . . cαjnrp + rj1rj2 . . . rjncαp)︸ ︷︷ ︸

(n+1) terms

(20)

being perfectly symmetric in all indices {j1 . . . jnp}, just as Eq. (12). The more compact

expression in Eq. (19) is possible because the relativistic velocity operator cα commutes

with the coordinates, contrary to the corresponding non-relativistic operator p/m. Finally,

using the commutator relation with the Hamiltonian

− i

h̄

[(
r · εL/R

)
(k · r)n , ĥ

]
=
(
cα · εL/R

)
(k · r)n + n

(
r · εL/R

)
(k · cα) (k · r)n−1 , (21)

one can show that transition moments of the electric multipole operator in the length and

velocity representation will be identical.28 However, very importantly, this generally only

holds in a complete basis.

The odd-order oscillator strength of Eq. (9) may now be expressed as

∆f [2n+1] =
2meω

h̄e2
k2n+1ek;j1 . . . ek;j2n+1ek ·

n∑
m=0

(−1)m 2
(
X

[n+m+1]
j1...jn+m+1

×X
[n−m]
jn+m+2...j2n+1

)
, (22)

where components of the real vector X
[n]
j1...jn

are given as the transition moments of the

multipole operator in Eq. (17) in the velocity representation.
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2.2.2 Angular dependence of truncated ECD

In the anisotropic case both the full and truncated differential oscillator strengths (Eqs. (6)

and (22), respectively) are functions of the orientation of the incident radiation. In the case

of truncated interaction we make this angular dependence explicit by writing the unit wave

vector as

ek = (sin θ cosφ, sin θ sinφ, cos θ) . (23)

The first-order differential oscillator strength can then be expanded as

∆f [1](θ, φ) = ek;iR
[1]
ij ek;j (24)

= R
[1]
iso +

1

2
(R[1]

zz −R
[1]
iso)(3 cos2 θ − 1)

+
1

2
(R[1]

xz +R[1]
zx) sin 2θ cosφ+

1

2
(R[1]

yz +R[1]
zy) sin 2θ sinφ

+
1

2
(R[1]

xx −R[1]
yy) sin2 θ cos 2φ+

1

2
(R[1]

xy +R[1]
yx) sin2 θ sin 2φ

where we have introduced the rotational strength tensor R[1]
ij (cf. Ref. 59) and its isotropic

part R[1]
iso, known as the rotational strength

R
[1]
ij =

4meω
2

h̄ce2

(
X

[1]
j ×X[0]

)
i
; R

[1]
iso =

1

3
(R[1]

xx +R[1]
yy +R[1]

zz). (25)

From Eq. (24) we see that the anisotropic part of ∆f [1](θ, φ) is a linear combination of d-

orbitals weighted by the relevant elements of the rotatory strength tensor. This can be made

more explicit by rewriting the first-order differential oscillator strength as

∆f [1](θ, φ) =
√

15R
[1]
isos+

√
3
(
R[1]
zz −R

[1]
iso

)
dz2 +

(
R[1]
xx −R[1]

yy

)
dx2−y2

+
(
R[1]
xz +R[1]

zx

)
dxz +

(
R[1]
yz +R[1]

zy

)
dyz +

(
R[1]
xy +R[1]

yx

)
dxy, (26)

where we have used a common normalization for all solid harmonics.

From Eq. (22) we see that rotational strength tensors can be generalized to arbitrary
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odd orders. It will also be seen that the differential oscillator strength ∆f [2n+1] contains

products of 2(n+1) components of the unit wave vector and is therefore spanned by spherical

harmonics of even ` = 0, 2, . . . 2(n+ 1).

In the Supplementary Information (SI) the (first-order) rotational strength tensor is ana-

lyzed in terms of symmetry for the C2 point group of the disulfide configurations considered,

assuming the rotation axis to coincide with the z-axis. We also show that that the rota-

tional strength tensor in the generalized velocity representation is invariant under a shift of

origin, also in a finite basis, which generally does not hold true in the generalized length

representation. As pointed out above, the separation into electric and magnetic multipole

contributions generally depends on the choice of gauge origin, and thus, is not unique. How-

ever, the presence of symmetry may introduce additional gauge-origin invariances.60 The

E1–M1 and E1–E2 contributions to the R[1]
z∗ elements are separately invariant under origin

shifts along the rotation axes (Section S2); in A symmery this holds for all elements of the

full rotational strength tensor.

