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Abstract 

Microkinetic analysis based on density functional theory (DFT) was combined with a generative 

adversarial network (GAN) to enable artificial proposal of heterogeneous catalysts based on the DFT-

calculated dataset. The approach was applied to the NH3 formation reaction on Ru-Rh alloy surfaces 

as an example. The NH3 formation turnover frequency (TOF) was calculated by DFT-based 

microkinetics. Specifically, six elementary reactions (N2 dissociation, H2 dissociation, NHx (x = 1–3) 

formation, and NH3 desorption) were explicitly considered, and their reaction energies were evaluated 

by DFT. On the basis of TOF values and atomic compositions, new alloy surfaces were generated using 

the GAN. This approach successfully generated the surfaces not included in the initial dataset but have 

higher TOF values. The N2 dissociation reaction was more exothermic for the generated surfaces, 

leading to higher TOF. The present study shows that automatic improvement of catalyst materials is 

possible by using the iterative steps of DFT calculation and sample generation by GAN.  
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1. Introduction 

   Catalysts play a crucial role in energy and environmental science, and its performance is often 

evaluated by the reaction rate or turnover frequency (TOF). Researchers have devoted great efforts to 

find new catalysts with higher reaction rates. It is well known that the reaction rate is governed by 

several factors: the activation energies, the number of active sites (or surface area of the catalyst), 

sticking coefficients on the surface, etc. Unfortunately, accurate measurement of such quantities 

requires both special expertise and great effort; therefore, detailed kinetic profiles have only been 

clarified for limited cases. 

   In the last few decades, theoretical simulation and computational methods became feasible 

alternatives to evaluate reaction kinetics. Ab initio or first-principles calculation is a popular one, 

because it provides atomic-scale information without requiring experimental data. For example, this 

approach can be helpful in identifying the active site on the catalyst surface, which is a fundamental 

issue in catalysis. Owing to recent developments in algorithms and computational resources, such 

atomic-scale simulations, especially those using density functional theory (DFT), are widely used 

nowadays. 

   While computational methods are useful for studying given real or proposed materials, it cannot 

automatically suggest new ones. Recently, it was realized that applying machine learning to 

computational chemistry could lead to computation-based material proposal.1 Several promising 

examples have been reported in catalysis.2-5 Among the several possibilities of combining 

computational chemistry and machine learning, the present author considers the so-called generative 

model a particularly important machine learning algorithm because it enables “extrapolative” proposal 

in the material or configuration space; that is, the search is not confined within given dataset. As a type 

of generative model, the generative adversarial network (GAN) is widely used, especially in artificial 

image generation.6, 7 Several groups have reported the application of GAN to material science; Kim et 

al. used it to find new zeolite systems,8 and several groups also used it to artificially generate crystal 
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structures with desirable properties.9, 10 

   A catalytic reaction often involves several species and elementary reactions. Microkinetic analysis 

explicitly treats a set of elementary reactions. Therefore, it is often more accurate than the kinetic 

analysis based on the global rate expression.11 Currently, DFT-based microkinetics is widely used in 

catalysis research because it is a powerful tool since kinetic information, such as reaction energy and 

activation barrier, can be calculated by DFT.11-15 Considering this, the combination of DFT calculations, 

microkinetics, and catalytic material generation from generative models is a promising approach 

toward the rational design of catalysts. 

   The present paper describes a new approach based on DFT calculations and sample generation by 

GAN for heterogeneous catalyst search. The generation procedure is extrapolative, because the 

proposed catalytic material need not be included in the initially prepared dataset. Here, the GAN part 

aims to generate materials with a high TOF for the target catalytic reaction, where the TOF is calculated 

using DFT-based microkinetics. The ammonia (NH3) synthesis reaction, known as the Haber-Bosch 

process, is considered in this study as a representative heterogeneous catalytic reaction.16-18 Below, 

details of the DFT-GAN procedure are described in the Methods section, and its performance is 

discussed in the Results and Discussion section. 

 

2. Methods 

a. Models and details of DFT calculation 

   Here, catalytic NH3 synthesis is assumed to occur on a Rh-Ru bimetallic alloy surface. The Ru 

stepped surface was constructed first, and the bimetallic alloys were constructed by replacing Ru atoms 

with Rh atoms. Stepped metal surfaces were considered because NH3 formation is known to occur 

there.17, 19 The positions of the Ru atoms replaced by Rh atoms were chosen randomly in the original 

dataset, while the position of the Rh atoms is determined by the GAN; the details will be discussed 

later. The original dataset included 100 metal surfaces. The metal surfaces are modeled by repeated 
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slabs, and the stepped surface is modeled by removing half of the atoms in the top layer. Each slab 

consists of a (6×4) supercell in the lateral direction, with four atomic layers in the z-direction. 