In the case of the full interaction, the factorization of radial and angular parts is possible

using the plane wave expansion

eik·r = 4π
∞∑
`=0

∑̀
m=−`

i`j`(kr)Y
m
` (ek)Y

m∗
` (er) (27)

in terms of spherical harmonics Y m
` and spherical Bessel functions j`. However, it is more

cumbersome since it involves infinite sums over angular momentum ` and will not be pursued

further here.

2.3 Rotational average

As pointed out above, rotational averaging is simplified for the differential oscillator strength

because of the absence of reference to the polarization vectors. It is therefore limited to the
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solid angle, indicating the propagation direction, and is defined as

〈g(r)〉θ,φ =
1

4π

∫ 2π

0

∫ π

0

g(r) sin θdθdφ. (28)

In the case of the full light–matter interaction, the rotational average is handled numerically

using a Lebedev grid.27,28 In the case of the truncated interaction, the rotational average is

expressed as

〈∆f [2n+1]〉θ,φ = ∆f
[2n+1]
iso =

2meω

h̄e2
k2n+1〈ek;j1 . . . ek;j2n+1ek〉θ,φ·

n∑
m=0

(−1)m 2
{
X

[n+m+1]
j1...jn+m+1

×X
[n−m]
jn+m+2...j2n

}
.

(29)

To lowest order the isotropic differential oscillator strength becomes

〈∆f [1]〉θ,φ =
4meω

2

3h̄ce2

∑
j

(
X

[1]
j ×X[0]

)
j

=
8meω

2

3h̄ce2

∑
j

〈f |Q̂[1]
j |i〉〈f | −

i

ω
m̂

[1]
j |i〉 = R

[1]
iso, (30)

where we have used that 〈ek;jek〉θ,φ = 1
3
ej and that the E1–E2 contribution vanishes since

its elements form a traceless matrix.

3 Implementation Details

In practice, the interaction operator is separated into Hermitian and anti-Hermitian parts

for compatibility with the quaternion symmetry scheme of Dirac (see Refs. 28,61). The im-

plementation of Eq. (6) requires the same integrals as the linear oscillator strength, and thus

our previous integral implementation could be readily extended to ECD.26,27 The integral

evaluation over Lebedev points has been parallelized using MPI (Message Passing Interface).
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4 Computational Details

The geometries of H2S2 and (CH3S)2 were obtained using the B3LYP62–65 exchange–correlation

functional and the cc-pVTZ66,67 basis set. Geometry optimizations were performed in Gaus-

sian 16.68 To mimic the χ3 disulfide angle typical for protein structures,69 we performed

constrained geometry optimizations for χ3 = −87◦, corresponding to M -helical chirality.70

The restricted excitation window approach71,72 was used to selectively target the sulfur L-

and K -edges. This also eliminates the issue of artificial transitions to quasi-continuum or-

bitals caused by finite basis set effects that otherwise often interferes simulations at the

L-edge.73,74 A Gaussian model was employed for the nuclear charge distribution,75 and an

86-point Lebedev grid (Lmax = 12) was used for the isotropic averaging of the differential

linear absorption based on the full interaction operator. The gauge origin was placed in

the center-of-mass (COM) and spatial symmetry was invoked in all cases except for the

gauge-origin dependence calculations.

Excitation energies, linear and differential absorption cross sections for the full inter-

action operator as well as the multipole expansions within the generalized velocity gauge

were computed using the PBE076,77 exchange–correlation functional and the uncontracted

aug-pcX-378 and aug-pc-379–81 basis sets for sulfur and hydrogen, respectively. The pcX-n

basis set series was developed for describing core-excitation processes using the ∆SCF (Self-

Consistent Field) approach at both the nonrelativistic and relativistic levels. The small

component basis sets were generated within the condition of restricted kinetic balance. The

relativistic calculations were performed using a Dirac-Coulomb Hamiltonian in which the

(SS|SS) integrals are replaced by an interatomic SS energy correction.82 Gauge-origin in-

variance of our implementation of the full semi-classical formulation of the isotropic and

anisotropic rotatory strengths (Eq. (6)) and its first-order truncated counterpart was con-

firmed numerically by shifting the gauge-origin (from 0 to 100 a0) along the C2 axis. This

leads to a redistribution of the E1–E2 and E1–M1 contributions to R[1]
xx and R

[1]
yy for tran-

sitions of B symmetry. As expected, the results remained unchanged for both the full and
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truncated formulations (data not shown). Simulated spectra were obtained by convolving the

stick spectrum with Gaussian lineshape functions with full width at half maximum (FWHM)

of 0.4 eV, and those for (CH3S)2 were shifted by different offsets for each absorption edge so

as to match their experimental counterparts.

5 Results and Discussion

Before considering the ECD response of the disulfides, we assign the linear absorption features

across the valence and X-ray regions. We initially focus on (CH3S)2 for which experimental

gas-phase absorption spectra are available.83–87 Expectedly, and as shown in Figure S1, the

spectral profiles for H2S2 are similar, and because of its greater computational tractability,

we consider this minimal disulfide in subsequent analyses.

Figure 1 displays the rotationally averaged linear and differential absorption spectra for

valence, sulfur L- and K-edge transitions of (CH3S)2, computed using the full interaction

operator (green shading) with corresponding oscillator strengths indicated as green sticks.

Hereafter, we explicitly indicate the results of the full interaction with the superscript "full".

For comparison, we also provide the lowest non-vanishing terms in the truncated generalized

velocity representation (orange lines) for linear and differential absorption, i.e., zeroth- and

first-order in the magnitude of the wave vector, respectively. Black sticks at the top indicate

the location of the underlying electronic transitions and black lines (solid and dashed) the

experimental absorption spectra.83–87 Apart from uniform shifts necessary to align the lowest-

energy band to the respective experimental spectrum, the theoretical spectra capture well

both relative intensities and peak splittings.

The first valence band (Figure 1a) is dominated by the two excitations from the symmetric

and antisymmetric combinations of the non-bonding 3p orbital on each sulfur to the lowest

unoccupied σ∗SS orbital (b symmetry). This assignment is consistent with the analysis by

Linderberg and Michl on H2S2.88 Since the valence orbitals are found to have well-defined
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Figure 1: Isotropic linear (top) and differential (bottom) absorption spectra of (CH3S)2: (a)
valence, (b) L2,3-edge, (c) L1-edge and (d) K -edge spectra using the full interaction operator
in Eq. (3) (green shadings) or the lowest non-vanishing generalized velocity representation
(orange lines). Left axes correspond to (differential) absorption cross-sections, whereas (dif-
ferential) oscillator strengths (sticks) are shown on the right axes. Black sticks indicate
the location of all computed transitions whereas black lines are experimental spectra.83–87
The stick spectra were convolved with a Gaussian lineshape with FWHM of 0.4 eV. The
theoretical absorption spectra have been uniformly shifted to align with the experimental
counterparts (shift values indicated in the top panels). The same shifts were applied to the
ECD spectra.

spin, we adopt a non-relativistic state notation for the valence states, i.e., 11B and 21A,

respectively. They are separated by ∼0.15 eV. The second valence band originates from

transitions into the σ∗CS orbital (31A and 21B).

Turning to the X-ray region, the first two bands at the sulfur L2,3-edge (Figure 1b)

are dominated by transitions from the symmetric and antisymmetric combinations of the S
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2p3/2 and 2p1/2 core orbitals to the σ∗SS orbital. We note that the A/B pair of associated

transitions are essentially degenerate (less than 0.1 meV splitting) because of the limited

overlap between the core orbitals on each of the sulfur atoms. The calculated spin-orbit

splitting of ∼1.35 eV between the L3- and L2-branches is comparable to the experimental

splitting reported for dihydrogen sulfide (∼1.2 eV89,90). The L3/L2 branching ratio of ∼1.4:1

(obtained by summing the underlying oscillator strengths) deviates significantly from its

statistical value, which is obtained only in the limit of j−j coupling.91,92 The second peak in

each branch is dominated by excitations to the σ∗CS orbital and is separated from the first peak

by ∼1.4−1.5 eV. Consequently, the second band in the spectrum contains contributions from

both branches whereas the third band is associated with the second peak in the L2 branch.