Consequently, 84 atoms are included in the model. The typical structure of the surface model is shown 

in Fig. 1. The adsorption positions of N, H, NH, and NH2 were assumed to be the fcc three-fold hollow 

site and atop adsorption was assumed for NH2 and NH3, as these positions are the most stable 

adsorption sites on the Ru-stepped surface.20 These adsorption sites are shown in Fig.1. 

 

   The BEEF-vdW exchange-correlation functional was used in the DFT calculations because it 

provides an accurate description of the van der Waals interaction.21 The core electrons were represented 

by the projector-augmented wave (PAW) potentials.22 The valence electrons were expanded with plane 

waves up to a cutoff energy of 400 eV. Spin polarization was included throughout, and no symmetry 

constraint was imposed on the geometries. A Gaussian scheme was used in the smearing of electron 

occupation near the Fermi level. The convergence thresholds for the electronic and geometry 

 

Figure 1. Typical slab model for the stepped surface, and the adsorption sites of the N, H, NH, 

NH2, and NH3 species. The upper and lower panels are top and side views. The dotted line in the 

bare surface model shows the boundary of the supercell. The metal, N, and H atoms are shown in 

gree, blue, and white spheres, respectively. 
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optimizations were set to 1.0 × 10−4 eV and 1.0 × 10−1 eV/Å in energy and force, respectively. 

Optimization of the unit cell lengths was performed for all surfaces in the absence of the adsorbate 

molecules. Brillouin zone integration was performed by numerical integration at the gamma point. A 

vacuum layer of ~12 Å was placed between the slabs, and dipole correction was applied in the z-

direction to cancel the artificial interaction between slabs. All DFT calculations were performed using 

the Vienna ab initio simulation package (VASP) version 5.4.4.23, 24 

 

b. Elementary reactions and rate of NH3 formation 

   The overall reaction of NH3 synthesis 

  (1) 

is generally considered to include the following six elementary reactions.25 

  (2) 

  (3) 

  (4) 

  (5) 

  (6) 

  (7) 

where the asterisk (*) denotes a vacant active site on the metal surface, and the species with asterisks 

are the adsorbed species. The reaction energies in eq. (2)–(7) were determined from the total energy 

calculated by DFT, that is, the sum of electronic and nuclear repulsion energies. 

   Previous experimental and theoretical work suggests that the rate-determining step (RDS) is eq. 

(2), namely the dissociative adsorption of N2.17, 26 The present study followed this assumption, and the 

other reaction steps were equilibrated. In this case, the fractional surface coverage of adsorbed species 

i (𝜃i) is written as 

2 2 3N 3H 2NH+ ®

2N 2* 2N*+ ®

2H 2* 2H*+ ®

N* H* NH*+ ®

2NH* H* NH *+ ®

2 3NH * H* NH *+ ®

3 3NH * NH +*®
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  (8) 

where pi is the partial pressure of NH3 or H2, and Ki is the equilibrium constant of eqs. (2)–(7).25 Then, 

the total reaction rate is written as 

  (9) 

where k is the rate constant of RDS (eq. (2)) calculated using the Arrhenius equation: 

 . (10) 

Ea is the activation energy of eq. (2), A is the pre-exponential factor with the value of 0.241 s−1 given 

by Logadottir et al.,20 R is the universal gas constant, and T is the temperature. For the zero-point 

energies and thermal correction terms, experimental values from the NIST webbook were used. 27 

   Although it is possible to evaluate Ea with DFT by locating the transition state, this process requires 

considerable computational effort. Instead, this study evaluated Ea using the linear free energy 

relationship (or the Bronsted-Evans-Polanyi principle), in which Ea is expressed as a linear function of 

ΔE as 

 . (11) 

The values of 𝛼 = 0.87 and 𝛽 = 1.34 for the stepped metal surface were taken from the literature.28 The 

3

2

2

3

2

3

2

2

3

3

3 3 3 3

2

2 2 2

NH
N vac3/2 3/2

3 H 4 5 6 7

H 3 H vac

NH
NH vac

3 H 5 6 7

NH
NH vac

3 H 6 7

NH
NH vac

7

vac
NH NH NH NH

3 H3/2 3/2
3 H 4 5 6 7 3 H 5 6 7 73 H 6 7

1

1

p
K p K K K K

K p

p
K p K K K

p
K p K K

p
K

p p p p
K p

K p K K K K K p K K K KK p K K

q q

q q

q q

q q

q q

q

=

=

=

=

=

=
+ + + + +

3

2

2 2

2
NH

N vac 3 2 2 2 2 3
2 3 4 5 6 7 N H

11
p

R k p
K K K K K K p p

q
æ ö

= × -ç ÷ç ÷
è ø

exp aEk A
RT

æ ö= -ç ÷
è ø

aE Ea b= D +



 7 

calculation was carried out at T = 700 K and a total pressure of 100 bar. N2 and H2 in the inlet gas were 

stoichiometric, i.e., pN2 : pH2 = 1 : 3. The conversion of N2 was set to 10%. 