These assignments agree with previous studies.85,93 The energy range considered as well as

the basis set used in our calculations does not cover the fourth band in the experimental

spectrum which, according to previous work,85 originates from excitations to higher-lying

orbitals of mixed σ∗CS/Rydberg character. Not surprisingly, the L1- and K-edge spectra bear

strong resemblance (Figure 1c-d): they display two pre-edge features, separated by ∼1.5 eV,

which originate from pairs of near-degenerate excitations from the bonding and antibonding

combinations of sulfur s-orbitals into the σ∗SS and σ∗CS orbitals, respectively.86,94,95

A non-vanishing ECD response in these minimal disulfides results from axial chirality

caused by trapping the disulfide bridge in a non-planar (i.e., C2) conformation. As described

above, the two lowest-energy transitions in each spectral domain are dominated by an exci-

tation from the bonding or antibonding combinations of the relevant atomic orbitals on the

sulfurs into the σ∗SS orbital. This pairing of transitions manifests as bisignate features in the

low-energy region of the ECD spectra. On the basis of the simple Bergson model for the

low-energy transitions in the disulfide chromophore,96,97 Linderberg and Michl88 formulated

a quadrant rule for the optical activity of the two low-energy valence transitions (domi-

nated by excitations from the symmetric and antisymmetric combinations of non-bonding

3p orbitals on sulfurs to the σ∗SS orbital) in organic disulfides. This rule relates the sign of
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the long-wavelength Cotton effect across the four dihedral quadrants and is a specific case

of the C2-rule for general chromophores of effective C2 symmetry.98 Woody extended the

theoretical analysis to also include the absolute sign of the lowest ECD band within each

quadrant,99 providing predictions in agreement with experimental results across different

dihedral angles.100–103

For the M -helical form considered here, we find a negative-first Cotton effect, consistent

with the quadrant rule.99 The intensity asymmetry of the lowest-energy valence couplet is

attributed to different intrafragment (i.e., CH3S-) contributions to the ECD signal of each

transition. At higher energies, the electronic coupling between the (core) orbitals decreases,

reducing both their energetic splitting and the intrafragment ECD contributions which be-

come increasingly atomic-like. As a consequence, the paired core transitions become near-

degenerate (energy splitting of a few meV or less) with rotational strengths of almost equal

magnitudes but opposite signs (see Table 1). Hence, after additionally accounting for sources

of broadening, including finite core-hole lifetimes (∼0.1 and ∼0.5 eV at the sulfur L- and

K -edges,104,105 respectively), we may realistically only be able to resolve the differential con-

tributions with the absolute sign given by the most intense of the transitions. Accordingly,

the effective signals are therefore reduced by orders of magnitude in the X-ray region (see

accumulated values in Table 1).

The linear absorption profiles with the full interaction and the electric-dipole approx-

imation essentially coincide across the four spectral regions. However, as shown by the

underlying oscillator strengths in Table 1, non-dipolar effects at the K-edge lead to inten-

sity redistribution among the underlying near-degenerate transitions (i.e., unrelated to the

arbitrary mixing allowed for degenerate states). Nonetheless, the overall spectral profiles

within and beyond the electric-dipole approximation are essentially identical because of the

nearly overlapping transitions. This is consistent with our previous findings for Cl K -edge

absorption in TiCl4.28 In contrast, the beyond-first-order effects become evident in the dif-

ferential K-edge absorption profile because of the signed nature of the underlying quantities.
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This leads to a factor-of-two overestimation of the ECD within the conventional first-order

treatment. As discussed below, introducing third-order contributions largely corrects this

discrepancy.

To better understand the nature of the chiral response across spectral regions, we com-

puted the underlying anisotropic differential oscillator strength distributions. Figure 2 shows

the full ECD distributions (points), compared with the first-order truncated counterparts

(surfaces), for transitions in H2S2. The solid angle represents the propagation direction, the

distance from the origin (COM) indicates the magnitude of the associated signal and the

color its sign. Note that different scaling factors have been applied across the transitions

(see upper right corner of each subfigure). The C2-rotation axis coincides with the z-axis,

whereas the disulfide bond is along the x-axis. The shapes of the anisotropic distributions

can be understood by decomposing the first-order signals into isotropic and d-orbital contri-

butions (Eq. (26)). The resulting orbital weights of the excitations plotted in Figure 2 are

reported in Table 2.

From symmetry considerations detailed in the SI, we find that contributions from dxz and

dyz vanish for excitations of both A and B symmetry. In A symmetry, R[1]
zz is also zero by

symmetry, such that the s and dz2 contributions come in a fixed ratio, giving a toroid in the

xy-plane. For valence and L3-edge excitations of A symmetry this shape is modulated by

the dx2−y2 contribution, giving the shape of a biconcave disc elongated along the y- and x-

axis, respectively, depending on its relative sign. For the L1- and K-edge excitations the dxy

contribution completely dominates. This is also the case for the corresponding excitations

in B symmetry. It may be noted that in A symmetry the E1–M1 contribution to the dxy

term is zero by symmetry, whereas in B symmetry the E1–E2 and E1–M1 contributions are

of similar magnitude and the same sign. Continuing to the L3 excitation of B symmetry, the

angular plot resembles that of its counterpart in A symmetry, albeit with opposite overall

sign and rotated π/2 about the molecular axes. The latter can be understood from the

relative weights of dz2 and dx2−y2 contributions, as seen in Table 2. Finally, the angular
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plot of the valence excitation in B symmetry is a biconcave disc elongated along the z-axis,

arising from positive interference between s- and dz2-contributions contrary to the negative

interference observed for its counterpart of A symmetry.

Figure 2: Comparison of full and truncated differential oscillator strength ∆f(θ, φ) across
the spectral regions (valence, L3-, L1- and K-edges). Transitions of (a-d) A and (e-h) B
symmetry in H2S2. The black arrow points along the direction of the wave vector for the
anisotropic ECD intensity given in Table 1. The truncated ECD is represented by the
smooth surface, whereas the full ECD is shown as individual points generated with a 5810-
point Lebedev grid (Lmax = 131). Blue: negative; red: positive ECD signal. Note that
different scaling factors (upper right corner) have been applied. The corresponding isotropic
differential oscillator strengths are indicated in each subfigure.

Next, we compare these conventional first-order truncated ECD distributions with their

full counterparts. For the valence, L3- and L1-edge transitions, the anisotropic distributions

virtually coincide, thereby confirming the validity of the first-order truncated description

also for the anisotropic signal in these energy regimes. On the other hand, the full and

truncated ECD distribution for the K-edge transitions are seen to have the same overall

shape, but markedly different size, such that the factor-of-two overestimation at first order

of the isotropic response (Table 1/S1) arises largely from an overall scaling. Closer inspection
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Figure 3: Convergence of the truncated anisotropic ECD distributions, i.e., ∆f [2n+1](θ, φ),
for the K-edge transitions in H2S2. The black arrows point along the direction of the wave
vector for the anisotropic ECD intensity given in Table S1.

of the angular distribution of the full ECD distribution reveals that the lobes are not strictly

perpendicular as in a dxy-orbital, hence indicating the contributions from solid harmonics

of higher even angular momentum. To investigate this further, we have gathered the order-

by-order contributions together with the full anisotropic ECD distribution in Figure 3. We

indeed see that although ∆f [3] (` = 0, 2, 4) resembles ∆f [1], the inclusion of higher-order solid

harmonics in the former leads to non-orthogonal lobes. Furthermore, the two distributions

differ by an overall sign, such that the inclusion of ∆f [3] decreases the ECD signal. A

possible issue is the rate of convergence of the truncated interaction towards the full one.
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Our implementation of truncated interaction for linear absorption allows us to go to arbitrary

order, a unique functionality of the DIRAC code. In our previous work,28 we were able to

demonstrate that the truncated treatment converges to the full interaction upon inclusion

of higher-order terms, but for highly energetic transitions (photon energies beyond ∼3728

eV) the convergence behavior was too slow for practical applications. In the present case,

we assessed the convergence of the isotropic differential oscillator strength expansion at the

sulfur K-edge and found that the relative error, reported in Table 3, is below the threshold

of 1% at 7th order. Indeed, one sees in Figure 3 that the ∆f [5] distribution (` = 0, 2, 4, 6) is

minute. We also assessed the convergence of the expanded isotropic linear oscillator strength,

which reaches the same threshold at an equivalent rate.

6 Conclusion

We have reported the first implementation and application of the anisotropic and isotropic

ECD signal using the full semi-classical light–matter interaction operator within a four-

component relativistic framework. This simultaneous account of beyond-first-order light–

matter interactions and relativistic effects provides two additional sources of ECD which

become increasingly important at high photon energies. The linear form of the light–matter

interaction operator in the relativistic domain further enabled straightforward extension

to a multipole-based scheme in the velocity representation that allows for the traditional

(albeit, in general, ambiguous) decomposition into electric and magnetic contributions while

retaining order-by-order gauge-origin independence.