 

c. Details of the GAN 

   Similar to the original and several extended versions of GAN, the entire system here consists of 

the generator (G) and discriminator (D) networks. In the present case, fake samples with a high NH3 

formation rate are desirable, and they can be generated using G. Therefore, the conditional GAN 

(CGAN) was applied because it enables the generation of fake samples corresponding to a given label.7 

The structures of G and D are shown in Figure 2. The metal surface is encoded by a one-dimensional 

string array consisting of Rh or Ru. Then the string is converted to the one-dimensional vector of either 

0 or 1 value. This vector and the DFT-calculated TOF value are used as the descriptor and target values, 

respectively. These alloys and their DFT-calculated TOF values were used together for learning. The 

mean squared error is used for the loss function of D and G parts.29 Because the fake samples are 

expressed as a one-dimensional vector of transition metal elements and the initial atomic positions, 

DFT calculations can be carried out for these samples. This also means that their NH3 formation rates 

could be evaluated with the same accuracy as the original dataset. DFT calculation results for the 

generated samples were added to the original dataset, and the augmented dataset was used for iterative 

training of the GAN. The specific steps are as follows: 

(1) DFT calculation is performed to obtain Ea and ΔE values for elementary reactions of eq. (2)–(7). 

This is done for all samples in the dataset. 

(2) The TOF for NH3 formation is calculated according to eq. (9) using the DFT-calculated ΔE and 

Ea values. 

(3) The calculated samples are sorted according to the DFT values and grouped into several classes 

(n) according to the NH3 formation rate. Here, the number of groups is set to five, and the group 

with the highest TOF is labeled n = 1. 
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(4) Networks D and G are trained with the dataset using the backpropagation scheme. 

(5) G generates fake samples for n = 1. Any generated surface that overlaps with the existing sample 

set is removed. 

(6) DFT calculation is performed for the newly generated samples. The results are added to the dataset 

for use in the next iteration. 

 

   Note that the size of the dataset increases as the iterations proceed. This feature is favorable in 

terms of training neural networks, as a larger number of samples can be used in the training. Several 

studies have shown that such iterative training of the GAN is effective.30, 31 

   When training D and G, the loss function was set to the mean-squared error in both cases, and the 

ADAM optimizer was used. The learning rate was set to 1.0 × 10−3, and the parameters 𝛽1 and 𝛽2 were 

set to 0.5 and 0.999, respectively. The dropout rate was set to 0.3. The minibatch size was set to 20% 

of the sample size at each iteration. The maximum number of the training process (i.e., the epoch) was 

set to 2000. 

   The Python library atomic simulation environment (ASE) was used to construct the model and 

 

 
 

 
Figure 2. Structure of the DFT-GAN procedure used in this work. In the training phase, the 

generator and discriminator are trained using DFT-calculated data. Then, new samples are generated 

in the evaluation phase. This training-evaluation sequence consists of one iteration. After the newly 

generated samples are evaluated by DFT calculation, they are added to the original dataset for use 

in the next iteration. 
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perform the DFT calculations.32 The GAN part was calculated with PyTorch version 1.8. These Python 

codes are freely available on the author’s GitHub page.33 

 

3. Results and Discussion 

   First, 100 bimetallic alloy surfaces were generated by randomly replacing Rh atoms with Ru atoms 

on a surface. DFT calculations were performed on these samples to obtain the TOF values. In the 

following, this dataset is called the “original dataset.” Then, the iterative GAN procedure described 

above was applied. Five iterations were performed, meaning that four generations of new samples were 

created in addition to the original dataset. 

   Figure 3(a) plots the TOF of each metal surface on a logarithmic scale, and the surfaces are sorted 

in descending order of TOF. In the original dataset (iter = 0), the metal surfaces have a wide range of 

TOF values ranging from 1.0 × 10−4 (Rh8Ru76) to 2.3 × 10−19 site−1·s−1 (Rh50Ru34). This indicates a 

strong dependence of TOF on the metal surface composition. The new metal surfaces generated by the 

first to fifth iterations of DFT-GAN (iter = 1–5) are shown in the figure. It can be seen that the generated 

surfaces tend to have relatively higher TOF values than the original dataset. At iter = 3, Rh4Ru80 is 

generated, and it has a TOF value of 3.1 × 10−4 site−1·s−1, which is higher than the maximum TOF in 

the original dataset. At iter = 5, the best TOF value (1.1 × 10−3 site−1·s−1) is obtained with Rh8Ru76; 

this TOF value is more than ten times larger than the best value in the original dataset. These facts 

show that the GAN successfully generated a metal surface with high catalytic performance in an 

extrapolative manner. The TOF values at each iteration are summarized in the so-called violin plot in 

Figure 3(b). The violin-shaped curves show the probability density of the TOF values, and the box 

inside each curve indicates the quartiles. The plot shows that the original dataset has widely distributed 

TOF values. The TOF value distribution of the generated surfaces (iter = 1–5) are more skewed toward 

the high TOF region. This trend clearly shows that the GAN is much more efficient than the random 

sampling, to obtain the metal surface with high NH3 formation rate. 
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   The property of the generated surface agrees with the existing chemical or physical insights. It is 

widely known that NH3 formation is much faster on the Ru surface than on the Rh surface.34 In this 

study, surfaces generated by GAN tend to have a high proportion of Ru; the full dataset can be found 

in Supporting Information. This shows that the neural network captures the experimental tendency of 

transition metal elements by learning from the TOF of NH3 formation calculated by DFT. 

 

Figure 3. (a) TOF of NH3 formation on 224 Ru-Rh alloy surfaces. The TOF values from different 

DFT-GAN iterations (iter = 1–5) are coded by different colors. The iter = 0 corresponds to the 

original dataset. The dataset is sorted according to the DFT value, from the highest (left) to the 

lowest (right). The reaction temperature and total pressure are 700 K and 100 bar, respectively. (b) 

The box and violin plots of the TOF values for iter 0–5. The line inside the box represents the 

median value. The points on the left of the violin represent the raw TOF value at each iteration. 
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   The generator loss (G-loss) and discriminator loss (D-loss) during the training process are plotted 

in Figure 4. Since each iteration has 2000 epochs, there are 10000 epochs in five iterations. At the 

earlier stage of training, G-loss is smaller than D-loss. However, after ~1000 epochs, D-loss becomes 

lower than G-loss, meaning that the D part of the GAN is well-trained. 

 

   To understand why the generated surfaces have higher TOFs, the energetics of NH3 formation 

reaction were analyzed. Figure 5 summarizes the potential energy curves, reaction energies of the 

elementary reactions, and surface fractional coverages of the adsorbates. Here, the Rh-Ru surfaces 

with the best TOF values at iter = 0, 3, 4, and 5 are compared. The compositions of these surfaces are 

Rh8Ru76, Rh4Ru80, Rh12Ru72, and Rh8Ru76, respectively. The best TOF value (1.1 × 10−3 site−1·s−1) is 

that of Rh8Ru76, which is generated at iter = 5. This value is much higher than that of Rh8Ru76 at iter 

= 0 (1.0 × 10−4 site−1·s−1), which is the highest TOF in the original dataset (for brevity, these surfaces 

are denoted as Rh8Ru76-iter5 and Rh8Ru76-iter0 in the following discussion). Note that these two 

surfaces have the same composition, but the position of the Rh atoms are different each other. 

 

 
 

Figure 4. Discriminator and generator losses during the DFT-GAN procedure. Each iteration has 

2000 epochs.  
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   Figure 5(a) plots the potential energy curves for NH3 formation. Two NH3 molecules are formed 

because the dissociation of one N2 molecule generates two N* (surface-adsorbed N) atoms. The plots 

show a deep potential energy sink at the NH2* + N* + 4H* state caused by the exothermic formation 

of NH and NH2 and endothermic formation of NH3. This energy sink is unfavorable from the 

thermodynamic viewpoint because the high stability of NH* and NH2* leads to surface poisoning. The 

lack of vacancy in the active site prohibits the next catalytic reaction; this issue will be discussed later. 

The potential energy curves for iter = 2–4 have lower potential energy at NH2* + N* + 4H*, similar to 

that for iter = 0. However, at iter = 5, the endothermicity of the reaction is much improved. This is 

beneficial in terms of the accessibility of the N2 molecule on the active site. Thus, the potential energy 

curves show that the GAN-generated surfaces successively improve the thermodynamic character of 

NH3 formation. 

   The reaction energies (ΔEs) of the elementary reactions (eq. (2)–(7)) on several surfaces are shown 

in Figure 5(b). The reaction energy of N2 dissociation (eq. (2)) is more exothermic at iter = 2–5. For 

example, the ΔE on Rh8Ru76-iter5 is −0.79 eV, which is lower than that on Rh8Ru76-iter0 (−0.72 eV). 