The presented approach was used to investigate the ECD response of two prototypical

disulfides, H2S2 and (CH3S)2, across the electromagnetic spectrum, from valence to core

transitions. To quantify the implications of higher-order effects, we compared the results of

the full interaction to those obtained within the traditional lowest-order non-vanishing (i.e.,

first-order) truncated generalized velocity representation. Going beyond the electric-dipole
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approximation at the sulfur K -edge leads to non-negligible intensity redistribution among

near-degenerate transitions but with no visible implications on the linear absorption pro-

file. On the other hand, the differential absorption profile is affected by such redistribution,

because of its signed nature. This leads to an overall factor-of-two overestimation. By exam-

ining the shapes of the underlying anisotropic ECD distributions, we find this discrepancy

to largely originate from an overall scaling that is corrected upon introducing third-order

contributions.

From a practical point of view, the full interaction operator provides a compact and inher-

ently gauge-origin invariant treatment of light–matter interactions which is both implementation-

and computation-wise competitive with traditional multipole-based schemes for oriented and

isotropic linear spectroscopies. For this reason, we believe that the use of the full light–matter

interaction will become the new standard for theoretical X-ray spectroscopies. The question

of how to efficiently handle the rotational averaging for nonlinear light–matter interactions

will be explored in future work.
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Table 2: Weights of contributions from solid harmonics ((24)) to the differential cross section
∆f(θ, φ) of selected transitions in H2S2. The weights have been scaled by the absolute value
of the s-contribution. Numbers in parentheses are exponents of 10.

Irrep Excitation ∆f
[1]
iso s dz2 dx2−y2 dxy

A Valence 5.176(-05) 1.000 -0.447 0.300 -0.056
L3-edge -9.118(-05) -1.000 0.447 0.414 -0.031
L2-edge -2.824(-04) -1.000 0.447 0.408 -0.024
L1-edge 7.316(-05) 1.000 -0.447 -0.862 8.817
K-edge 1.657(-04) 1.000 -0.447 -0.772 9.108

B Valence -7.624(-05) -1.000 -0.328 -0.090 0.314
L3-edge 9.186(-05) 1.000 -0.132 -0.592 -0.005
L2-edge 2.883(-04) 1.000 -0.128 -0.591 -0.008
L1-edge -7.312(-05) -1.000 2.503 -0.347 -8.262
K-edge -1.657(-04) -1.000 0.377 0.813 -9.125

Table 3: Contributions to the isotropic linear and differential oscillator strength (∆f [2n+1]
iso

and f [2n]
iso ) at various orders, n = 0, 1, 2, 3 compared to the result of the full interaction for

the two 1s1/2 → σ∗SS transitions of A/B symmetry. The errors upon truncation are defined
as %δ∆f

[→2n+1]
iso = |(∆f [→2n+1]

iso − ∆f fulliso )/∆f fulliso |×100%. The results were obtained using
4c-TD-PBE0 level of theory and the uncontracted aug-pcx-3/aug-pc3 basis set. Numbers in
parentheses are exponents of 10.

4A (1s1/2 → σ∗SS)

n f
[2n]
iso ∆f

[2n+1]
iso %δf

(→2n)
iso %δ∆f

[→2n+1]
iso

0 5.5576(-05) 1.6569(-04) 97.99 109.10
1 3.4276(-03) -1.0818(-04) 26.07 27.42
2 -8.1305(-04) 2.4151(-05) 3.36 3.06
3 9.9900(-05) -2.2416(-06) 2.57(-1) 2.32(-1)
4 -7.5661(-06) 1.2938(-07) 1.69(-2) 3.96(-1)

→ 8(+1) 2.7625(-03) 7.9240(-05) - -
full 2.7630(-03) 7.9240(-05) - -

n 4B (1s1/2 → σ∗SS)
0 1.0512(-02) -1.6570(-04) 35.24 109.10
1 -3.4601(-03) 1.0818(-04) 9.27 27.42
2 8.1318(-04) -2.4153(-05) 1.19 3.06
3 -9.9897(-05) 2.2413(-06) 9.60(-2) 2.24(-1)
4 7.5513(-06) -1.2878(-07) 1.43(-3) 3.98(-1)

→ 8(+1) 7.7729(-03) -7.9433(-05) - -
full 7.7728(-03) -7.9246(-05) - -
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