Consequently, the activation barrier Ea becomes lower in the latter owing to the linear free energy 

relationship (eq. (11)). Another notable feature is the ΔE for NH3 formation. As stated above, the facile 

formation of NH3 alleviates surface poisoning by NH2. The Figure 5(b) shows that ΔE for NH3 

formation progressively becomes less endothermic as the iteration proceeds. This suggests that the 

GAN improves not only the kinetics but also the thermodynamics of the NH3 formation. 

   Figure 5(c) compares the fractional coverage (θ) of different adsorbates (N, H, NH, NH2, and NH3) 

and the vacant site (i.e., the active site) over several Rh-Ru surfaces. A notable difference is seen in 

the coverage of vacant site (θvac); for example, θvac is 7.5 × 10−3 for Rh8Ru76-iter5, but 3.9 × 10−3 for 

Rh8Ru76-iter0. The higher θvac of Rh8Ru76-iter5 facilitates NH3 formation by leaving accessible active 

sites for the N2 dissociation reaction. In accordance with its higher θvac, Rh8Ru76-iter5 has a lower θNH2 

(0.73) than Rh8Ru76-iter0 (0.89). NH2 is the most abundant adsorbate during NH3 formation. A high 
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θNH2 indicates NH2 poisoning on the surface to reduce the NH3 formation rate, which is known to be a 

serious disadvantage of Ru surfaces.35 Thus, lowering the θNH2 and θH values is desirable for the 

catalytic performance. The present data show that the GAN-generated surface has a lower θNH2 value 

than those included in the original dataset. 

   All these results show that the proposed DFT-GAN improves the TOF for NH3 formation by 

adjusting the detailed energetics of the elementary reactions. Even though the GAN was not explicitly 

provided with such information, training the neural networks with DFT data successfully captured 

these details. 
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Figure 5. (a) Potential energy profile of NH3 formation on the Rh-Ru surfaces with the highest  

TOF at iter 0, 3, 4, and 5. The activation barrier for the RDS (N2 dissociation) is indicated by the 

curves on the profile. (b) Reaction energies of the six elementary steps in NH3 formation over the 

Rh-Ru surfaces. (b) Coverages of N, H, NH, NH2, NH3, and vacant site (vac) on the Rh-Ru 

surfaces.  

 



 15 

4. Conclusions 

   The present paper proposes a new approach combining computational chemistry and machine 

learning to generate new catalytic surfaces in an extrapolative manner. Density functional theory 

(DFT) is used to calculate the energies of elementary reactions on a provided set of catalytic materials. 

The results are fed into a generative adversarial network (GAN) to propose additional materials. Here, 

the approach was used to enhance the turnover frequency (TOF) of NH3 synthesis in the Rh-Ru 

bimetallic alloy surface system. The DFT-GAN iterations consist of the following steps. (i) DFT is 

used to obtain the reaction energies (ΔE) of the elementary reactions. This is performed for all surfaces 

in the initially prepared dataset. (ii) TOF for NH3 formation is obtained from the ΔE values assuming 

N2 dissociation to be the rate-determining step, and the metal surfaces are labeled according to the 

TOF values. (iii) The GAN consisting of the discriminator and the generator is trained using the above 

DFT dataset consisting of metal surface information and TOF values. (v) The generator part of the 

GAN produces fake samples that are not contained in the present dataset. The conditional GAN is used 

here, and the generator part aims to produce surfaces with higher TOF values. (vi) DFT calculation is 

performed for the newly generated samples, and the results are added to the dataset. 

   The iterative process was started with 100 stepped alloy surfaces generated by random atomic 

replacement. After five iterations, Rh8Ru76 was successfully obtained as a surface not in the original 

dataset. The TOF of the generated surface was more than ten times higher than the best TOF value in 

the original dataset. Overall, samples generated in later iterations tend to have higher TOF, indicating 

that the iterative DFT-GAN scheme helps train the neutral networks in GAN. Also, the generated 

surfaces generally have a higher proportion of Ru atoms, which agrees with the experimental fact that 

the Ru surface is a far better catalyst than the Rh surface. The generated surfaces have higher TOF 

because of (a) a lower N2 dissociation reaction energy (which reduces activation energy for the rate-

determining step) and (b) a lower energy in NH3 formation (which reduces NH2 coverage on the 

surface and alleviates NH2 poisoning). The present study shows that the combination of DFT and GAN 
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is a promising strategy for the automatic and continuous improvement of catalyst performance.  
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